| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lhpmcvr2 | Structured version Visualization version GIF version | ||
| Description: Alternate way to express that the meet of a lattice hyperplane with an element not under it is covered by the element. (Contributed by NM, 9-Apr-2013.) |
| Ref | Expression |
|---|---|
| lhpmcvr2.b | ⊢ 𝐵 = (Base‘𝐾) |
| lhpmcvr2.l | ⊢ ≤ = (le‘𝐾) |
| lhpmcvr2.j | ⊢ ∨ = (join‘𝐾) |
| lhpmcvr2.m | ⊢ ∧ = (meet‘𝐾) |
| lhpmcvr2.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| lhpmcvr2.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| Ref | Expression |
|---|---|
| lhpmcvr2 | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 ∧ (𝑝 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lhpmcvr2.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | lhpmcvr2.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 3 | lhpmcvr2.m | . . 3 ⊢ ∧ = (meet‘𝐾) | |
| 4 | eqid 2730 | . . 3 ⊢ ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾) | |
| 5 | lhpmcvr2.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 6 | 1, 2, 3, 4, 5 | lhpmcvr 40024 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → (𝑋 ∧ 𝑊)( ⋖ ‘𝐾)𝑋) |
| 7 | simpll 766 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → 𝐾 ∈ HL) | |
| 8 | simprl 770 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → 𝑋 ∈ 𝐵) | |
| 9 | 1, 5 | lhpbase 39999 | . . . 4 ⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵) |
| 10 | 9 | ad2antlr 727 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → 𝑊 ∈ 𝐵) |
| 11 | lhpmcvr2.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
| 12 | lhpmcvr2.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 13 | 1, 2, 11, 3, 4, 12 | cvrval5 39416 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → ((𝑋 ∧ 𝑊)( ⋖ ‘𝐾)𝑋 ↔ ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 ∧ (𝑝 ∨ (𝑋 ∧ 𝑊)) = 𝑋))) |
| 14 | 7, 8, 10, 13 | syl3anc 1373 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → ((𝑋 ∧ 𝑊)( ⋖ ‘𝐾)𝑋 ↔ ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 ∧ (𝑝 ∨ (𝑋 ∧ 𝑊)) = 𝑋))) |
| 15 | 6, 14 | mpbid 232 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 ∧ (𝑝 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3054 class class class wbr 5110 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 lecple 17234 joincjn 18279 meetcmee 18280 ⋖ ccvr 39262 Atomscatm 39263 HLchlt 39350 LHypclh 39985 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-proset 18262 df-poset 18281 df-plt 18296 df-lub 18312 df-glb 18313 df-join 18314 df-meet 18315 df-p0 18391 df-p1 18392 df-lat 18398 df-clat 18465 df-oposet 39176 df-ol 39178 df-oml 39179 df-covers 39266 df-ats 39267 df-atl 39298 df-cvlat 39322 df-hlat 39351 df-lhyp 39989 |
| This theorem is referenced by: lhpmcvr5N 40028 cdleme29ex 40375 cdleme29c 40377 cdlemefrs29cpre1 40399 cdlemefr29exN 40403 cdleme32d 40445 cdleme32f 40447 cdleme48gfv1 40537 cdlemg7fvbwN 40608 cdlemg7aN 40626 dihlsscpre 41235 dihvalcqpre 41236 dihord6apre 41257 dihord4 41259 dihord5b 41260 dihord5apre 41263 dihmeetlem1N 41291 dihglblem5apreN 41292 dihglbcpreN 41301 |
| Copyright terms: Public domain | W3C validator |