MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mhpval Structured version   Visualization version   GIF version

Theorem mhpval 22055
Description: Value of the "homogeneous polynomial" function. (Contributed by Steven Nguyen, 25-Aug-2023.)
Hypotheses
Ref Expression
mhpfval.h 𝐻 = (𝐼 mHomP 𝑅)
mhpfval.p 𝑃 = (𝐼 mPoly 𝑅)
mhpfval.b 𝐵 = (Base‘𝑃)
mhpfval.0 0 = (0g𝑅)
mhpfval.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
mhpfval.i (𝜑𝐼𝑉)
mhpfval.r (𝜑𝑅𝑊)
mhpval.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
mhpval (𝜑 → (𝐻𝑁) = {𝑓𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁}})
Distinct variable groups:   𝑓,𝑔,   𝑓,𝐼,   𝑅,𝑓   𝐷,𝑔   𝐵,𝑓   𝑓,𝑁,𝑔
Allowed substitution hints:   𝜑(𝑓,𝑔,)   𝐵(𝑔,)   𝐷(𝑓,)   𝑃(𝑓,𝑔,)   𝑅(𝑔,)   𝐻(𝑓,𝑔,)   𝐼(𝑔)   𝑁()   𝑉(𝑓,𝑔,)   𝑊(𝑓,𝑔,)   0 (𝑓,𝑔,)

Proof of Theorem mhpval
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 mhpfval.h . . 3 𝐻 = (𝐼 mHomP 𝑅)
2 mhpfval.p . . 3 𝑃 = (𝐼 mPoly 𝑅)
3 mhpfval.b . . 3 𝐵 = (Base‘𝑃)
4 mhpfval.0 . . 3 0 = (0g𝑅)
5 mhpfval.d . . 3 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
6 mhpfval.i . . 3 (𝜑𝐼𝑉)
7 mhpfval.r . . 3 (𝜑𝑅𝑊)
81, 2, 3, 4, 5, 6, 7mhpfval 22054 . 2 (𝜑𝐻 = (𝑛 ∈ ℕ0 ↦ {𝑓𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑛}}))
9 eqeq2 2743 . . . . . 6 (𝑛 = 𝑁 → (((ℂflds0) Σg 𝑔) = 𝑛 ↔ ((ℂflds0) Σg 𝑔) = 𝑁))
109rabbidv 3402 . . . . 5 (𝑛 = 𝑁 → {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑛} = {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁})
1110sseq2d 3967 . . . 4 (𝑛 = 𝑁 → ((𝑓 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑛} ↔ (𝑓 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁}))
1211rabbidv 3402 . . 3 (𝑛 = 𝑁 → {𝑓𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑛}} = {𝑓𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁}})
1312adantl 481 . 2 ((𝜑𝑛 = 𝑁) → {𝑓𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑛}} = {𝑓𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁}})
14 mhpval.n . 2 (𝜑𝑁 ∈ ℕ0)
153fvexi 6836 . . . 4 𝐵 ∈ V
1615rabex 5277 . . 3 {𝑓𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁}} ∈ V
1716a1i 11 . 2 (𝜑 → {𝑓𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁}} ∈ V)
188, 13, 14, 17fvmptd 6936 1 (𝜑 → (𝐻𝑁) = {𝑓𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁}})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  {crab 3395  Vcvv 3436  wss 3902  ccnv 5615  cima 5619  cfv 6481  (class class class)co 7346   supp csupp 8090  m cmap 8750  Fincfn 8869  cn 12125  0cn0 12381  Basecbs 17120  s cress 17141  0gc0g 17343   Σg cgsu 17344  fldccnfld 21292   mPoly cmpl 21844   mHomP cmhp 22045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-1cn 11064  ax-addcl 11066
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-nn 12126  df-n0 12382  df-mhp 22052
This theorem is referenced by:  ismhp  22056
  Copyright terms: Public domain W3C validator