| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mhpval | Structured version Visualization version GIF version | ||
| Description: Value of the "homogeneous polynomial" function. (Contributed by Steven Nguyen, 25-Aug-2023.) |
| Ref | Expression |
|---|---|
| mhpfval.h | ⊢ 𝐻 = (𝐼 mHomP 𝑅) |
| mhpfval.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
| mhpfval.b | ⊢ 𝐵 = (Base‘𝑃) |
| mhpfval.0 | ⊢ 0 = (0g‘𝑅) |
| mhpfval.d | ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} |
| mhpfval.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| mhpfval.r | ⊢ (𝜑 → 𝑅 ∈ 𝑊) |
| mhpval.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| Ref | Expression |
|---|---|
| mhpval | ⊢ (𝜑 → (𝐻‘𝑁) = {𝑓 ∈ 𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mhpfval.h | . . 3 ⊢ 𝐻 = (𝐼 mHomP 𝑅) | |
| 2 | mhpfval.p | . . 3 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
| 3 | mhpfval.b | . . 3 ⊢ 𝐵 = (Base‘𝑃) | |
| 4 | mhpfval.0 | . . 3 ⊢ 0 = (0g‘𝑅) | |
| 5 | mhpfval.d | . . 3 ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
| 6 | mhpfval.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
| 7 | mhpfval.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑊) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | mhpfval 22041 | . 2 ⊢ (𝜑 → 𝐻 = (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ 𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑛}})) |
| 9 | eqeq2 2741 | . . . . . 6 ⊢ (𝑛 = 𝑁 → (((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑛 ↔ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁)) | |
| 10 | 9 | rabbidv 3404 | . . . . 5 ⊢ (𝑛 = 𝑁 → {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑛} = {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}) |
| 11 | 10 | sseq2d 3970 | . . . 4 ⊢ (𝑛 = 𝑁 → ((𝑓 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑛} ↔ (𝑓 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁})) |
| 12 | 11 | rabbidv 3404 | . . 3 ⊢ (𝑛 = 𝑁 → {𝑓 ∈ 𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑛}} = {𝑓 ∈ 𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}}) |
| 13 | 12 | adantl 481 | . 2 ⊢ ((𝜑 ∧ 𝑛 = 𝑁) → {𝑓 ∈ 𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑛}} = {𝑓 ∈ 𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}}) |
| 14 | mhpval.n | . 2 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 15 | 3 | fvexi 6840 | . . . 4 ⊢ 𝐵 ∈ V |
| 16 | 15 | rabex 5281 | . . 3 ⊢ {𝑓 ∈ 𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}} ∈ V |
| 17 | 16 | a1i 11 | . 2 ⊢ (𝜑 → {𝑓 ∈ 𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}} ∈ V) |
| 18 | 8, 13, 14, 17 | fvmptd 6941 | 1 ⊢ (𝜑 → (𝐻‘𝑁) = {𝑓 ∈ 𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3396 Vcvv 3438 ⊆ wss 3905 ◡ccnv 5622 “ cima 5626 ‘cfv 6486 (class class class)co 7353 supp csupp 8100 ↑m cmap 8760 Fincfn 8879 ℕcn 12146 ℕ0cn0 12402 Basecbs 17138 ↾s cress 17159 0gc0g 17361 Σg cgsu 17362 ℂfldccnfld 21279 mPoly cmpl 21831 mHomP cmhp 22032 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-1cn 11086 ax-addcl 11088 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-nn 12147 df-n0 12403 df-mhp 22039 |
| This theorem is referenced by: ismhp 22043 |
| Copyright terms: Public domain | W3C validator |