| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uc1pldg | Structured version Visualization version GIF version | ||
| Description: Unitic polynomials have unit leading coefficients. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
| Ref | Expression |
|---|---|
| uc1pldg.d | ⊢ 𝐷 = (deg1‘𝑅) |
| uc1pldg.u | ⊢ 𝑈 = (Unit‘𝑅) |
| uc1pldg.c | ⊢ 𝐶 = (Unic1p‘𝑅) |
| Ref | Expression |
|---|---|
| uc1pldg | ⊢ (𝐹 ∈ 𝐶 → ((coe1‘𝐹)‘(𝐷‘𝐹)) ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (Poly1‘𝑅) = (Poly1‘𝑅) | |
| 2 | eqid 2729 | . . 3 ⊢ (Base‘(Poly1‘𝑅)) = (Base‘(Poly1‘𝑅)) | |
| 3 | eqid 2729 | . . 3 ⊢ (0g‘(Poly1‘𝑅)) = (0g‘(Poly1‘𝑅)) | |
| 4 | uc1pldg.d | . . 3 ⊢ 𝐷 = (deg1‘𝑅) | |
| 5 | uc1pldg.c | . . 3 ⊢ 𝐶 = (Unic1p‘𝑅) | |
| 6 | uc1pldg.u | . . 3 ⊢ 𝑈 = (Unit‘𝑅) | |
| 7 | 1, 2, 3, 4, 5, 6 | isuc1p 26046 | . 2 ⊢ (𝐹 ∈ 𝐶 ↔ (𝐹 ∈ (Base‘(Poly1‘𝑅)) ∧ 𝐹 ≠ (0g‘(Poly1‘𝑅)) ∧ ((coe1‘𝐹)‘(𝐷‘𝐹)) ∈ 𝑈)) |
| 8 | 7 | simp3bi 1147 | 1 ⊢ (𝐹 ∈ 𝐶 → ((coe1‘𝐹)‘(𝐷‘𝐹)) ∈ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ‘cfv 6511 Basecbs 17179 0gc0g 17402 Unitcui 20264 Poly1cpl1 22061 coe1cco1 22062 deg1cdg1 25959 Unic1pcuc1p 26032 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-1cn 11126 ax-addcl 11128 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-nn 12187 df-slot 17152 df-ndx 17164 df-base 17180 df-uc1p 26037 |
| This theorem is referenced by: uc1pmon1p 26057 q1peqb 26061 fta1glem1 26073 ig1peu 26080 ply1divalg3 35629 |
| Copyright terms: Public domain | W3C validator |