MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mhpval Structured version   Visualization version   GIF version

Theorem mhpval 22032
Description: Value of the "homogeneous polynomial" function. (Contributed by Steven Nguyen, 25-Aug-2023.)
Hypotheses
Ref Expression
mhpfval.h 𝐻 = (𝐼 mHomP 𝑅)
mhpfval.p 𝑃 = (𝐼 mPoly 𝑅)
mhpfval.b 𝐵 = (Base‘𝑃)
mhpfval.0 0 = (0g𝑅)
mhpfval.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
mhpfval.i (𝜑𝐼𝑉)
mhpfval.r (𝜑𝑅𝑊)
mhpval.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
mhpval (𝜑 → (𝐻𝑁) = {𝑓𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁}})
Distinct variable groups:   𝑓,𝑔,   𝑓,𝐼,   𝑅,𝑓   𝐷,𝑔   𝐵,𝑓   𝑓,𝑁,𝑔
Allowed substitution hints:   𝜑(𝑓,𝑔,)   𝐵(𝑔,)   𝐷(𝑓,)   𝑃(𝑓,𝑔,)   𝑅(𝑔,)   𝐻(𝑓,𝑔,)   𝐼(𝑔)   𝑁()   𝑉(𝑓,𝑔,)   𝑊(𝑓,𝑔,)   0 (𝑓,𝑔,)

Proof of Theorem mhpval
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 mhpfval.h . . 3 𝐻 = (𝐼 mHomP 𝑅)
2 mhpfval.p . . 3 𝑃 = (𝐼 mPoly 𝑅)
3 mhpfval.b . . 3 𝐵 = (Base‘𝑃)
4 mhpfval.0 . . 3 0 = (0g𝑅)
5 mhpfval.d . . 3 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
6 mhpfval.i . . 3 (𝜑𝐼𝑉)
7 mhpfval.r . . 3 (𝜑𝑅𝑊)
81, 2, 3, 4, 5, 6, 7mhpfval 22031 . 2 (𝜑𝐻 = (𝑛 ∈ ℕ0 ↦ {𝑓𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑛}}))
9 eqeq2 2742 . . . . . 6 (𝑛 = 𝑁 → (((ℂflds0) Σg 𝑔) = 𝑛 ↔ ((ℂflds0) Σg 𝑔) = 𝑁))
109rabbidv 3419 . . . . 5 (𝑛 = 𝑁 → {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑛} = {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁})
1110sseq2d 3987 . . . 4 (𝑛 = 𝑁 → ((𝑓 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑛} ↔ (𝑓 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁}))
1211rabbidv 3419 . . 3 (𝑛 = 𝑁 → {𝑓𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑛}} = {𝑓𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁}})
1312adantl 481 . 2 ((𝜑𝑛 = 𝑁) → {𝑓𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑛}} = {𝑓𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁}})
14 mhpval.n . 2 (𝜑𝑁 ∈ ℕ0)
153fvexi 6879 . . . 4 𝐵 ∈ V
1615rabex 5302 . . 3 {𝑓𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁}} ∈ V
1716a1i 11 . 2 (𝜑 → {𝑓𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁}} ∈ V)
188, 13, 14, 17fvmptd 6982 1 (𝜑 → (𝐻𝑁) = {𝑓𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁}})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {crab 3411  Vcvv 3455  wss 3922  ccnv 5645  cima 5649  cfv 6519  (class class class)co 7394   supp csupp 8148  m cmap 8803  Fincfn 8922  cn 12197  0cn0 12458  Basecbs 17185  s cress 17206  0gc0g 17408   Σg cgsu 17409  fldccnfld 21270   mPoly cmpl 21821   mHomP cmhp 22022
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5242  ax-sep 5259  ax-nul 5269  ax-pr 5395  ax-un 7718  ax-cnex 11142  ax-1cn 11144  ax-addcl 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-ral 3047  df-rex 3056  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-pss 3942  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-iun 4965  df-br 5116  df-opab 5178  df-mpt 5197  df-tr 5223  df-id 5541  df-eprel 5546  df-po 5554  df-so 5555  df-fr 5599  df-we 5601  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-pred 6282  df-ord 6343  df-on 6344  df-lim 6345  df-suc 6346  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-ov 7397  df-oprab 7398  df-mpo 7399  df-om 7851  df-2nd 7978  df-frecs 8269  df-wrecs 8300  df-recs 8349  df-rdg 8387  df-nn 12198  df-n0 12459  df-mhp 22029
This theorem is referenced by:  ismhp  22033
  Copyright terms: Public domain W3C validator