![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lvolnleat | Structured version Visualization version GIF version |
Description: An atom cannot majorize a lattice volume. (Contributed by NM, 14-Jul-2012.) |
Ref | Expression |
---|---|
lvolnleat.l | ⊢ ≤ = (le‘𝐾) |
lvolnleat.a | ⊢ 𝐴 = (Atoms‘𝐾) |
lvolnleat.v | ⊢ 𝑉 = (LVols‘𝐾) |
Ref | Expression |
---|---|
lvolnleat | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → ¬ 𝑋 ≤ 𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simpa 1179 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → (𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉)) | |
2 | simp3 1169 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → 𝑃 ∈ 𝐴) | |
3 | lvolnleat.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
4 | eqid 2797 | . . . 4 ⊢ (join‘𝐾) = (join‘𝐾) | |
5 | lvolnleat.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
6 | lvolnleat.v | . . . 4 ⊢ 𝑉 = (LVols‘𝐾) | |
7 | 3, 4, 5, 6 | lvolnle3at 35595 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉) ∧ (𝑃 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴)) → ¬ 𝑋 ≤ ((𝑃(join‘𝐾)𝑃)(join‘𝐾)𝑃)) |
8 | 1, 2, 2, 2, 7 | syl13anc 1492 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → ¬ 𝑋 ≤ ((𝑃(join‘𝐾)𝑃)(join‘𝐾)𝑃)) |
9 | 4, 5 | hlatjidm 35382 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴) → (𝑃(join‘𝐾)𝑃) = 𝑃) |
10 | 9 | 3adant2 1162 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → (𝑃(join‘𝐾)𝑃) = 𝑃) |
11 | 10 | oveq1d 6891 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → ((𝑃(join‘𝐾)𝑃)(join‘𝐾)𝑃) = (𝑃(join‘𝐾)𝑃)) |
12 | 11, 10 | eqtrd 2831 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → ((𝑃(join‘𝐾)𝑃)(join‘𝐾)𝑃) = 𝑃) |
13 | 12 | breq2d 4853 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → (𝑋 ≤ ((𝑃(join‘𝐾)𝑃)(join‘𝐾)𝑃) ↔ 𝑋 ≤ 𝑃)) |
14 | 8, 13 | mtbid 316 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → ¬ 𝑋 ≤ 𝑃) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 385 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 class class class wbr 4841 ‘cfv 6099 (class class class)co 6876 lecple 16271 joincjn 17256 Atomscatm 35276 HLchlt 35363 LVolsclvol 35506 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 ax-rep 4962 ax-sep 4973 ax-nul 4981 ax-pow 5033 ax-pr 5095 ax-un 7181 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-ral 3092 df-rex 3093 df-reu 3094 df-rab 3096 df-v 3385 df-sbc 3632 df-csb 3727 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-nul 4114 df-if 4276 df-pw 4349 df-sn 4367 df-pr 4369 df-op 4373 df-uni 4627 df-iun 4710 df-br 4842 df-opab 4904 df-mpt 4921 df-id 5218 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-rn 5321 df-res 5322 df-ima 5323 df-iota 6062 df-fun 6101 df-fn 6102 df-f 6103 df-f1 6104 df-fo 6105 df-f1o 6106 df-fv 6107 df-riota 6837 df-ov 6879 df-oprab 6880 df-proset 17240 df-poset 17258 df-plt 17270 df-lub 17286 df-glb 17287 df-join 17288 df-meet 17289 df-p0 17351 df-lat 17358 df-clat 17420 df-oposet 35189 df-ol 35191 df-oml 35192 df-covers 35279 df-ats 35280 df-atl 35311 df-cvlat 35335 df-hlat 35364 df-llines 35511 df-lplanes 35512 df-lvols 35513 |
This theorem is referenced by: lvolneatN 35601 lvoln0N 35604 lplncvrlvol 35629 |
Copyright terms: Public domain | W3C validator |