![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uc1pldg | Structured version Visualization version GIF version |
Description: Unitic polynomials have unit leading coefficients. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
Ref | Expression |
---|---|
uc1pldg.d | ⊢ 𝐷 = ( deg1 ‘𝑅) |
uc1pldg.u | ⊢ 𝑈 = (Unit‘𝑅) |
uc1pldg.c | ⊢ 𝐶 = (Unic1p‘𝑅) |
Ref | Expression |
---|---|
uc1pldg | ⊢ (𝐹 ∈ 𝐶 → ((coe1‘𝐹)‘(𝐷‘𝐹)) ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2731 | . . 3 ⊢ (Poly1‘𝑅) = (Poly1‘𝑅) | |
2 | eqid 2731 | . . 3 ⊢ (Base‘(Poly1‘𝑅)) = (Base‘(Poly1‘𝑅)) | |
3 | eqid 2731 | . . 3 ⊢ (0g‘(Poly1‘𝑅)) = (0g‘(Poly1‘𝑅)) | |
4 | uc1pldg.d | . . 3 ⊢ 𝐷 = ( deg1 ‘𝑅) | |
5 | uc1pldg.c | . . 3 ⊢ 𝐶 = (Unic1p‘𝑅) | |
6 | uc1pldg.u | . . 3 ⊢ 𝑈 = (Unit‘𝑅) | |
7 | 1, 2, 3, 4, 5, 6 | isuc1p 25907 | . 2 ⊢ (𝐹 ∈ 𝐶 ↔ (𝐹 ∈ (Base‘(Poly1‘𝑅)) ∧ 𝐹 ≠ (0g‘(Poly1‘𝑅)) ∧ ((coe1‘𝐹)‘(𝐷‘𝐹)) ∈ 𝑈)) |
8 | 7 | simp3bi 1146 | 1 ⊢ (𝐹 ∈ 𝐶 → ((coe1‘𝐹)‘(𝐷‘𝐹)) ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ≠ wne 2939 ‘cfv 6543 Basecbs 17151 0gc0g 17392 Unitcui 20250 Poly1cpl1 21933 coe1cco1 21934 deg1 cdg1 25818 Unic1pcuc1p 25893 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-1cn 11174 ax-addcl 11176 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-om 7860 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-nn 12220 df-slot 17122 df-ndx 17134 df-base 17152 df-uc1p 25898 |
This theorem is referenced by: uc1pmon1p 25918 q1peqb 25921 fta1glem1 25932 ig1peu 25938 |
Copyright terms: Public domain | W3C validator |