MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mhpval Structured version   Visualization version   GIF version

Theorem mhpval 22170
Description: Value of the "homogeneous polynomial" function. (Contributed by Steven Nguyen, 25-Aug-2023.)
Hypotheses
Ref Expression
mhpfval.h 𝐻 = (𝐼 mHomP 𝑅)
mhpfval.p 𝑃 = (𝐼 mPoly 𝑅)
mhpfval.b 𝐵 = (Base‘𝑃)
mhpfval.0 0 = (0g𝑅)
mhpfval.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
mhpfval.i (𝜑𝐼𝑉)
mhpfval.r (𝜑𝑅𝑊)
mhpval.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
mhpval (𝜑 → (𝐻𝑁) = {𝑓𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁}})
Distinct variable groups:   𝑓,𝑔,   𝑓,𝐼,   𝑅,𝑓   𝐷,𝑔   𝐵,𝑓   𝑓,𝑁,𝑔
Allowed substitution hints:   𝜑(𝑓,𝑔,)   𝐵(𝑔,)   𝐷(𝑓,)   𝑃(𝑓,𝑔,)   𝑅(𝑔,)   𝐻(𝑓,𝑔,)   𝐼(𝑔)   𝑁()   𝑉(𝑓,𝑔,)   𝑊(𝑓,𝑔,)   0 (𝑓,𝑔,)

Proof of Theorem mhpval
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 mhpfval.h . . 3 𝐻 = (𝐼 mHomP 𝑅)
2 mhpfval.p . . 3 𝑃 = (𝐼 mPoly 𝑅)
3 mhpfval.b . . 3 𝐵 = (Base‘𝑃)
4 mhpfval.0 . . 3 0 = (0g𝑅)
5 mhpfval.d . . 3 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
6 mhpfval.i . . 3 (𝜑𝐼𝑉)
7 mhpfval.r . . 3 (𝜑𝑅𝑊)
81, 2, 3, 4, 5, 6, 7mhpfval 22169 . 2 (𝜑𝐻 = (𝑛 ∈ ℕ0 ↦ {𝑓𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑛}}))
9 eqeq2 2749 . . . . . 6 (𝑛 = 𝑁 → (((ℂflds0) Σg 𝑔) = 𝑛 ↔ ((ℂflds0) Σg 𝑔) = 𝑁))
109rabbidv 3444 . . . . 5 (𝑛 = 𝑁 → {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑛} = {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁})
1110sseq2d 4031 . . . 4 (𝑛 = 𝑁 → ((𝑓 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑛} ↔ (𝑓 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁}))
1211rabbidv 3444 . . 3 (𝑛 = 𝑁 → {𝑓𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑛}} = {𝑓𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁}})
1312adantl 481 . 2 ((𝜑𝑛 = 𝑁) → {𝑓𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑛}} = {𝑓𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁}})
14 mhpval.n . 2 (𝜑𝑁 ∈ ℕ0)
153fvexi 6928 . . . 4 𝐵 ∈ V
1615rabex 5348 . . 3 {𝑓𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁}} ∈ V
1716a1i 11 . 2 (𝜑 → {𝑓𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁}} ∈ V)
188, 13, 14, 17fvmptd 7030 1 (𝜑 → (𝐻𝑁) = {𝑓𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁}})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  {crab 3436  Vcvv 3481  wss 3966  ccnv 5692  cima 5696  cfv 6569  (class class class)co 7438   supp csupp 8193  m cmap 8874  Fincfn 8993  cn 12273  0cn0 12533  Basecbs 17254  s cress 17283  0gc0g 17495   Σg cgsu 17496  fldccnfld 21391   mPoly cmpl 21953   mHomP cmhp 22160
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pr 5441  ax-un 7761  ax-cnex 11218  ax-1cn 11220  ax-addcl 11222
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-pss 3986  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-tr 5269  df-id 5587  df-eprel 5593  df-po 5601  df-so 5602  df-fr 5645  df-we 5647  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-pred 6329  df-ord 6395  df-on 6396  df-lim 6397  df-suc 6398  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-ov 7441  df-oprab 7442  df-mpo 7443  df-om 7895  df-2nd 8023  df-frecs 8314  df-wrecs 8345  df-recs 8419  df-rdg 8458  df-nn 12274  df-n0 12534  df-mhp 22167
This theorem is referenced by:  ismhp  22171
  Copyright terms: Public domain W3C validator