Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lvolnleat Structured version   Visualization version   GIF version

Theorem lvolnleat 36605
 Description: An atom cannot majorize a lattice volume. (Contributed by NM, 14-Jul-2012.)
Hypotheses
Ref Expression
lvolnleat.l = (le‘𝐾)
lvolnleat.a 𝐴 = (Atoms‘𝐾)
lvolnleat.v 𝑉 = (LVols‘𝐾)
Assertion
Ref Expression
lvolnleat ((𝐾 ∈ HL ∧ 𝑋𝑉𝑃𝐴) → ¬ 𝑋 𝑃)

Proof of Theorem lvolnleat
StepHypRef Expression
1 3simpa 1142 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑃𝐴) → (𝐾 ∈ HL ∧ 𝑋𝑉))
2 simp3 1132 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑃𝐴) → 𝑃𝐴)
3 lvolnleat.l . . . 4 = (le‘𝐾)
4 eqid 2826 . . . 4 (join‘𝐾) = (join‘𝐾)
5 lvolnleat.a . . . 4 𝐴 = (Atoms‘𝐾)
6 lvolnleat.v . . . 4 𝑉 = (LVols‘𝐾)
73, 4, 5, 6lvolnle3at 36604 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑃𝐴𝑃𝐴)) → ¬ 𝑋 ((𝑃(join‘𝐾)𝑃)(join‘𝐾)𝑃))
81, 2, 2, 2, 7syl13anc 1366 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑃𝐴) → ¬ 𝑋 ((𝑃(join‘𝐾)𝑃)(join‘𝐾)𝑃))
94, 5hlatjidm 36391 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑃𝐴) → (𝑃(join‘𝐾)𝑃) = 𝑃)
1093adant2 1125 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑃𝐴) → (𝑃(join‘𝐾)𝑃) = 𝑃)
1110oveq1d 7165 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑃𝐴) → ((𝑃(join‘𝐾)𝑃)(join‘𝐾)𝑃) = (𝑃(join‘𝐾)𝑃))
1211, 10eqtrd 2861 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑃𝐴) → ((𝑃(join‘𝐾)𝑃)(join‘𝐾)𝑃) = 𝑃)
1312breq2d 5075 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑃𝐴) → (𝑋 ((𝑃(join‘𝐾)𝑃)(join‘𝐾)𝑃) ↔ 𝑋 𝑃))
148, 13mtbid 325 1 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑃𝐴) → ¬ 𝑋 𝑃)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 396   ∧ w3a 1081   = wceq 1530   ∈ wcel 2107   class class class wbr 5063  ‘cfv 6354  (class class class)co 7150  lecple 16567  joincjn 17549  Atomscatm 36285  HLchlt 36372  LVolsclvol 36515 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7455 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-ral 3148  df-rex 3149  df-reu 3150  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4838  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7108  df-ov 7153  df-oprab 7154  df-proset 17533  df-poset 17551  df-plt 17563  df-lub 17579  df-glb 17580  df-join 17581  df-meet 17582  df-p0 17644  df-lat 17651  df-clat 17713  df-oposet 36198  df-ol 36200  df-oml 36201  df-covers 36288  df-ats 36289  df-atl 36320  df-cvlat 36344  df-hlat 36373  df-llines 36520  df-lplanes 36521  df-lvols 36522 This theorem is referenced by:  lvolneatN  36610  lvoln0N  36613  lplncvrlvol  36638
 Copyright terms: Public domain W3C validator