Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpmcvr2 Structured version   Visualization version   GIF version

Theorem lhpmcvr2 38533
Description: Alternate way to express that the meet of a lattice hyperplane with an element not under it is covered by the element. (Contributed by NM, 9-Apr-2013.)
Hypotheses
Ref Expression
lhpmcvr2.b 𝐡 = (Baseβ€˜πΎ)
lhpmcvr2.l ≀ = (leβ€˜πΎ)
lhpmcvr2.j ∨ = (joinβ€˜πΎ)
lhpmcvr2.m ∧ = (meetβ€˜πΎ)
lhpmcvr2.a 𝐴 = (Atomsβ€˜πΎ)
lhpmcvr2.h 𝐻 = (LHypβ€˜πΎ)
Assertion
Ref Expression
lhpmcvr2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š)) β†’ βˆƒπ‘ ∈ 𝐴 (Β¬ 𝑝 ≀ π‘Š ∧ (𝑝 ∨ (𝑋 ∧ π‘Š)) = 𝑋))
Distinct variable groups:   𝐴,𝑝   𝐡,𝑝   𝐾,𝑝   ≀ ,𝑝   ∧ ,𝑝   𝑋,𝑝   π‘Š,𝑝
Allowed substitution hints:   𝐻(𝑝)   ∨ (𝑝)

Proof of Theorem lhpmcvr2
StepHypRef Expression
1 lhpmcvr2.b . . 3 𝐡 = (Baseβ€˜πΎ)
2 lhpmcvr2.l . . 3 ≀ = (leβ€˜πΎ)
3 lhpmcvr2.m . . 3 ∧ = (meetβ€˜πΎ)
4 eqid 2733 . . 3 ( β‹– β€˜πΎ) = ( β‹– β€˜πΎ)
5 lhpmcvr2.h . . 3 𝐻 = (LHypβ€˜πΎ)
61, 2, 3, 4, 5lhpmcvr 38532 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š)) β†’ (𝑋 ∧ π‘Š)( β‹– β€˜πΎ)𝑋)
7 simpll 766 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š)) β†’ 𝐾 ∈ HL)
8 simprl 770 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š)) β†’ 𝑋 ∈ 𝐡)
91, 5lhpbase 38507 . . . 4 (π‘Š ∈ 𝐻 β†’ π‘Š ∈ 𝐡)
109ad2antlr 726 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š)) β†’ π‘Š ∈ 𝐡)
11 lhpmcvr2.j . . . 4 ∨ = (joinβ€˜πΎ)
12 lhpmcvr2.a . . . 4 𝐴 = (Atomsβ€˜πΎ)
131, 2, 11, 3, 4, 12cvrval5 37924 . . 3 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Š ∈ 𝐡) β†’ ((𝑋 ∧ π‘Š)( β‹– β€˜πΎ)𝑋 ↔ βˆƒπ‘ ∈ 𝐴 (Β¬ 𝑝 ≀ π‘Š ∧ (𝑝 ∨ (𝑋 ∧ π‘Š)) = 𝑋)))
147, 8, 10, 13syl3anc 1372 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š)) β†’ ((𝑋 ∧ π‘Š)( β‹– β€˜πΎ)𝑋 ↔ βˆƒπ‘ ∈ 𝐴 (Β¬ 𝑝 ≀ π‘Š ∧ (𝑝 ∨ (𝑋 ∧ π‘Š)) = 𝑋)))
156, 14mpbid 231 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š)) β†’ βˆƒπ‘ ∈ 𝐴 (Β¬ 𝑝 ≀ π‘Š ∧ (𝑝 ∨ (𝑋 ∧ π‘Š)) = 𝑋))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 397   = wceq 1542   ∈ wcel 2107  βˆƒwrex 3070   class class class wbr 5106  β€˜cfv 6497  (class class class)co 7358  Basecbs 17088  lecple 17145  joincjn 18205  meetcmee 18206   β‹– ccvr 37770  Atomscatm 37771  HLchlt 37858  LHypclh 38493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-proset 18189  df-poset 18207  df-plt 18224  df-lub 18240  df-glb 18241  df-join 18242  df-meet 18243  df-p0 18319  df-p1 18320  df-lat 18326  df-clat 18393  df-oposet 37684  df-ol 37686  df-oml 37687  df-covers 37774  df-ats 37775  df-atl 37806  df-cvlat 37830  df-hlat 37859  df-lhyp 38497
This theorem is referenced by:  lhpmcvr5N  38536  cdleme29ex  38883  cdleme29c  38885  cdlemefrs29cpre1  38907  cdlemefr29exN  38911  cdleme32d  38953  cdleme32f  38955  cdleme48gfv1  39045  cdlemg7fvbwN  39116  cdlemg7aN  39134  dihlsscpre  39743  dihvalcqpre  39744  dihord6apre  39765  dihord4  39767  dihord5b  39768  dihord5apre  39771  dihmeetlem1N  39799  dihglblem5apreN  39800  dihglbcpreN  39809
  Copyright terms: Public domain W3C validator