Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mon1puc1p | Structured version Visualization version GIF version |
Description: Monic polynomials are unitic. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
Ref | Expression |
---|---|
mon1puc1p.c | ⊢ 𝐶 = (Unic1p‘𝑅) |
mon1puc1p.m | ⊢ 𝑀 = (Monic1p‘𝑅) |
Ref | Expression |
---|---|
mon1puc1p | ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑀) → 𝑋 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2737 | . . . 4 ⊢ (Poly1‘𝑅) = (Poly1‘𝑅) | |
2 | eqid 2737 | . . . 4 ⊢ (Base‘(Poly1‘𝑅)) = (Base‘(Poly1‘𝑅)) | |
3 | mon1puc1p.m | . . . 4 ⊢ 𝑀 = (Monic1p‘𝑅) | |
4 | 1, 2, 3 | mon1pcl 25422 | . . 3 ⊢ (𝑋 ∈ 𝑀 → 𝑋 ∈ (Base‘(Poly1‘𝑅))) |
5 | 4 | adantl 483 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑀) → 𝑋 ∈ (Base‘(Poly1‘𝑅))) |
6 | eqid 2737 | . . . 4 ⊢ (0g‘(Poly1‘𝑅)) = (0g‘(Poly1‘𝑅)) | |
7 | 1, 6, 3 | mon1pn0 25424 | . . 3 ⊢ (𝑋 ∈ 𝑀 → 𝑋 ≠ (0g‘(Poly1‘𝑅))) |
8 | 7 | adantl 483 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑀) → 𝑋 ≠ (0g‘(Poly1‘𝑅))) |
9 | eqid 2737 | . . . . 5 ⊢ ( deg1 ‘𝑅) = ( deg1 ‘𝑅) | |
10 | eqid 2737 | . . . . 5 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
11 | 9, 10, 3 | mon1pldg 25427 | . . . 4 ⊢ (𝑋 ∈ 𝑀 → ((coe1‘𝑋)‘(( deg1 ‘𝑅)‘𝑋)) = (1r‘𝑅)) |
12 | 11 | adantl 483 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑀) → ((coe1‘𝑋)‘(( deg1 ‘𝑅)‘𝑋)) = (1r‘𝑅)) |
13 | eqid 2737 | . . . . 5 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
14 | 13, 10 | 1unit 20002 | . . . 4 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ (Unit‘𝑅)) |
15 | 14 | adantr 482 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑀) → (1r‘𝑅) ∈ (Unit‘𝑅)) |
16 | 12, 15 | eqeltrd 2838 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑀) → ((coe1‘𝑋)‘(( deg1 ‘𝑅)‘𝑋)) ∈ (Unit‘𝑅)) |
17 | mon1puc1p.c | . . 3 ⊢ 𝐶 = (Unic1p‘𝑅) | |
18 | 1, 2, 6, 9, 17, 13 | isuc1p 25418 | . 2 ⊢ (𝑋 ∈ 𝐶 ↔ (𝑋 ∈ (Base‘(Poly1‘𝑅)) ∧ 𝑋 ≠ (0g‘(Poly1‘𝑅)) ∧ ((coe1‘𝑋)‘(( deg1 ‘𝑅)‘𝑋)) ∈ (Unit‘𝑅))) |
19 | 5, 8, 16, 18 | syl3anbrc 1343 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑀) → 𝑋 ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1541 ∈ wcel 2106 ≠ wne 2941 ‘cfv 6491 Basecbs 17017 0gc0g 17255 1rcur 19839 Ringcrg 19885 Unitcui 19983 Poly1cpl1 21461 coe1cco1 21462 deg1 cdg1 25329 Monic1pcmn1 25403 Unic1pcuc1p 25404 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5240 ax-sep 5254 ax-nul 5261 ax-pow 5318 ax-pr 5382 ax-un 7662 ax-cnex 11040 ax-resscn 11041 ax-1cn 11042 ax-icn 11043 ax-addcl 11044 ax-addrcl 11045 ax-mulcl 11046 ax-mulrcl 11047 ax-mulcom 11048 ax-addass 11049 ax-mulass 11050 ax-distr 11051 ax-i2m1 11052 ax-1ne0 11053 ax-1rid 11054 ax-rnegex 11055 ax-rrecex 11056 ax-cnre 11057 ax-pre-lttri 11058 ax-pre-lttrn 11059 ax-pre-ltadd 11060 ax-pre-mulgt0 11061 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3351 df-reu 3352 df-rab 3406 df-v 3445 df-sbc 3738 df-csb 3854 df-dif 3911 df-un 3913 df-in 3915 df-ss 3925 df-pss 3927 df-nul 4281 df-if 4485 df-pw 4560 df-sn 4585 df-pr 4587 df-op 4591 df-uni 4864 df-iun 4954 df-br 5104 df-opab 5166 df-mpt 5187 df-tr 5221 df-id 5528 df-eprel 5534 df-po 5542 df-so 5543 df-fr 5585 df-we 5587 df-xp 5636 df-rel 5637 df-cnv 5638 df-co 5639 df-dm 5640 df-rn 5641 df-res 5642 df-ima 5643 df-pred 6249 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6443 df-fun 6493 df-fn 6494 df-f 6495 df-f1 6496 df-fo 6497 df-f1o 6498 df-fv 6499 df-riota 7305 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7793 df-2nd 7912 df-tpos 8124 df-frecs 8179 df-wrecs 8210 df-recs 8284 df-rdg 8323 df-er 8581 df-en 8817 df-dom 8818 df-sdom 8819 df-pnf 11124 df-mnf 11125 df-xr 11126 df-ltxr 11127 df-le 11128 df-sub 11320 df-neg 11321 df-nn 12087 df-2 12149 df-3 12150 df-sets 16970 df-slot 16988 df-ndx 17000 df-base 17018 df-plusg 17080 df-mulr 17081 df-0g 17257 df-mgm 18431 df-sgrp 18480 df-mnd 18491 df-grp 18684 df-mgp 19823 df-ur 19840 df-ring 19887 df-oppr 19964 df-dvdsr 19985 df-unit 19986 df-mon1 25408 df-uc1p 25409 |
This theorem is referenced by: ply1rem 25441 facth1 25442 fta1glem1 25443 fta1glem2 25444 ig1pdvds 25454 |
Copyright terms: Public domain | W3C validator |