Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dchrzrh1 | Structured version Visualization version GIF version |
Description: Value of a Dirichlet character at one. (Contributed by Mario Carneiro, 4-May-2016.) |
Ref | Expression |
---|---|
dchrmhm.g | ⊢ 𝐺 = (DChr‘𝑁) |
dchrmhm.z | ⊢ 𝑍 = (ℤ/nℤ‘𝑁) |
dchrmhm.b | ⊢ 𝐷 = (Base‘𝐺) |
dchrelbas4.l | ⊢ 𝐿 = (ℤRHom‘𝑍) |
dchrzrh1.x | ⊢ (𝜑 → 𝑋 ∈ 𝐷) |
Ref | Expression |
---|---|
dchrzrh1 | ⊢ (𝜑 → (𝑋‘(𝐿‘1)) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dchrzrh1.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐷) | |
2 | dchrmhm.g | . . . . . . 7 ⊢ 𝐺 = (DChr‘𝑁) | |
3 | dchrmhm.b | . . . . . . 7 ⊢ 𝐷 = (Base‘𝐺) | |
4 | 2, 3 | dchrrcl 26126 | . . . . . 6 ⊢ (𝑋 ∈ 𝐷 → 𝑁 ∈ ℕ) |
5 | 1, 4 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℕ) |
6 | 5 | nnnn0d 12155 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
7 | dchrmhm.z | . . . . 5 ⊢ 𝑍 = (ℤ/nℤ‘𝑁) | |
8 | 7 | zncrng 20514 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → 𝑍 ∈ CRing) |
9 | crngring 19579 | . . . 4 ⊢ (𝑍 ∈ CRing → 𝑍 ∈ Ring) | |
10 | dchrelbas4.l | . . . . 5 ⊢ 𝐿 = (ℤRHom‘𝑍) | |
11 | eqid 2737 | . . . . 5 ⊢ (1r‘𝑍) = (1r‘𝑍) | |
12 | 10, 11 | zrh1 20484 | . . . 4 ⊢ (𝑍 ∈ Ring → (𝐿‘1) = (1r‘𝑍)) |
13 | 6, 8, 9, 12 | 4syl 19 | . . 3 ⊢ (𝜑 → (𝐿‘1) = (1r‘𝑍)) |
14 | 13 | fveq2d 6726 | . 2 ⊢ (𝜑 → (𝑋‘(𝐿‘1)) = (𝑋‘(1r‘𝑍))) |
15 | 2, 7, 3 | dchrmhm 26127 | . . . 4 ⊢ 𝐷 ⊆ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) |
16 | 15, 1 | sselid 3903 | . . 3 ⊢ (𝜑 → 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) |
17 | eqid 2737 | . . . . 5 ⊢ (mulGrp‘𝑍) = (mulGrp‘𝑍) | |
18 | 17, 11 | ringidval 19523 | . . . 4 ⊢ (1r‘𝑍) = (0g‘(mulGrp‘𝑍)) |
19 | eqid 2737 | . . . . 5 ⊢ (mulGrp‘ℂfld) = (mulGrp‘ℂfld) | |
20 | cnfld1 20393 | . . . . 5 ⊢ 1 = (1r‘ℂfld) | |
21 | 19, 20 | ringidval 19523 | . . . 4 ⊢ 1 = (0g‘(mulGrp‘ℂfld)) |
22 | 18, 21 | mhm0 18231 | . . 3 ⊢ (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) → (𝑋‘(1r‘𝑍)) = 1) |
23 | 16, 22 | syl 17 | . 2 ⊢ (𝜑 → (𝑋‘(1r‘𝑍)) = 1) |
24 | 14, 23 | eqtrd 2777 | 1 ⊢ (𝜑 → (𝑋‘(𝐿‘1)) = 1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∈ wcel 2110 ‘cfv 6385 (class class class)co 7218 1c1 10735 ℕcn 11835 ℕ0cn0 12095 Basecbs 16765 MndHom cmhm 18221 mulGrpcmgp 19509 1rcur 19521 Ringcrg 19567 CRingccrg 19568 ℂfldccnfld 20368 ℤRHomczrh 20471 ℤ/nℤczn 20474 DChrcdchr 26118 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5184 ax-sep 5197 ax-nul 5204 ax-pow 5263 ax-pr 5327 ax-un 7528 ax-cnex 10790 ax-resscn 10791 ax-1cn 10792 ax-icn 10793 ax-addcl 10794 ax-addrcl 10795 ax-mulcl 10796 ax-mulrcl 10797 ax-mulcom 10798 ax-addass 10799 ax-mulass 10800 ax-distr 10801 ax-i2m1 10802 ax-1ne0 10803 ax-1rid 10804 ax-rnegex 10805 ax-rrecex 10806 ax-cnre 10807 ax-pre-lttri 10808 ax-pre-lttrn 10809 ax-pre-ltadd 10810 ax-pre-mulgt0 10811 ax-addf 10813 ax-mulf 10814 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3415 df-sbc 3700 df-csb 3817 df-dif 3874 df-un 3876 df-in 3878 df-ss 3888 df-pss 3890 df-nul 4243 df-if 4445 df-pw 4520 df-sn 4547 df-pr 4549 df-tp 4551 df-op 4553 df-uni 4825 df-int 4865 df-iun 4911 df-br 5059 df-opab 5121 df-mpt 5141 df-tr 5167 df-id 5460 df-eprel 5465 df-po 5473 df-so 5474 df-fr 5514 df-we 5516 df-xp 5562 df-rel 5563 df-cnv 5564 df-co 5565 df-dm 5566 df-rn 5567 df-res 5568 df-ima 5569 df-pred 6165 df-ord 6221 df-on 6222 df-lim 6223 df-suc 6224 df-iota 6343 df-fun 6387 df-fn 6388 df-f 6389 df-f1 6390 df-fo 6391 df-f1o 6392 df-fv 6393 df-riota 7175 df-ov 7221 df-oprab 7222 df-mpo 7223 df-om 7650 df-1st 7766 df-2nd 7767 df-tpos 7973 df-wrecs 8052 df-recs 8113 df-rdg 8151 df-1o 8207 df-er 8396 df-ec 8398 df-qs 8402 df-map 8515 df-en 8632 df-dom 8633 df-sdom 8634 df-fin 8635 df-sup 9063 df-inf 9064 df-pnf 10874 df-mnf 10875 df-xr 10876 df-ltxr 10877 df-le 10878 df-sub 11069 df-neg 11070 df-nn 11836 df-2 11898 df-3 11899 df-4 11900 df-5 11901 df-6 11902 df-7 11903 df-8 11904 df-9 11905 df-n0 12096 df-z 12182 df-dec 12299 df-uz 12444 df-fz 13101 df-seq 13580 df-struct 16705 df-sets 16722 df-slot 16740 df-ndx 16750 df-base 16766 df-ress 16790 df-plusg 16820 df-mulr 16821 df-starv 16822 df-sca 16823 df-vsca 16824 df-ip 16825 df-tset 16826 df-ple 16827 df-ds 16829 df-unif 16830 df-0g 16951 df-imas 17018 df-qus 17019 df-mgm 18119 df-sgrp 18168 df-mnd 18179 df-mhm 18223 df-grp 18373 df-minusg 18374 df-sbg 18375 df-mulg 18494 df-subg 18545 df-nsg 18546 df-eqg 18547 df-ghm 18625 df-cmn 19177 df-abl 19178 df-mgp 19510 df-ur 19522 df-ring 19569 df-cring 19570 df-oppr 19646 df-rnghom 19740 df-subrg 19803 df-lmod 19906 df-lss 19974 df-lsp 20014 df-sra 20214 df-rgmod 20215 df-lidl 20216 df-rsp 20217 df-2idl 20275 df-cnfld 20369 df-zring 20441 df-zrh 20475 df-zn 20478 df-dchr 26119 |
This theorem is referenced by: dchrmusum2 26380 dchrvmasum2lem 26382 |
Copyright terms: Public domain | W3C validator |