![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mon1pldg | Structured version Visualization version GIF version |
Description: Unitic polynomials have one leading coefficients. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
Ref | Expression |
---|---|
mon1pldg.d | ⊢ 𝐷 = (deg1‘𝑅) |
mon1pldg.o | ⊢ 1 = (1r‘𝑅) |
mon1pldg.m | ⊢ 𝑀 = (Monic1p‘𝑅) |
Ref | Expression |
---|---|
mon1pldg | ⊢ (𝐹 ∈ 𝑀 → ((coe1‘𝐹)‘(𝐷‘𝐹)) = 1 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2737 | . . 3 ⊢ (Poly1‘𝑅) = (Poly1‘𝑅) | |
2 | eqid 2737 | . . 3 ⊢ (Base‘(Poly1‘𝑅)) = (Base‘(Poly1‘𝑅)) | |
3 | eqid 2737 | . . 3 ⊢ (0g‘(Poly1‘𝑅)) = (0g‘(Poly1‘𝑅)) | |
4 | mon1pldg.d | . . 3 ⊢ 𝐷 = (deg1‘𝑅) | |
5 | mon1pldg.m | . . 3 ⊢ 𝑀 = (Monic1p‘𝑅) | |
6 | mon1pldg.o | . . 3 ⊢ 1 = (1r‘𝑅) | |
7 | 1, 2, 3, 4, 5, 6 | ismon1p 26208 | . 2 ⊢ (𝐹 ∈ 𝑀 ↔ (𝐹 ∈ (Base‘(Poly1‘𝑅)) ∧ 𝐹 ≠ (0g‘(Poly1‘𝑅)) ∧ ((coe1‘𝐹)‘(𝐷‘𝐹)) = 1 )) |
8 | 7 | simp3bi 1148 | 1 ⊢ (𝐹 ∈ 𝑀 → ((coe1‘𝐹)‘(𝐷‘𝐹)) = 1 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ≠ wne 2940 ‘cfv 6569 Basecbs 17254 0gc0g 17495 1rcur 20208 Poly1cpl1 22203 coe1cco1 22204 deg1cdg1 26119 Monic1pcmn1 26191 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-cnex 11218 ax-1cn 11220 ax-addcl 11222 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-ov 7441 df-om 7895 df-2nd 8023 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-nn 12274 df-slot 17225 df-ndx 17237 df-base 17255 df-mon1 26196 |
This theorem is referenced by: mon1puc1p 26216 deg1submon1p 26218 m1pmeq 33620 mon1psubm 43204 |
Copyright terms: Public domain | W3C validator |