![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lvolnleat | Structured version Visualization version GIF version |
Description: An atom cannot majorize a lattice volume. (Contributed by NM, 14-Jul-2012.) |
Ref | Expression |
---|---|
lvolnleat.l | ⊢ ≤ = (le‘𝐾) |
lvolnleat.a | ⊢ 𝐴 = (Atoms‘𝐾) |
lvolnleat.v | ⊢ 𝑉 = (LVols‘𝐾) |
Ref | Expression |
---|---|
lvolnleat | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → ¬ 𝑋 ≤ 𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simpa 1147 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → (𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉)) | |
2 | simp3 1137 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → 𝑃 ∈ 𝐴) | |
3 | lvolnleat.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
4 | eqid 2731 | . . . 4 ⊢ (join‘𝐾) = (join‘𝐾) | |
5 | lvolnleat.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
6 | lvolnleat.v | . . . 4 ⊢ 𝑉 = (LVols‘𝐾) | |
7 | 3, 4, 5, 6 | lvolnle3at 38916 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉) ∧ (𝑃 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴)) → ¬ 𝑋 ≤ ((𝑃(join‘𝐾)𝑃)(join‘𝐾)𝑃)) |
8 | 1, 2, 2, 2, 7 | syl13anc 1371 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → ¬ 𝑋 ≤ ((𝑃(join‘𝐾)𝑃)(join‘𝐾)𝑃)) |
9 | 4, 5 | hlatjidm 38702 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴) → (𝑃(join‘𝐾)𝑃) = 𝑃) |
10 | 9 | 3adant2 1130 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → (𝑃(join‘𝐾)𝑃) = 𝑃) |
11 | 10 | oveq1d 7427 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → ((𝑃(join‘𝐾)𝑃)(join‘𝐾)𝑃) = (𝑃(join‘𝐾)𝑃)) |
12 | 11, 10 | eqtrd 2771 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → ((𝑃(join‘𝐾)𝑃)(join‘𝐾)𝑃) = 𝑃) |
13 | 12 | breq2d 5160 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → (𝑋 ≤ ((𝑃(join‘𝐾)𝑃)(join‘𝐾)𝑃) ↔ 𝑋 ≤ 𝑃)) |
14 | 8, 13 | mtbid 324 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → ¬ 𝑋 ≤ 𝑃) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 class class class wbr 5148 ‘cfv 6543 (class class class)co 7412 lecple 17211 joincjn 18274 Atomscatm 38596 HLchlt 38683 LVolsclvol 38827 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-proset 18258 df-poset 18276 df-plt 18293 df-lub 18309 df-glb 18310 df-join 18311 df-meet 18312 df-p0 18388 df-lat 18395 df-clat 18462 df-oposet 38509 df-ol 38511 df-oml 38512 df-covers 38599 df-ats 38600 df-atl 38631 df-cvlat 38655 df-hlat 38684 df-llines 38832 df-lplanes 38833 df-lvols 38834 |
This theorem is referenced by: lvolneatN 38922 lvoln0N 38925 lplncvrlvol 38950 |
Copyright terms: Public domain | W3C validator |