Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climeldmeqmpt2 Structured version   Visualization version   GIF version

Theorem climeldmeqmpt2 41996
Description: Two functions that are eventually equal, either both are convergent or both are divergent. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
climeldmeqmpt2.k 𝑘𝜑
climeldmeqmpt2.m (𝜑𝑀 ∈ ℤ)
climeldmeqmpt2.z 𝑍 = (ℤ𝑀)
climeldmeqmpt2.a (𝜑𝐴𝑊)
climeldmeqmpt2.t (𝜑𝐵𝑉)
climeldmeqmpt2.i (𝜑𝑍𝐴)
climeldmeqmpt2.l (𝜑𝑍𝐵)
climeldmeqmpt2.b ((𝜑𝑘𝑍) → 𝐶𝑈)
Assertion
Ref Expression
climeldmeqmpt2 (𝜑 → ((𝑘𝐴𝐶) ∈ dom ⇝ ↔ (𝑘𝐵𝐶) ∈ dom ⇝ ))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝑍
Allowed substitution hints:   𝜑(𝑘)   𝐶(𝑘)   𝑈(𝑘)   𝑀(𝑘)   𝑉(𝑘)   𝑊(𝑘)

Proof of Theorem climeldmeqmpt2
StepHypRef Expression
1 climeldmeqmpt2.k . 2 𝑘𝜑
2 nfmpt1 5164 . 2 𝑘(𝑘𝐴𝐶)
3 nfmpt1 5164 . 2 𝑘(𝑘𝐵𝐶)
4 climeldmeqmpt2.z . 2 𝑍 = (ℤ𝑀)
5 climeldmeqmpt2.a . . 3 (𝜑𝐴𝑊)
65mptexd 6987 . 2 (𝜑 → (𝑘𝐴𝐶) ∈ V)
7 climeldmeqmpt2.t . . 3 (𝜑𝐵𝑉)
87mptexd 6987 . 2 (𝜑 → (𝑘𝐵𝐶) ∈ V)
9 climeldmeqmpt2.m . 2 (𝜑𝑀 ∈ ℤ)
10 climeldmeqmpt2.i . . . . 5 (𝜑𝑍𝐴)
1110sselda 3967 . . . 4 ((𝜑𝑘𝑍) → 𝑘𝐴)
12 climeldmeqmpt2.b . . . 4 ((𝜑𝑘𝑍) → 𝐶𝑈)
13 fvmpt4 41528 . . . 4 ((𝑘𝐴𝐶𝑈) → ((𝑘𝐴𝐶)‘𝑘) = 𝐶)
1411, 12, 13syl2anc 586 . . 3 ((𝜑𝑘𝑍) → ((𝑘𝐴𝐶)‘𝑘) = 𝐶)
15 climeldmeqmpt2.l . . . . 5 (𝜑𝑍𝐵)
1615sselda 3967 . . . 4 ((𝜑𝑘𝑍) → 𝑘𝐵)
17 fvmpt4 41528 . . . 4 ((𝑘𝐵𝐶𝑈) → ((𝑘𝐵𝐶)‘𝑘) = 𝐶)
1816, 12, 17syl2anc 586 . . 3 ((𝜑𝑘𝑍) → ((𝑘𝐵𝐶)‘𝑘) = 𝐶)
1914, 18eqtr4d 2859 . 2 ((𝜑𝑘𝑍) → ((𝑘𝐴𝐶)‘𝑘) = ((𝑘𝐵𝐶)‘𝑘))
201, 2, 3, 4, 6, 8, 9, 19climeldmeqf 41984 1 (𝜑 → ((𝑘𝐴𝐶) ∈ dom ⇝ ↔ (𝑘𝐵𝐶) ∈ dom ⇝ ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wnf 1784  wcel 2114  Vcvv 3494  wss 3936  cmpt 5146  dom cdm 5555  cfv 6355  cz 11982  cuz 12244  cli 14841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-sup 8906  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-rp 12391  df-seq 13371  df-exp 13431  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-clim 14845
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator