| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mhpval | Structured version Visualization version GIF version | ||
| Description: Value of the "homogeneous polynomial" function. (Contributed by Steven Nguyen, 25-Aug-2023.) |
| Ref | Expression |
|---|---|
| mhpfval.h | ⊢ 𝐻 = (𝐼 mHomP 𝑅) |
| mhpfval.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
| mhpfval.b | ⊢ 𝐵 = (Base‘𝑃) |
| mhpfval.0 | ⊢ 0 = (0g‘𝑅) |
| mhpfval.d | ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} |
| mhpfval.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| mhpfval.r | ⊢ (𝜑 → 𝑅 ∈ 𝑊) |
| mhpval.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| Ref | Expression |
|---|---|
| mhpval | ⊢ (𝜑 → (𝐻‘𝑁) = {𝑓 ∈ 𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mhpfval.h | . . 3 ⊢ 𝐻 = (𝐼 mHomP 𝑅) | |
| 2 | mhpfval.p | . . 3 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
| 3 | mhpfval.b | . . 3 ⊢ 𝐵 = (Base‘𝑃) | |
| 4 | mhpfval.0 | . . 3 ⊢ 0 = (0g‘𝑅) | |
| 5 | mhpfval.d | . . 3 ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
| 6 | mhpfval.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
| 7 | mhpfval.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑊) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | mhpfval 22031 | . 2 ⊢ (𝜑 → 𝐻 = (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ 𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑛}})) |
| 9 | eqeq2 2742 | . . . . . 6 ⊢ (𝑛 = 𝑁 → (((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑛 ↔ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁)) | |
| 10 | 9 | rabbidv 3419 | . . . . 5 ⊢ (𝑛 = 𝑁 → {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑛} = {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}) |
| 11 | 10 | sseq2d 3987 | . . . 4 ⊢ (𝑛 = 𝑁 → ((𝑓 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑛} ↔ (𝑓 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁})) |
| 12 | 11 | rabbidv 3419 | . . 3 ⊢ (𝑛 = 𝑁 → {𝑓 ∈ 𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑛}} = {𝑓 ∈ 𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}}) |
| 13 | 12 | adantl 481 | . 2 ⊢ ((𝜑 ∧ 𝑛 = 𝑁) → {𝑓 ∈ 𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑛}} = {𝑓 ∈ 𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}}) |
| 14 | mhpval.n | . 2 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 15 | 3 | fvexi 6879 | . . . 4 ⊢ 𝐵 ∈ V |
| 16 | 15 | rabex 5302 | . . 3 ⊢ {𝑓 ∈ 𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}} ∈ V |
| 17 | 16 | a1i 11 | . 2 ⊢ (𝜑 → {𝑓 ∈ 𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}} ∈ V) |
| 18 | 8, 13, 14, 17 | fvmptd 6982 | 1 ⊢ (𝜑 → (𝐻‘𝑁) = {𝑓 ∈ 𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3411 Vcvv 3455 ⊆ wss 3922 ◡ccnv 5645 “ cima 5649 ‘cfv 6519 (class class class)co 7394 supp csupp 8148 ↑m cmap 8803 Fincfn 8922 ℕcn 12197 ℕ0cn0 12458 Basecbs 17185 ↾s cress 17206 0gc0g 17408 Σg cgsu 17409 ℂfldccnfld 21270 mPoly cmpl 21821 mHomP cmhp 22022 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pr 5395 ax-un 7718 ax-cnex 11142 ax-1cn 11144 ax-addcl 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-ov 7397 df-oprab 7398 df-mpo 7399 df-om 7851 df-2nd 7978 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-nn 12198 df-n0 12459 df-mhp 22029 |
| This theorem is referenced by: ismhp 22033 |
| Copyright terms: Public domain | W3C validator |