| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lhpmcvr2 | Structured version Visualization version GIF version | ||
| Description: Alternate way to express that the meet of a lattice hyperplane with an element not under it is covered by the element. (Contributed by NM, 9-Apr-2013.) |
| Ref | Expression |
|---|---|
| lhpmcvr2.b | ⊢ 𝐵 = (Base‘𝐾) |
| lhpmcvr2.l | ⊢ ≤ = (le‘𝐾) |
| lhpmcvr2.j | ⊢ ∨ = (join‘𝐾) |
| lhpmcvr2.m | ⊢ ∧ = (meet‘𝐾) |
| lhpmcvr2.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| lhpmcvr2.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| Ref | Expression |
|---|---|
| lhpmcvr2 | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 ∧ (𝑝 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lhpmcvr2.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | lhpmcvr2.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 3 | lhpmcvr2.m | . . 3 ⊢ ∧ = (meet‘𝐾) | |
| 4 | eqid 2735 | . . 3 ⊢ ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾) | |
| 5 | lhpmcvr2.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 6 | 1, 2, 3, 4, 5 | lhpmcvr 40042 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → (𝑋 ∧ 𝑊)( ⋖ ‘𝐾)𝑋) |
| 7 | simpll 766 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → 𝐾 ∈ HL) | |
| 8 | simprl 770 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → 𝑋 ∈ 𝐵) | |
| 9 | 1, 5 | lhpbase 40017 | . . . 4 ⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵) |
| 10 | 9 | ad2antlr 727 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → 𝑊 ∈ 𝐵) |
| 11 | lhpmcvr2.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
| 12 | lhpmcvr2.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 13 | 1, 2, 11, 3, 4, 12 | cvrval5 39434 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → ((𝑋 ∧ 𝑊)( ⋖ ‘𝐾)𝑋 ↔ ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 ∧ (𝑝 ∨ (𝑋 ∧ 𝑊)) = 𝑋))) |
| 14 | 7, 8, 10, 13 | syl3anc 1373 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → ((𝑋 ∧ 𝑊)( ⋖ ‘𝐾)𝑋 ↔ ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 ∧ (𝑝 ∨ (𝑋 ∧ 𝑊)) = 𝑋))) |
| 15 | 6, 14 | mpbid 232 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 ∧ (𝑝 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∃wrex 3060 class class class wbr 5119 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 lecple 17278 joincjn 18323 meetcmee 18324 ⋖ ccvr 39280 Atomscatm 39281 HLchlt 39368 LHypclh 40003 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-proset 18306 df-poset 18325 df-plt 18340 df-lub 18356 df-glb 18357 df-join 18358 df-meet 18359 df-p0 18435 df-p1 18436 df-lat 18442 df-clat 18509 df-oposet 39194 df-ol 39196 df-oml 39197 df-covers 39284 df-ats 39285 df-atl 39316 df-cvlat 39340 df-hlat 39369 df-lhyp 40007 |
| This theorem is referenced by: lhpmcvr5N 40046 cdleme29ex 40393 cdleme29c 40395 cdlemefrs29cpre1 40417 cdlemefr29exN 40421 cdleme32d 40463 cdleme32f 40465 cdleme48gfv1 40555 cdlemg7fvbwN 40626 cdlemg7aN 40644 dihlsscpre 41253 dihvalcqpre 41254 dihord6apre 41275 dihord4 41277 dihord5b 41278 dihord5apre 41281 dihmeetlem1N 41309 dihglblem5apreN 41310 dihglbcpreN 41319 |
| Copyright terms: Public domain | W3C validator |