| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mhpval | Structured version Visualization version GIF version | ||
| Description: Value of the "homogeneous polynomial" function. (Contributed by Steven Nguyen, 25-Aug-2023.) |
| Ref | Expression |
|---|---|
| mhpfval.h | ⊢ 𝐻 = (𝐼 mHomP 𝑅) |
| mhpfval.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
| mhpfval.b | ⊢ 𝐵 = (Base‘𝑃) |
| mhpfval.0 | ⊢ 0 = (0g‘𝑅) |
| mhpfval.d | ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} |
| mhpfval.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| mhpfval.r | ⊢ (𝜑 → 𝑅 ∈ 𝑊) |
| mhpval.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| Ref | Expression |
|---|---|
| mhpval | ⊢ (𝜑 → (𝐻‘𝑁) = {𝑓 ∈ 𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mhpfval.h | . . 3 ⊢ 𝐻 = (𝐼 mHomP 𝑅) | |
| 2 | mhpfval.p | . . 3 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
| 3 | mhpfval.b | . . 3 ⊢ 𝐵 = (Base‘𝑃) | |
| 4 | mhpfval.0 | . . 3 ⊢ 0 = (0g‘𝑅) | |
| 5 | mhpfval.d | . . 3 ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
| 6 | mhpfval.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
| 7 | mhpfval.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑊) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | mhpfval 22089 | . 2 ⊢ (𝜑 → 𝐻 = (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ 𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑛}})) |
| 9 | eqeq2 2746 | . . . . . 6 ⊢ (𝑛 = 𝑁 → (((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑛 ↔ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁)) | |
| 10 | 9 | rabbidv 3427 | . . . . 5 ⊢ (𝑛 = 𝑁 → {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑛} = {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}) |
| 11 | 10 | sseq2d 3996 | . . . 4 ⊢ (𝑛 = 𝑁 → ((𝑓 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑛} ↔ (𝑓 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁})) |
| 12 | 11 | rabbidv 3427 | . . 3 ⊢ (𝑛 = 𝑁 → {𝑓 ∈ 𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑛}} = {𝑓 ∈ 𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}}) |
| 13 | 12 | adantl 481 | . 2 ⊢ ((𝜑 ∧ 𝑛 = 𝑁) → {𝑓 ∈ 𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑛}} = {𝑓 ∈ 𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}}) |
| 14 | mhpval.n | . 2 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 15 | 3 | fvexi 6899 | . . . 4 ⊢ 𝐵 ∈ V |
| 16 | 15 | rabex 5319 | . . 3 ⊢ {𝑓 ∈ 𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}} ∈ V |
| 17 | 16 | a1i 11 | . 2 ⊢ (𝜑 → {𝑓 ∈ 𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}} ∈ V) |
| 18 | 8, 13, 14, 17 | fvmptd 7002 | 1 ⊢ (𝜑 → (𝐻‘𝑁) = {𝑓 ∈ 𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 {crab 3419 Vcvv 3463 ⊆ wss 3931 ◡ccnv 5664 “ cima 5668 ‘cfv 6540 (class class class)co 7412 supp csupp 8166 ↑m cmap 8847 Fincfn 8966 ℕcn 12247 ℕ0cn0 12508 Basecbs 17228 ↾s cress 17251 0gc0g 17454 Σg cgsu 17455 ℂfldccnfld 21325 mPoly cmpl 21879 mHomP cmhp 22080 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pr 5412 ax-un 7736 ax-cnex 11192 ax-1cn 11194 ax-addcl 11196 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7869 df-2nd 7996 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-nn 12248 df-n0 12509 df-mhp 22087 |
| This theorem is referenced by: ismhp 22091 |
| Copyright terms: Public domain | W3C validator |