MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uc1pldg Structured version   Visualization version   GIF version

Theorem uc1pldg 26087
Description: Unitic polynomials have unit leading coefficients. (Contributed by Stefan O'Rear, 28-Mar-2015.)
Hypotheses
Ref Expression
uc1pldg.d 𝐷 = (deg1𝑅)
uc1pldg.u 𝑈 = (Unit‘𝑅)
uc1pldg.c 𝐶 = (Unic1p𝑅)
Assertion
Ref Expression
uc1pldg (𝐹𝐶 → ((coe1𝐹)‘(𝐷𝐹)) ∈ 𝑈)

Proof of Theorem uc1pldg
StepHypRef Expression
1 eqid 2729 . . 3 (Poly1𝑅) = (Poly1𝑅)
2 eqid 2729 . . 3 (Base‘(Poly1𝑅)) = (Base‘(Poly1𝑅))
3 eqid 2729 . . 3 (0g‘(Poly1𝑅)) = (0g‘(Poly1𝑅))
4 uc1pldg.d . . 3 𝐷 = (deg1𝑅)
5 uc1pldg.c . . 3 𝐶 = (Unic1p𝑅)
6 uc1pldg.u . . 3 𝑈 = (Unit‘𝑅)
71, 2, 3, 4, 5, 6isuc1p 26079 . 2 (𝐹𝐶 ↔ (𝐹 ∈ (Base‘(Poly1𝑅)) ∧ 𝐹 ≠ (0g‘(Poly1𝑅)) ∧ ((coe1𝐹)‘(𝐷𝐹)) ∈ 𝑈))
87simp3bi 1147 1 (𝐹𝐶 → ((coe1𝐹)‘(𝐷𝐹)) ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wne 2925  cfv 6499  Basecbs 17155  0gc0g 17378  Unitcui 20275  Poly1cpl1 22094  coe1cco1 22095  deg1cdg1 25992  Unic1pcuc1p 26065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-1cn 11102  ax-addcl 11104
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-nn 12163  df-slot 17128  df-ndx 17140  df-base 17156  df-uc1p 26070
This theorem is referenced by:  uc1pmon1p  26090  q1peqb  26094  fta1glem1  26106  ig1peu  26113  ply1divalg3  35622
  Copyright terms: Public domain W3C validator