Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpmcvr2 Structured version   Visualization version   GIF version

Theorem lhpmcvr2 36638
Description: Alternate way to express that the meet of a lattice hyperplane with an element not under it is covered by the element. (Contributed by NM, 9-Apr-2013.)
Hypotheses
Ref Expression
lhpmcvr2.b 𝐵 = (Base‘𝐾)
lhpmcvr2.l = (le‘𝐾)
lhpmcvr2.j = (join‘𝐾)
lhpmcvr2.m = (meet‘𝐾)
lhpmcvr2.a 𝐴 = (Atoms‘𝐾)
lhpmcvr2.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
lhpmcvr2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → ∃𝑝𝐴𝑝 𝑊 ∧ (𝑝 (𝑋 𝑊)) = 𝑋))
Distinct variable groups:   𝐴,𝑝   𝐵,𝑝   𝐾,𝑝   ,𝑝   ,𝑝   𝑋,𝑝   𝑊,𝑝
Allowed substitution hints:   𝐻(𝑝)   (𝑝)

Proof of Theorem lhpmcvr2
StepHypRef Expression
1 lhpmcvr2.b . . 3 𝐵 = (Base‘𝐾)
2 lhpmcvr2.l . . 3 = (le‘𝐾)
3 lhpmcvr2.m . . 3 = (meet‘𝐾)
4 eqid 2773 . . 3 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
5 lhpmcvr2.h . . 3 𝐻 = (LHyp‘𝐾)
61, 2, 3, 4, 5lhpmcvr 36637 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → (𝑋 𝑊)( ⋖ ‘𝐾)𝑋)
7 simpll 755 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → 𝐾 ∈ HL)
8 simprl 759 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → 𝑋𝐵)
91, 5lhpbase 36612 . . . 4 (𝑊𝐻𝑊𝐵)
109ad2antlr 715 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → 𝑊𝐵)
11 lhpmcvr2.j . . . 4 = (join‘𝐾)
12 lhpmcvr2.a . . . 4 𝐴 = (Atoms‘𝐾)
131, 2, 11, 3, 4, 12cvrval5 36029 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑊𝐵) → ((𝑋 𝑊)( ⋖ ‘𝐾)𝑋 ↔ ∃𝑝𝐴𝑝 𝑊 ∧ (𝑝 (𝑋 𝑊)) = 𝑋)))
147, 8, 10, 13syl3anc 1352 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → ((𝑋 𝑊)( ⋖ ‘𝐾)𝑋 ↔ ∃𝑝𝐴𝑝 𝑊 ∧ (𝑝 (𝑋 𝑊)) = 𝑋)))
156, 14mpbid 224 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → ∃𝑝𝐴𝑝 𝑊 ∧ (𝑝 (𝑋 𝑊)) = 𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 387   = wceq 1508  wcel 2051  wrex 3084   class class class wbr 4926  cfv 6186  (class class class)co 6975  Basecbs 16338  lecple 16427  joincjn 17425  meetcmee 17426  ccvr 35876  Atomscatm 35877  HLchlt 35964  LHypclh 36598
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2745  ax-rep 5046  ax-sep 5057  ax-nul 5064  ax-pow 5116  ax-pr 5183  ax-un 7278
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2754  df-cleq 2766  df-clel 2841  df-nfc 2913  df-ne 2963  df-ral 3088  df-rex 3089  df-reu 3090  df-rab 3092  df-v 3412  df-sbc 3677  df-csb 3782  df-dif 3827  df-un 3829  df-in 3831  df-ss 3838  df-nul 4174  df-if 4346  df-pw 4419  df-sn 4437  df-pr 4439  df-op 4443  df-uni 4710  df-iun 4791  df-br 4927  df-opab 4989  df-mpt 5006  df-id 5309  df-xp 5410  df-rel 5411  df-cnv 5412  df-co 5413  df-dm 5414  df-rn 5415  df-res 5416  df-ima 5417  df-iota 6150  df-fun 6188  df-fn 6189  df-f 6190  df-f1 6191  df-fo 6192  df-f1o 6193  df-fv 6194  df-riota 6936  df-ov 6978  df-oprab 6979  df-proset 17409  df-poset 17427  df-plt 17439  df-lub 17455  df-glb 17456  df-join 17457  df-meet 17458  df-p0 17520  df-p1 17521  df-lat 17527  df-clat 17589  df-oposet 35790  df-ol 35792  df-oml 35793  df-covers 35880  df-ats 35881  df-atl 35912  df-cvlat 35936  df-hlat 35965  df-lhyp 36602
This theorem is referenced by:  lhpmcvr5N  36641  cdleme29ex  36988  cdleme29c  36990  cdlemefrs29cpre1  37012  cdlemefr29exN  37016  cdleme32d  37058  cdleme32f  37060  cdleme48gfv1  37150  cdlemg7fvbwN  37221  cdlemg7aN  37239  dihlsscpre  37848  dihvalcqpre  37849  dihord6apre  37870  dihord4  37872  dihord5b  37873  dihord5apre  37876  dihmeetlem1N  37904  dihglblem5apreN  37905  dihglbcpreN  37914
  Copyright terms: Public domain W3C validator