![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > deg1submon1p | Structured version Visualization version GIF version |
Description: The difference of two monic polynomials of the same degree is a polynomial of lesser degree. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
Ref | Expression |
---|---|
deg1submon1p.d | ⊢ 𝐷 = ( deg1 ‘𝑅) |
deg1submon1p.o | ⊢ 𝑂 = (Monic1p‘𝑅) |
deg1submon1p.p | ⊢ 𝑃 = (Poly1‘𝑅) |
deg1submon1p.m | ⊢ − = (-g‘𝑃) |
deg1submon1p.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
deg1submon1p.f1 | ⊢ (𝜑 → 𝐹 ∈ 𝑂) |
deg1submon1p.f2 | ⊢ (𝜑 → (𝐷‘𝐹) = 𝑋) |
deg1submon1p.g1 | ⊢ (𝜑 → 𝐺 ∈ 𝑂) |
deg1submon1p.g2 | ⊢ (𝜑 → (𝐷‘𝐺) = 𝑋) |
Ref | Expression |
---|---|
deg1submon1p | ⊢ (𝜑 → (𝐷‘(𝐹 − 𝐺)) < 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | deg1submon1p.d | . 2 ⊢ 𝐷 = ( deg1 ‘𝑅) | |
2 | deg1submon1p.p | . 2 ⊢ 𝑃 = (Poly1‘𝑅) | |
3 | eqid 2731 | . 2 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
4 | deg1submon1p.m | . 2 ⊢ − = (-g‘𝑃) | |
5 | deg1submon1p.f2 | . . 3 ⊢ (𝜑 → (𝐷‘𝐹) = 𝑋) | |
6 | deg1submon1p.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
7 | deg1submon1p.f1 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ 𝑂) | |
8 | deg1submon1p.o | . . . . . 6 ⊢ 𝑂 = (Monic1p‘𝑅) | |
9 | 2, 3, 8 | mon1pcl 25898 | . . . . 5 ⊢ (𝐹 ∈ 𝑂 → 𝐹 ∈ (Base‘𝑃)) |
10 | 7, 9 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (Base‘𝑃)) |
11 | eqid 2731 | . . . . . 6 ⊢ (0g‘𝑃) = (0g‘𝑃) | |
12 | 2, 11, 8 | mon1pn0 25900 | . . . . 5 ⊢ (𝐹 ∈ 𝑂 → 𝐹 ≠ (0g‘𝑃)) |
13 | 7, 12 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹 ≠ (0g‘𝑃)) |
14 | 1, 2, 11, 3 | deg1nn0cl 25842 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ (Base‘𝑃) ∧ 𝐹 ≠ (0g‘𝑃)) → (𝐷‘𝐹) ∈ ℕ0) |
15 | 6, 10, 13, 14 | syl3anc 1370 | . . 3 ⊢ (𝜑 → (𝐷‘𝐹) ∈ ℕ0) |
16 | 5, 15 | eqeltrrd 2833 | . 2 ⊢ (𝜑 → 𝑋 ∈ ℕ0) |
17 | 16 | nn0red 12538 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ ℝ) |
18 | 17 | leidd 11785 | . . 3 ⊢ (𝜑 → 𝑋 ≤ 𝑋) |
19 | 5, 18 | eqbrtrd 5170 | . 2 ⊢ (𝜑 → (𝐷‘𝐹) ≤ 𝑋) |
20 | deg1submon1p.g1 | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝑂) | |
21 | 2, 3, 8 | mon1pcl 25898 | . . 3 ⊢ (𝐺 ∈ 𝑂 → 𝐺 ∈ (Base‘𝑃)) |
22 | 20, 21 | syl 17 | . 2 ⊢ (𝜑 → 𝐺 ∈ (Base‘𝑃)) |
23 | deg1submon1p.g2 | . . 3 ⊢ (𝜑 → (𝐷‘𝐺) = 𝑋) | |
24 | 23, 18 | eqbrtrd 5170 | . 2 ⊢ (𝜑 → (𝐷‘𝐺) ≤ 𝑋) |
25 | eqid 2731 | . 2 ⊢ (coe1‘𝐹) = (coe1‘𝐹) | |
26 | eqid 2731 | . 2 ⊢ (coe1‘𝐺) = (coe1‘𝐺) | |
27 | 5 | fveq2d 6895 | . . . 4 ⊢ (𝜑 → ((coe1‘𝐹)‘(𝐷‘𝐹)) = ((coe1‘𝐹)‘𝑋)) |
28 | eqid 2731 | . . . . . 6 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
29 | 1, 28, 8 | mon1pldg 25903 | . . . . 5 ⊢ (𝐹 ∈ 𝑂 → ((coe1‘𝐹)‘(𝐷‘𝐹)) = (1r‘𝑅)) |
30 | 7, 29 | syl 17 | . . . 4 ⊢ (𝜑 → ((coe1‘𝐹)‘(𝐷‘𝐹)) = (1r‘𝑅)) |
31 | 27, 30 | eqtr3d 2773 | . . 3 ⊢ (𝜑 → ((coe1‘𝐹)‘𝑋) = (1r‘𝑅)) |
32 | 1, 28, 8 | mon1pldg 25903 | . . . 4 ⊢ (𝐺 ∈ 𝑂 → ((coe1‘𝐺)‘(𝐷‘𝐺)) = (1r‘𝑅)) |
33 | 20, 32 | syl 17 | . . 3 ⊢ (𝜑 → ((coe1‘𝐺)‘(𝐷‘𝐺)) = (1r‘𝑅)) |
34 | 23 | fveq2d 6895 | . . 3 ⊢ (𝜑 → ((coe1‘𝐺)‘(𝐷‘𝐺)) = ((coe1‘𝐺)‘𝑋)) |
35 | 31, 33, 34 | 3eqtr2d 2777 | . 2 ⊢ (𝜑 → ((coe1‘𝐹)‘𝑋) = ((coe1‘𝐺)‘𝑋)) |
36 | 1, 2, 3, 4, 16, 6, 10, 19, 22, 24, 25, 26, 35 | deg1sublt 25864 | 1 ⊢ (𝜑 → (𝐷‘(𝐹 − 𝐺)) < 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ≠ wne 2939 class class class wbr 5148 ‘cfv 6543 (class class class)co 7412 < clt 11253 ≤ cle 11254 ℕ0cn0 12477 Basecbs 17149 0gc0g 17390 -gcsg 18858 1rcur 20076 Ringcrg 20128 Poly1cpl1 21921 coe1cco1 21922 deg1 cdg1 25805 Monic1pcmn1 25879 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 ax-pre-sup 11192 ax-addf 11193 ax-mulf 11194 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-of 7674 df-ofr 7675 df-om 7860 df-1st 7979 df-2nd 7980 df-supp 8151 df-tpos 8215 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-er 8707 df-map 8826 df-pm 8827 df-ixp 8896 df-en 8944 df-dom 8945 df-sdom 8946 df-fin 8947 df-fsupp 9366 df-sup 9441 df-oi 9509 df-card 9938 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-2 12280 df-3 12281 df-4 12282 df-5 12283 df-6 12284 df-7 12285 df-8 12286 df-9 12287 df-n0 12478 df-z 12564 df-dec 12683 df-uz 12828 df-fz 13490 df-fzo 13633 df-seq 13972 df-hash 14296 df-struct 17085 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-ress 17179 df-plusg 17215 df-mulr 17216 df-starv 17217 df-sca 17218 df-vsca 17219 df-ip 17220 df-tset 17221 df-ple 17222 df-ds 17224 df-unif 17225 df-hom 17226 df-cco 17227 df-0g 17392 df-gsum 17393 df-prds 17398 df-pws 17400 df-mre 17535 df-mrc 17536 df-acs 17538 df-mgm 18566 df-sgrp 18645 df-mnd 18661 df-mhm 18706 df-submnd 18707 df-grp 18859 df-minusg 18860 df-sbg 18861 df-mulg 18988 df-subg 19040 df-ghm 19129 df-cntz 19223 df-cmn 19692 df-abl 19693 df-mgp 20030 df-rng 20048 df-ur 20077 df-ring 20130 df-cring 20131 df-oppr 20226 df-dvdsr 20249 df-unit 20250 df-invr 20280 df-subrng 20435 df-subrg 20460 df-lmod 20617 df-lss 20688 df-rlreg 21100 df-cnfld 21146 df-psr 21682 df-mpl 21684 df-opsr 21686 df-psr1 21924 df-ply1 21926 df-coe1 21927 df-mdeg 25806 df-deg1 25807 df-mon1 25884 |
This theorem is referenced by: ig1peu 25925 |
Copyright terms: Public domain | W3C validator |