MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uc1pldg Structured version   Visualization version   GIF version

Theorem uc1pldg 26106
Description: Unitic polynomials have unit leading coefficients. (Contributed by Stefan O'Rear, 28-Mar-2015.)
Hypotheses
Ref Expression
uc1pldg.d 𝐷 = (deg1𝑅)
uc1pldg.u 𝑈 = (Unit‘𝑅)
uc1pldg.c 𝐶 = (Unic1p𝑅)
Assertion
Ref Expression
uc1pldg (𝐹𝐶 → ((coe1𝐹)‘(𝐷𝐹)) ∈ 𝑈)

Proof of Theorem uc1pldg
StepHypRef Expression
1 eqid 2735 . . 3 (Poly1𝑅) = (Poly1𝑅)
2 eqid 2735 . . 3 (Base‘(Poly1𝑅)) = (Base‘(Poly1𝑅))
3 eqid 2735 . . 3 (0g‘(Poly1𝑅)) = (0g‘(Poly1𝑅))
4 uc1pldg.d . . 3 𝐷 = (deg1𝑅)
5 uc1pldg.c . . 3 𝐶 = (Unic1p𝑅)
6 uc1pldg.u . . 3 𝑈 = (Unit‘𝑅)
71, 2, 3, 4, 5, 6isuc1p 26098 . 2 (𝐹𝐶 ↔ (𝐹 ∈ (Base‘(Poly1𝑅)) ∧ 𝐹 ≠ (0g‘(Poly1𝑅)) ∧ ((coe1𝐹)‘(𝐷𝐹)) ∈ 𝑈))
87simp3bi 1147 1 (𝐹𝐶 → ((coe1𝐹)‘(𝐷𝐹)) ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  wne 2932  cfv 6531  Basecbs 17228  0gc0g 17453  Unitcui 20315  Poly1cpl1 22112  coe1cco1 22113  deg1cdg1 26011  Unic1pcuc1p 26084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-1cn 11187  ax-addcl 11189
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-nn 12241  df-slot 17201  df-ndx 17213  df-base 17229  df-uc1p 26089
This theorem is referenced by:  uc1pmon1p  26109  q1peqb  26113  fta1glem1  26125  ig1peu  26132  ply1divalg3  35664
  Copyright terms: Public domain W3C validator