| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lhpmcvr2 | Structured version Visualization version GIF version | ||
| Description: Alternate way to express that the meet of a lattice hyperplane with an element not under it is covered by the element. (Contributed by NM, 9-Apr-2013.) |
| Ref | Expression |
|---|---|
| lhpmcvr2.b | ⊢ 𝐵 = (Base‘𝐾) |
| lhpmcvr2.l | ⊢ ≤ = (le‘𝐾) |
| lhpmcvr2.j | ⊢ ∨ = (join‘𝐾) |
| lhpmcvr2.m | ⊢ ∧ = (meet‘𝐾) |
| lhpmcvr2.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| lhpmcvr2.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| Ref | Expression |
|---|---|
| lhpmcvr2 | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 ∧ (𝑝 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lhpmcvr2.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | lhpmcvr2.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 3 | lhpmcvr2.m | . . 3 ⊢ ∧ = (meet‘𝐾) | |
| 4 | eqid 2729 | . . 3 ⊢ ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾) | |
| 5 | lhpmcvr2.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 6 | 1, 2, 3, 4, 5 | lhpmcvr 40002 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → (𝑋 ∧ 𝑊)( ⋖ ‘𝐾)𝑋) |
| 7 | simpll 766 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → 𝐾 ∈ HL) | |
| 8 | simprl 770 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → 𝑋 ∈ 𝐵) | |
| 9 | 1, 5 | lhpbase 39977 | . . . 4 ⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵) |
| 10 | 9 | ad2antlr 727 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → 𝑊 ∈ 𝐵) |
| 11 | lhpmcvr2.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
| 12 | lhpmcvr2.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 13 | 1, 2, 11, 3, 4, 12 | cvrval5 39394 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → ((𝑋 ∧ 𝑊)( ⋖ ‘𝐾)𝑋 ↔ ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 ∧ (𝑝 ∨ (𝑋 ∧ 𝑊)) = 𝑋))) |
| 14 | 7, 8, 10, 13 | syl3anc 1373 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → ((𝑋 ∧ 𝑊)( ⋖ ‘𝐾)𝑋 ↔ ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 ∧ (𝑝 ∨ (𝑋 ∧ 𝑊)) = 𝑋))) |
| 15 | 6, 14 | mpbid 232 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 ∧ (𝑝 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 class class class wbr 5095 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 lecple 17186 joincjn 18235 meetcmee 18236 ⋖ ccvr 39240 Atomscatm 39241 HLchlt 39328 LHypclh 39963 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-proset 18218 df-poset 18237 df-plt 18252 df-lub 18268 df-glb 18269 df-join 18270 df-meet 18271 df-p0 18347 df-p1 18348 df-lat 18356 df-clat 18423 df-oposet 39154 df-ol 39156 df-oml 39157 df-covers 39244 df-ats 39245 df-atl 39276 df-cvlat 39300 df-hlat 39329 df-lhyp 39967 |
| This theorem is referenced by: lhpmcvr5N 40006 cdleme29ex 40353 cdleme29c 40355 cdlemefrs29cpre1 40377 cdlemefr29exN 40381 cdleme32d 40423 cdleme32f 40425 cdleme48gfv1 40515 cdlemg7fvbwN 40586 cdlemg7aN 40604 dihlsscpre 41213 dihvalcqpre 41214 dihord6apre 41235 dihord4 41237 dihord5b 41238 dihord5apre 41241 dihmeetlem1N 41269 dihglblem5apreN 41270 dihglbcpreN 41279 |
| Copyright terms: Public domain | W3C validator |