![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mon1puc1p | Structured version Visualization version GIF version |
Description: Monic polynomials are unitic. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
Ref | Expression |
---|---|
mon1puc1p.c | β’ πΆ = (Unic1pβπ ) |
mon1puc1p.m | β’ π = (Monic1pβπ ) |
Ref | Expression |
---|---|
mon1puc1p | β’ ((π β Ring β§ π β π) β π β πΆ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2731 | . . . 4 β’ (Poly1βπ ) = (Poly1βπ ) | |
2 | eqid 2731 | . . . 4 β’ (Baseβ(Poly1βπ )) = (Baseβ(Poly1βπ )) | |
3 | mon1puc1p.m | . . . 4 β’ π = (Monic1pβπ ) | |
4 | 1, 2, 3 | mon1pcl 25895 | . . 3 β’ (π β π β π β (Baseβ(Poly1βπ ))) |
5 | 4 | adantl 481 | . 2 β’ ((π β Ring β§ π β π) β π β (Baseβ(Poly1βπ ))) |
6 | eqid 2731 | . . . 4 β’ (0gβ(Poly1βπ )) = (0gβ(Poly1βπ )) | |
7 | 1, 6, 3 | mon1pn0 25897 | . . 3 β’ (π β π β π β (0gβ(Poly1βπ ))) |
8 | 7 | adantl 481 | . 2 β’ ((π β Ring β§ π β π) β π β (0gβ(Poly1βπ ))) |
9 | eqid 2731 | . . . . 5 β’ ( deg1 βπ ) = ( deg1 βπ ) | |
10 | eqid 2731 | . . . . 5 β’ (1rβπ ) = (1rβπ ) | |
11 | 9, 10, 3 | mon1pldg 25900 | . . . 4 β’ (π β π β ((coe1βπ)β(( deg1 βπ )βπ)) = (1rβπ )) |
12 | 11 | adantl 481 | . . 3 β’ ((π β Ring β§ π β π) β ((coe1βπ)β(( deg1 βπ )βπ)) = (1rβπ )) |
13 | eqid 2731 | . . . . 5 β’ (Unitβπ ) = (Unitβπ ) | |
14 | 13, 10 | 1unit 20266 | . . . 4 β’ (π β Ring β (1rβπ ) β (Unitβπ )) |
15 | 14 | adantr 480 | . . 3 β’ ((π β Ring β§ π β π) β (1rβπ ) β (Unitβπ )) |
16 | 12, 15 | eqeltrd 2832 | . 2 β’ ((π β Ring β§ π β π) β ((coe1βπ)β(( deg1 βπ )βπ)) β (Unitβπ )) |
17 | mon1puc1p.c | . . 3 β’ πΆ = (Unic1pβπ ) | |
18 | 1, 2, 6, 9, 17, 13 | isuc1p 25891 | . 2 β’ (π β πΆ β (π β (Baseβ(Poly1βπ )) β§ π β (0gβ(Poly1βπ )) β§ ((coe1βπ)β(( deg1 βπ )βπ)) β (Unitβπ ))) |
19 | 5, 8, 16, 18 | syl3anbrc 1342 | 1 β’ ((π β Ring β§ π β π) β π β πΆ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1540 β wcel 2105 β wne 2939 βcfv 6544 Basecbs 17149 0gc0g 17390 1rcur 20076 Ringcrg 20128 Unitcui 20247 Poly1cpl1 21921 coe1cco1 21922 deg1 cdg1 25802 Monic1pcmn1 25876 Unic1pcuc1p 25877 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7728 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-2nd 7979 df-tpos 8214 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-er 8706 df-en 8943 df-dom 8944 df-sdom 8945 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-2 12280 df-3 12281 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-plusg 17215 df-mulr 17216 df-0g 17392 df-mgm 18566 df-sgrp 18645 df-mnd 18661 df-grp 18859 df-minusg 18860 df-cmn 19692 df-abl 19693 df-mgp 20030 df-rng 20048 df-ur 20077 df-ring 20130 df-oppr 20226 df-dvdsr 20249 df-unit 20250 df-mon1 25881 df-uc1p 25882 |
This theorem is referenced by: ply1rem 25914 facth1 25915 fta1glem1 25916 fta1glem2 25917 ig1pdvds 25927 algextdeglem6 33064 algextdeglem7 33065 algextdeglem8 33066 |
Copyright terms: Public domain | W3C validator |