| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lvolnleat | Structured version Visualization version GIF version | ||
| Description: An atom cannot majorize a lattice volume. (Contributed by NM, 14-Jul-2012.) |
| Ref | Expression |
|---|---|
| lvolnleat.l | ⊢ ≤ = (le‘𝐾) |
| lvolnleat.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| lvolnleat.v | ⊢ 𝑉 = (LVols‘𝐾) |
| Ref | Expression |
|---|---|
| lvolnleat | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → ¬ 𝑋 ≤ 𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simpa 1148 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → (𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉)) | |
| 2 | simp3 1138 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → 𝑃 ∈ 𝐴) | |
| 3 | lvolnleat.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 4 | eqid 2729 | . . . 4 ⊢ (join‘𝐾) = (join‘𝐾) | |
| 5 | lvolnleat.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 6 | lvolnleat.v | . . . 4 ⊢ 𝑉 = (LVols‘𝐾) | |
| 7 | 3, 4, 5, 6 | lvolnle3at 39576 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉) ∧ (𝑃 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴)) → ¬ 𝑋 ≤ ((𝑃(join‘𝐾)𝑃)(join‘𝐾)𝑃)) |
| 8 | 1, 2, 2, 2, 7 | syl13anc 1374 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → ¬ 𝑋 ≤ ((𝑃(join‘𝐾)𝑃)(join‘𝐾)𝑃)) |
| 9 | 4, 5 | hlatjidm 39362 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴) → (𝑃(join‘𝐾)𝑃) = 𝑃) |
| 10 | 9 | 3adant2 1131 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → (𝑃(join‘𝐾)𝑃) = 𝑃) |
| 11 | 10 | oveq1d 7402 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → ((𝑃(join‘𝐾)𝑃)(join‘𝐾)𝑃) = (𝑃(join‘𝐾)𝑃)) |
| 12 | 11, 10 | eqtrd 2764 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → ((𝑃(join‘𝐾)𝑃)(join‘𝐾)𝑃) = 𝑃) |
| 13 | 12 | breq2d 5119 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → (𝑋 ≤ ((𝑃(join‘𝐾)𝑃)(join‘𝐾)𝑃) ↔ 𝑋 ≤ 𝑃)) |
| 14 | 8, 13 | mtbid 324 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → ¬ 𝑋 ≤ 𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 lecple 17227 joincjn 18272 Atomscatm 39256 HLchlt 39343 LVolsclvol 39487 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-proset 18255 df-poset 18274 df-plt 18289 df-lub 18305 df-glb 18306 df-join 18307 df-meet 18308 df-p0 18384 df-lat 18391 df-clat 18458 df-oposet 39169 df-ol 39171 df-oml 39172 df-covers 39259 df-ats 39260 df-atl 39291 df-cvlat 39315 df-hlat 39344 df-llines 39492 df-lplanes 39493 df-lvols 39494 |
| This theorem is referenced by: lvolneatN 39582 lvoln0N 39585 lplncvrlvol 39610 |
| Copyright terms: Public domain | W3C validator |