MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mhpval Structured version   Visualization version   GIF version

Theorem mhpval 21311
Description: Value of the "homogeneous polynomial" function. (Contributed by Steven Nguyen, 25-Aug-2023.)
Hypotheses
Ref Expression
mhpfval.h 𝐻 = (𝐼 mHomP 𝑅)
mhpfval.p 𝑃 = (𝐼 mPoly 𝑅)
mhpfval.b 𝐵 = (Base‘𝑃)
mhpfval.0 0 = (0g𝑅)
mhpfval.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
mhpfval.i (𝜑𝐼𝑉)
mhpfval.r (𝜑𝑅𝑊)
mhpval.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
mhpval (𝜑 → (𝐻𝑁) = {𝑓𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁}})
Distinct variable groups:   𝑓,𝑔,   𝑓,𝐼,   𝑅,𝑓   𝐷,𝑔   𝐵,𝑓   𝑓,𝑁,𝑔
Allowed substitution hints:   𝜑(𝑓,𝑔,)   𝐵(𝑔,)   𝐷(𝑓,)   𝑃(𝑓,𝑔,)   𝑅(𝑔,)   𝐻(𝑓,𝑔,)   𝐼(𝑔)   𝑁()   𝑉(𝑓,𝑔,)   𝑊(𝑓,𝑔,)   0 (𝑓,𝑔,)

Proof of Theorem mhpval
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 mhpfval.h . . 3 𝐻 = (𝐼 mHomP 𝑅)
2 mhpfval.p . . 3 𝑃 = (𝐼 mPoly 𝑅)
3 mhpfval.b . . 3 𝐵 = (Base‘𝑃)
4 mhpfval.0 . . 3 0 = (0g𝑅)
5 mhpfval.d . . 3 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
6 mhpfval.i . . 3 (𝜑𝐼𝑉)
7 mhpfval.r . . 3 (𝜑𝑅𝑊)
81, 2, 3, 4, 5, 6, 7mhpfval 21310 . 2 (𝜑𝐻 = (𝑛 ∈ ℕ0 ↦ {𝑓𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑛}}))
9 eqeq2 2751 . . . . . 6 (𝑛 = 𝑁 → (((ℂflds0) Σg 𝑔) = 𝑛 ↔ ((ℂflds0) Σg 𝑔) = 𝑁))
109rabbidv 3412 . . . . 5 (𝑛 = 𝑁 → {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑛} = {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁})
1110sseq2d 3957 . . . 4 (𝑛 = 𝑁 → ((𝑓 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑛} ↔ (𝑓 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁}))
1211rabbidv 3412 . . 3 (𝑛 = 𝑁 → {𝑓𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑛}} = {𝑓𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁}})
1312adantl 481 . 2 ((𝜑𝑛 = 𝑁) → {𝑓𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑛}} = {𝑓𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁}})
14 mhpval.n . 2 (𝜑𝑁 ∈ ℕ0)
153fvexi 6782 . . . 4 𝐵 ∈ V
1615rabex 5259 . . 3 {𝑓𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁}} ∈ V
1716a1i 11 . 2 (𝜑 → {𝑓𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁}} ∈ V)
188, 13, 14, 17fvmptd 6876 1 (𝜑 → (𝐻𝑁) = {𝑓𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁}})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2109  {crab 3069  Vcvv 3430  wss 3891  ccnv 5587  cima 5591  cfv 6430  (class class class)co 7268   supp csupp 7961  m cmap 8589  Fincfn 8707  cn 11956  0cn0 12216  Basecbs 16893  s cress 16922  0gc0g 17131   Σg cgsu 17132  fldccnfld 20578   mPoly cmpl 21090   mHomP cmhp 21300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-1cn 10913  ax-addcl 10915
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-nn 11957  df-n0 12217  df-mhp 21304
This theorem is referenced by:  ismhp  21312
  Copyright terms: Public domain W3C validator