MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rhm1 Structured version   Visualization version   GIF version

Theorem rhm1 20383
Description: Ring homomorphisms are required to fix 1. (Contributed by Stefan O'Rear, 8-Mar-2015.)
Hypotheses
Ref Expression
rhm1.o 1 = (1r𝑅)
rhm1.n 𝑁 = (1r𝑆)
Assertion
Ref Expression
rhm1 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹1 ) = 𝑁)

Proof of Theorem rhm1
StepHypRef Expression
1 eqid 2724 . . . 4 (mulGrp‘𝑅) = (mulGrp‘𝑅)
2 eqid 2724 . . . 4 (mulGrp‘𝑆) = (mulGrp‘𝑆)
31, 2rhmmhm 20373 . . 3 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)))
4 eqid 2724 . . . 4 (0g‘(mulGrp‘𝑅)) = (0g‘(mulGrp‘𝑅))
5 eqid 2724 . . . 4 (0g‘(mulGrp‘𝑆)) = (0g‘(mulGrp‘𝑆))
64, 5mhm0 18716 . . 3 (𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)) → (𝐹‘(0g‘(mulGrp‘𝑅))) = (0g‘(mulGrp‘𝑆)))
73, 6syl 17 . 2 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹‘(0g‘(mulGrp‘𝑅))) = (0g‘(mulGrp‘𝑆)))
8 rhm1.o . . . 4 1 = (1r𝑅)
91, 8ringidval 20080 . . 3 1 = (0g‘(mulGrp‘𝑅))
109fveq2i 6885 . 2 (𝐹1 ) = (𝐹‘(0g‘(mulGrp‘𝑅)))
11 rhm1.n . . 3 𝑁 = (1r𝑆)
122, 11ringidval 20080 . 2 𝑁 = (0g‘(mulGrp‘𝑆))
137, 10, 123eqtr4g 2789 1 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹1 ) = 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  cfv 6534  (class class class)co 7402  0gc0g 17386   MndHom cmhm 18703  mulGrpcmgp 20031  1rcur 20078   RingHom crh 20363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-om 7850  df-2nd 7970  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8700  df-map 8819  df-en 8937  df-dom 8938  df-sdom 8939  df-pnf 11248  df-mnf 11249  df-xr 11250  df-ltxr 11251  df-le 11252  df-sub 11444  df-neg 11445  df-nn 12211  df-2 12273  df-sets 17098  df-slot 17116  df-ndx 17128  df-base 17146  df-plusg 17211  df-0g 17388  df-mhm 18705  df-ghm 19131  df-mgp 20032  df-ur 20079  df-ring 20132  df-rhm 20366
This theorem is referenced by:  rhmopp  20403  elrhmunit  20404  rhmunitinv  20405  nrhmzr  20429  srng1  20694  mulgrhm2  21335  zrh1  21369  mplind  21943  evlslem1  21957  cpmidgsumm2pm  22695  lgsqrlem1  27198  kerunit  32906  rhmquskerlem  33015  rhmpreimaprmidl  33042  fldhmf1  41452  ricdrng1  41597  rhmmpl  41618
  Copyright terms: Public domain W3C validator