![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uc1pldg | Structured version Visualization version GIF version |
Description: Unitic polynomials have unit leading coefficients. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
Ref | Expression |
---|---|
uc1pldg.d | β’ π· = ( deg1 βπ ) |
uc1pldg.u | β’ π = (Unitβπ ) |
uc1pldg.c | β’ πΆ = (Unic1pβπ ) |
Ref | Expression |
---|---|
uc1pldg | β’ (πΉ β πΆ β ((coe1βπΉ)β(π·βπΉ)) β π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2730 | . . 3 β’ (Poly1βπ ) = (Poly1βπ ) | |
2 | eqid 2730 | . . 3 β’ (Baseβ(Poly1βπ )) = (Baseβ(Poly1βπ )) | |
3 | eqid 2730 | . . 3 β’ (0gβ(Poly1βπ )) = (0gβ(Poly1βπ )) | |
4 | uc1pldg.d | . . 3 β’ π· = ( deg1 βπ ) | |
5 | uc1pldg.c | . . 3 β’ πΆ = (Unic1pβπ ) | |
6 | uc1pldg.u | . . 3 β’ π = (Unitβπ ) | |
7 | 1, 2, 3, 4, 5, 6 | isuc1p 25893 | . 2 β’ (πΉ β πΆ β (πΉ β (Baseβ(Poly1βπ )) β§ πΉ β (0gβ(Poly1βπ )) β§ ((coe1βπΉ)β(π·βπΉ)) β π)) |
8 | 7 | simp3bi 1145 | 1 β’ (πΉ β πΆ β ((coe1βπΉ)β(π·βπΉ)) β π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1539 β wcel 2104 β wne 2938 βcfv 6542 Basecbs 17148 0gc0g 17389 Unitcui 20246 Poly1cpl1 21920 coe1cco1 21921 deg1 cdg1 25804 Unic1pcuc1p 25879 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-1cn 11170 ax-addcl 11172 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7414 df-om 7858 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-nn 12217 df-slot 17119 df-ndx 17131 df-base 17149 df-uc1p 25884 |
This theorem is referenced by: uc1pmon1p 25904 q1peqb 25907 fta1glem1 25918 ig1peu 25924 |
Copyright terms: Public domain | W3C validator |