![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mhpval | Structured version Visualization version GIF version |
Description: Value of the "homogeneous polynomial" function. (Contributed by Steven Nguyen, 25-Aug-2023.) |
Ref | Expression |
---|---|
mhpfval.h | ⊢ 𝐻 = (𝐼 mHomP 𝑅) |
mhpfval.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
mhpfval.b | ⊢ 𝐵 = (Base‘𝑃) |
mhpfval.0 | ⊢ 0 = (0g‘𝑅) |
mhpfval.d | ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} |
mhpfval.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
mhpfval.r | ⊢ (𝜑 → 𝑅 ∈ 𝑊) |
mhpval.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
Ref | Expression |
---|---|
mhpval | ⊢ (𝜑 → (𝐻‘𝑁) = {𝑓 ∈ 𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mhpfval.h | . . 3 ⊢ 𝐻 = (𝐼 mHomP 𝑅) | |
2 | mhpfval.p | . . 3 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
3 | mhpfval.b | . . 3 ⊢ 𝐵 = (Base‘𝑃) | |
4 | mhpfval.0 | . . 3 ⊢ 0 = (0g‘𝑅) | |
5 | mhpfval.d | . . 3 ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
6 | mhpfval.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
7 | mhpfval.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑊) | |
8 | 1, 2, 3, 4, 5, 6, 7 | mhpfval 21529 | . 2 ⊢ (𝜑 → 𝐻 = (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ 𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑛}})) |
9 | eqeq2 2748 | . . . . . 6 ⊢ (𝑛 = 𝑁 → (((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑛 ↔ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁)) | |
10 | 9 | rabbidv 3415 | . . . . 5 ⊢ (𝑛 = 𝑁 → {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑛} = {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}) |
11 | 10 | sseq2d 3976 | . . . 4 ⊢ (𝑛 = 𝑁 → ((𝑓 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑛} ↔ (𝑓 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁})) |
12 | 11 | rabbidv 3415 | . . 3 ⊢ (𝑛 = 𝑁 → {𝑓 ∈ 𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑛}} = {𝑓 ∈ 𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}}) |
13 | 12 | adantl 482 | . 2 ⊢ ((𝜑 ∧ 𝑛 = 𝑁) → {𝑓 ∈ 𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑛}} = {𝑓 ∈ 𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}}) |
14 | mhpval.n | . 2 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
15 | 3 | fvexi 6856 | . . . 4 ⊢ 𝐵 ∈ V |
16 | 15 | rabex 5289 | . . 3 ⊢ {𝑓 ∈ 𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}} ∈ V |
17 | 16 | a1i 11 | . 2 ⊢ (𝜑 → {𝑓 ∈ 𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}} ∈ V) |
18 | 8, 13, 14, 17 | fvmptd 6955 | 1 ⊢ (𝜑 → (𝐻‘𝑁) = {𝑓 ∈ 𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 {crab 3407 Vcvv 3445 ⊆ wss 3910 ◡ccnv 5632 “ cima 5636 ‘cfv 6496 (class class class)co 7357 supp csupp 8092 ↑m cmap 8765 Fincfn 8883 ℕcn 12153 ℕ0cn0 12413 Basecbs 17083 ↾s cress 17112 0gc0g 17321 Σg cgsu 17322 ℂfldccnfld 20796 mPoly cmpl 21308 mHomP cmhp 21519 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pr 5384 ax-un 7672 ax-cnex 11107 ax-1cn 11109 ax-addcl 11111 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-ral 3065 df-rex 3074 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-ov 7360 df-oprab 7361 df-mpo 7362 df-om 7803 df-2nd 7922 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-nn 12154 df-n0 12414 df-mhp 21523 |
This theorem is referenced by: ismhp 21531 |
Copyright terms: Public domain | W3C validator |