|   | Mathbox for Norm Megill | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lvolnleat | Structured version Visualization version GIF version | ||
| Description: An atom cannot majorize a lattice volume. (Contributed by NM, 14-Jul-2012.) | 
| Ref | Expression | 
|---|---|
| lvolnleat.l | ⊢ ≤ = (le‘𝐾) | 
| lvolnleat.a | ⊢ 𝐴 = (Atoms‘𝐾) | 
| lvolnleat.v | ⊢ 𝑉 = (LVols‘𝐾) | 
| Ref | Expression | 
|---|---|
| lvolnleat | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → ¬ 𝑋 ≤ 𝑃) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 3simpa 1148 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → (𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉)) | |
| 2 | simp3 1138 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → 𝑃 ∈ 𝐴) | |
| 3 | lvolnleat.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 4 | eqid 2736 | . . . 4 ⊢ (join‘𝐾) = (join‘𝐾) | |
| 5 | lvolnleat.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 6 | lvolnleat.v | . . . 4 ⊢ 𝑉 = (LVols‘𝐾) | |
| 7 | 3, 4, 5, 6 | lvolnle3at 39585 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉) ∧ (𝑃 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴)) → ¬ 𝑋 ≤ ((𝑃(join‘𝐾)𝑃)(join‘𝐾)𝑃)) | 
| 8 | 1, 2, 2, 2, 7 | syl13anc 1373 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → ¬ 𝑋 ≤ ((𝑃(join‘𝐾)𝑃)(join‘𝐾)𝑃)) | 
| 9 | 4, 5 | hlatjidm 39371 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴) → (𝑃(join‘𝐾)𝑃) = 𝑃) | 
| 10 | 9 | 3adant2 1131 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → (𝑃(join‘𝐾)𝑃) = 𝑃) | 
| 11 | 10 | oveq1d 7447 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → ((𝑃(join‘𝐾)𝑃)(join‘𝐾)𝑃) = (𝑃(join‘𝐾)𝑃)) | 
| 12 | 11, 10 | eqtrd 2776 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → ((𝑃(join‘𝐾)𝑃)(join‘𝐾)𝑃) = 𝑃) | 
| 13 | 12 | breq2d 5154 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → (𝑋 ≤ ((𝑃(join‘𝐾)𝑃)(join‘𝐾)𝑃) ↔ 𝑋 ≤ 𝑃)) | 
| 14 | 8, 13 | mtbid 324 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → ¬ 𝑋 ≤ 𝑃) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 class class class wbr 5142 ‘cfv 6560 (class class class)co 7432 lecple 17305 joincjn 18358 Atomscatm 39265 HLchlt 39352 LVolsclvol 39496 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-proset 18341 df-poset 18360 df-plt 18376 df-lub 18392 df-glb 18393 df-join 18394 df-meet 18395 df-p0 18471 df-lat 18478 df-clat 18545 df-oposet 39178 df-ol 39180 df-oml 39181 df-covers 39268 df-ats 39269 df-atl 39300 df-cvlat 39324 df-hlat 39353 df-llines 39501 df-lplanes 39502 df-lvols 39503 | 
| This theorem is referenced by: lvolneatN 39591 lvoln0N 39594 lplncvrlvol 39619 | 
| Copyright terms: Public domain | W3C validator |