![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > climeldmeqmpt2 | Structured version Visualization version GIF version |
Description: Two functions that are eventually equal, either both are convergent or both are divergent. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
climeldmeqmpt2.k | ⊢ Ⅎ𝑘𝜑 |
climeldmeqmpt2.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
climeldmeqmpt2.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climeldmeqmpt2.a | ⊢ (𝜑 → 𝐴 ∈ 𝑊) |
climeldmeqmpt2.t | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
climeldmeqmpt2.i | ⊢ (𝜑 → 𝑍 ⊆ 𝐴) |
climeldmeqmpt2.l | ⊢ (𝜑 → 𝑍 ⊆ 𝐵) |
climeldmeqmpt2.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐶 ∈ 𝑈) |
Ref | Expression |
---|---|
climeldmeqmpt2 | ⊢ (𝜑 → ((𝑘 ∈ 𝐴 ↦ 𝐶) ∈ dom ⇝ ↔ (𝑘 ∈ 𝐵 ↦ 𝐶) ∈ dom ⇝ )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climeldmeqmpt2.k | . 2 ⊢ Ⅎ𝑘𝜑 | |
2 | nfmpt1 5252 | . 2 ⊢ Ⅎ𝑘(𝑘 ∈ 𝐴 ↦ 𝐶) | |
3 | nfmpt1 5252 | . 2 ⊢ Ⅎ𝑘(𝑘 ∈ 𝐵 ↦ 𝐶) | |
4 | climeldmeqmpt2.z | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
5 | climeldmeqmpt2.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑊) | |
6 | 5 | mptexd 7230 | . 2 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐶) ∈ V) |
7 | climeldmeqmpt2.t | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
8 | 7 | mptexd 7230 | . 2 ⊢ (𝜑 → (𝑘 ∈ 𝐵 ↦ 𝐶) ∈ V) |
9 | climeldmeqmpt2.m | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
10 | climeldmeqmpt2.i | . . . . 5 ⊢ (𝜑 → 𝑍 ⊆ 𝐴) | |
11 | 10 | sselda 3973 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ 𝐴) |
12 | climeldmeqmpt2.b | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐶 ∈ 𝑈) | |
13 | fvmpt4 44672 | . . . 4 ⊢ ((𝑘 ∈ 𝐴 ∧ 𝐶 ∈ 𝑈) → ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑘) = 𝐶) | |
14 | 11, 12, 13 | syl2anc 582 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑘) = 𝐶) |
15 | climeldmeqmpt2.l | . . . . 5 ⊢ (𝜑 → 𝑍 ⊆ 𝐵) | |
16 | 15 | sselda 3973 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ 𝐵) |
17 | fvmpt4 44672 | . . . 4 ⊢ ((𝑘 ∈ 𝐵 ∧ 𝐶 ∈ 𝑈) → ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑘) = 𝐶) | |
18 | 16, 12, 17 | syl2anc 582 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑘) = 𝐶) |
19 | 14, 18 | eqtr4d 2768 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑘) = ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑘)) |
20 | 1, 2, 3, 4, 6, 8, 9, 19 | climeldmeqf 45130 | 1 ⊢ (𝜑 → ((𝑘 ∈ 𝐴 ↦ 𝐶) ∈ dom ⇝ ↔ (𝑘 ∈ 𝐵 ↦ 𝐶) ∈ dom ⇝ )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 Ⅎwnf 1777 ∈ wcel 2098 Vcvv 3463 ⊆ wss 3941 ↦ cmpt 5227 dom cdm 5673 ‘cfv 6543 ℤcz 12583 ℤ≥cuz 12847 ⇝ cli 15455 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 ax-pre-sup 11211 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3961 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-iun 4994 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7866 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-sup 9460 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-div 11897 df-nn 12238 df-2 12300 df-3 12301 df-n0 12498 df-z 12584 df-uz 12848 df-rp 13002 df-seq 13994 df-exp 14054 df-cj 15073 df-re 15074 df-im 15075 df-sqrt 15209 df-abs 15210 df-clim 15459 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |