MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  deg1submon1p Structured version   Visualization version   GIF version

Theorem deg1submon1p 26110
Description: The difference of two monic polynomials of the same degree is a polynomial of lesser degree. (Contributed by Stefan O'Rear, 28-Mar-2015.)
Hypotheses
Ref Expression
deg1submon1p.d 𝐷 = (deg1𝑅)
deg1submon1p.o 𝑂 = (Monic1p𝑅)
deg1submon1p.p 𝑃 = (Poly1𝑅)
deg1submon1p.m = (-g𝑃)
deg1submon1p.r (𝜑𝑅 ∈ Ring)
deg1submon1p.f1 (𝜑𝐹𝑂)
deg1submon1p.f2 (𝜑 → (𝐷𝐹) = 𝑋)
deg1submon1p.g1 (𝜑𝐺𝑂)
deg1submon1p.g2 (𝜑 → (𝐷𝐺) = 𝑋)
Assertion
Ref Expression
deg1submon1p (𝜑 → (𝐷‘(𝐹 𝐺)) < 𝑋)

Proof of Theorem deg1submon1p
StepHypRef Expression
1 deg1submon1p.d . 2 𝐷 = (deg1𝑅)
2 deg1submon1p.p . 2 𝑃 = (Poly1𝑅)
3 eqid 2735 . 2 (Base‘𝑃) = (Base‘𝑃)
4 deg1submon1p.m . 2 = (-g𝑃)
5 deg1submon1p.f2 . . 3 (𝜑 → (𝐷𝐹) = 𝑋)
6 deg1submon1p.r . . . 4 (𝜑𝑅 ∈ Ring)
7 deg1submon1p.f1 . . . . 5 (𝜑𝐹𝑂)
8 deg1submon1p.o . . . . . 6 𝑂 = (Monic1p𝑅)
92, 3, 8mon1pcl 26102 . . . . 5 (𝐹𝑂𝐹 ∈ (Base‘𝑃))
107, 9syl 17 . . . 4 (𝜑𝐹 ∈ (Base‘𝑃))
11 eqid 2735 . . . . . 6 (0g𝑃) = (0g𝑃)
122, 11, 8mon1pn0 26104 . . . . 5 (𝐹𝑂𝐹 ≠ (0g𝑃))
137, 12syl 17 . . . 4 (𝜑𝐹 ≠ (0g𝑃))
141, 2, 11, 3deg1nn0cl 26045 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹 ∈ (Base‘𝑃) ∧ 𝐹 ≠ (0g𝑃)) → (𝐷𝐹) ∈ ℕ0)
156, 10, 13, 14syl3anc 1373 . . 3 (𝜑 → (𝐷𝐹) ∈ ℕ0)
165, 15eqeltrrd 2835 . 2 (𝜑𝑋 ∈ ℕ0)
1716nn0red 12563 . . . 4 (𝜑𝑋 ∈ ℝ)
1817leidd 11803 . . 3 (𝜑𝑋𝑋)
195, 18eqbrtrd 5141 . 2 (𝜑 → (𝐷𝐹) ≤ 𝑋)
20 deg1submon1p.g1 . . 3 (𝜑𝐺𝑂)
212, 3, 8mon1pcl 26102 . . 3 (𝐺𝑂𝐺 ∈ (Base‘𝑃))
2220, 21syl 17 . 2 (𝜑𝐺 ∈ (Base‘𝑃))
23 deg1submon1p.g2 . . 3 (𝜑 → (𝐷𝐺) = 𝑋)
2423, 18eqbrtrd 5141 . 2 (𝜑 → (𝐷𝐺) ≤ 𝑋)
25 eqid 2735 . 2 (coe1𝐹) = (coe1𝐹)
26 eqid 2735 . 2 (coe1𝐺) = (coe1𝐺)
275fveq2d 6880 . . . 4 (𝜑 → ((coe1𝐹)‘(𝐷𝐹)) = ((coe1𝐹)‘𝑋))
28 eqid 2735 . . . . . 6 (1r𝑅) = (1r𝑅)
291, 28, 8mon1pldg 26107 . . . . 5 (𝐹𝑂 → ((coe1𝐹)‘(𝐷𝐹)) = (1r𝑅))
307, 29syl 17 . . . 4 (𝜑 → ((coe1𝐹)‘(𝐷𝐹)) = (1r𝑅))
3127, 30eqtr3d 2772 . . 3 (𝜑 → ((coe1𝐹)‘𝑋) = (1r𝑅))
321, 28, 8mon1pldg 26107 . . . 4 (𝐺𝑂 → ((coe1𝐺)‘(𝐷𝐺)) = (1r𝑅))
3320, 32syl 17 . . 3 (𝜑 → ((coe1𝐺)‘(𝐷𝐺)) = (1r𝑅))
3423fveq2d 6880 . . 3 (𝜑 → ((coe1𝐺)‘(𝐷𝐺)) = ((coe1𝐺)‘𝑋))
3531, 33, 343eqtr2d 2776 . 2 (𝜑 → ((coe1𝐹)‘𝑋) = ((coe1𝐺)‘𝑋))
361, 2, 3, 4, 16, 6, 10, 19, 22, 24, 25, 26, 35deg1sublt 26067 1 (𝜑 → (𝐷‘(𝐹 𝐺)) < 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  wne 2932   class class class wbr 5119  cfv 6531  (class class class)co 7405   < clt 11269  cle 11270  0cn0 12501  Basecbs 17228  0gc0g 17453  -gcsg 18918  1rcur 20141  Ringcrg 20193  Poly1cpl1 22112  coe1cco1 22113  deg1cdg1 26011  Monic1pcmn1 26083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207  ax-addf 11208
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-ofr 7672  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-map 8842  df-pm 8843  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-sup 9454  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-fz 13525  df-fzo 13672  df-seq 14020  df-hash 14349  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-hom 17295  df-cco 17296  df-0g 17455  df-gsum 17456  df-prds 17461  df-pws 17463  df-mre 17598  df-mrc 17599  df-acs 17601  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-mhm 18761  df-submnd 18762  df-grp 18919  df-minusg 18920  df-sbg 18921  df-mulg 19051  df-subg 19106  df-ghm 19196  df-cntz 19300  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-ring 20195  df-cring 20196  df-oppr 20297  df-dvdsr 20317  df-unit 20318  df-invr 20348  df-subrng 20506  df-subrg 20530  df-rlreg 20654  df-lmod 20819  df-lss 20889  df-cnfld 21316  df-psr 21869  df-mpl 21871  df-opsr 21873  df-psr1 22115  df-ply1 22117  df-coe1 22118  df-mdeg 26012  df-deg1 26013  df-mon1 26088
This theorem is referenced by:  ig1peu  26132
  Copyright terms: Public domain W3C validator