Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > climeldmeqmpt2 | Structured version Visualization version GIF version |
Description: Two functions that are eventually equal, either both are convergent or both are divergent. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
climeldmeqmpt2.k | ⊢ Ⅎ𝑘𝜑 |
climeldmeqmpt2.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
climeldmeqmpt2.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climeldmeqmpt2.a | ⊢ (𝜑 → 𝐴 ∈ 𝑊) |
climeldmeqmpt2.t | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
climeldmeqmpt2.i | ⊢ (𝜑 → 𝑍 ⊆ 𝐴) |
climeldmeqmpt2.l | ⊢ (𝜑 → 𝑍 ⊆ 𝐵) |
climeldmeqmpt2.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐶 ∈ 𝑈) |
Ref | Expression |
---|---|
climeldmeqmpt2 | ⊢ (𝜑 → ((𝑘 ∈ 𝐴 ↦ 𝐶) ∈ dom ⇝ ↔ (𝑘 ∈ 𝐵 ↦ 𝐶) ∈ dom ⇝ )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climeldmeqmpt2.k | . 2 ⊢ Ⅎ𝑘𝜑 | |
2 | nfmpt1 5177 | . 2 ⊢ Ⅎ𝑘(𝑘 ∈ 𝐴 ↦ 𝐶) | |
3 | nfmpt1 5177 | . 2 ⊢ Ⅎ𝑘(𝑘 ∈ 𝐵 ↦ 𝐶) | |
4 | climeldmeqmpt2.z | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
5 | climeldmeqmpt2.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑊) | |
6 | 5 | mptexd 7079 | . 2 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐶) ∈ V) |
7 | climeldmeqmpt2.t | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
8 | 7 | mptexd 7079 | . 2 ⊢ (𝜑 → (𝑘 ∈ 𝐵 ↦ 𝐶) ∈ V) |
9 | climeldmeqmpt2.m | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
10 | climeldmeqmpt2.i | . . . . 5 ⊢ (𝜑 → 𝑍 ⊆ 𝐴) | |
11 | 10 | sselda 3918 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ 𝐴) |
12 | climeldmeqmpt2.b | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐶 ∈ 𝑈) | |
13 | fvmpt4 42644 | . . . 4 ⊢ ((𝑘 ∈ 𝐴 ∧ 𝐶 ∈ 𝑈) → ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑘) = 𝐶) | |
14 | 11, 12, 13 | syl2anc 587 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑘) = 𝐶) |
15 | climeldmeqmpt2.l | . . . . 5 ⊢ (𝜑 → 𝑍 ⊆ 𝐵) | |
16 | 15 | sselda 3918 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ 𝐵) |
17 | fvmpt4 42644 | . . . 4 ⊢ ((𝑘 ∈ 𝐵 ∧ 𝐶 ∈ 𝑈) → ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑘) = 𝐶) | |
18 | 16, 12, 17 | syl2anc 587 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑘) = 𝐶) |
19 | 14, 18 | eqtr4d 2782 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑘) = ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑘)) |
20 | 1, 2, 3, 4, 6, 8, 9, 19 | climeldmeqf 43087 | 1 ⊢ (𝜑 → ((𝑘 ∈ 𝐴 ↦ 𝐶) ∈ dom ⇝ ↔ (𝑘 ∈ 𝐵 ↦ 𝐶) ∈ dom ⇝ )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1543 Ⅎwnf 1791 ∈ wcel 2112 Vcvv 3423 ⊆ wss 3884 ↦ cmpt 5152 dom cdm 5579 ‘cfv 6415 ℤcz 12224 ℤ≥cuz 12486 ⇝ cli 15096 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-rep 5203 ax-sep 5216 ax-nul 5223 ax-pow 5282 ax-pr 5346 ax-un 7563 ax-cnex 10833 ax-resscn 10834 ax-1cn 10835 ax-icn 10836 ax-addcl 10837 ax-addrcl 10838 ax-mulcl 10839 ax-mulrcl 10840 ax-mulcom 10841 ax-addass 10842 ax-mulass 10843 ax-distr 10844 ax-i2m1 10845 ax-1ne0 10846 ax-1rid 10847 ax-rnegex 10848 ax-rrecex 10849 ax-cnre 10850 ax-pre-lttri 10851 ax-pre-lttrn 10852 ax-pre-ltadd 10853 ax-pre-mulgt0 10854 ax-pre-sup 10855 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3425 df-sbc 3713 df-csb 3830 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-pss 3903 df-nul 4255 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5153 df-tr 5186 df-id 5479 df-eprel 5485 df-po 5493 df-so 5494 df-fr 5534 df-we 5536 df-xp 5585 df-rel 5586 df-cnv 5587 df-co 5588 df-dm 5589 df-rn 5590 df-res 5591 df-ima 5592 df-pred 6189 df-ord 6251 df-on 6252 df-lim 6253 df-suc 6254 df-iota 6373 df-fun 6417 df-fn 6418 df-f 6419 df-f1 6420 df-fo 6421 df-f1o 6422 df-fv 6423 df-riota 7209 df-ov 7255 df-oprab 7256 df-mpo 7257 df-om 7685 df-2nd 7802 df-wrecs 8089 df-recs 8150 df-rdg 8188 df-er 8433 df-en 8669 df-dom 8670 df-sdom 8671 df-sup 9106 df-pnf 10917 df-mnf 10918 df-xr 10919 df-ltxr 10920 df-le 10921 df-sub 11112 df-neg 11113 df-div 11538 df-nn 11879 df-2 11941 df-3 11942 df-n0 12139 df-z 12225 df-uz 12487 df-rp 12635 df-seq 13625 df-exp 13686 df-cj 14713 df-re 14714 df-im 14715 df-sqrt 14849 df-abs 14850 df-clim 15100 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |