Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ismon1p | Structured version Visualization version GIF version |
Description: Being a monic polynomial. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
Ref | Expression |
---|---|
uc1pval.p | ⊢ 𝑃 = (Poly1‘𝑅) |
uc1pval.b | ⊢ 𝐵 = (Base‘𝑃) |
uc1pval.z | ⊢ 0 = (0g‘𝑃) |
uc1pval.d | ⊢ 𝐷 = ( deg1 ‘𝑅) |
mon1pval.m | ⊢ 𝑀 = (Monic1p‘𝑅) |
mon1pval.o | ⊢ 1 = (1r‘𝑅) |
Ref | Expression |
---|---|
ismon1p | ⊢ (𝐹 ∈ 𝑀 ↔ (𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ∧ ((coe1‘𝐹)‘(𝐷‘𝐹)) = 1 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neeq1 3003 | . . . 4 ⊢ (𝑓 = 𝐹 → (𝑓 ≠ 0 ↔ 𝐹 ≠ 0 )) | |
2 | fveq2 6717 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (coe1‘𝑓) = (coe1‘𝐹)) | |
3 | fveq2 6717 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (𝐷‘𝑓) = (𝐷‘𝐹)) | |
4 | 2, 3 | fveq12d 6724 | . . . . 5 ⊢ (𝑓 = 𝐹 → ((coe1‘𝑓)‘(𝐷‘𝑓)) = ((coe1‘𝐹)‘(𝐷‘𝐹))) |
5 | 4 | eqeq1d 2739 | . . . 4 ⊢ (𝑓 = 𝐹 → (((coe1‘𝑓)‘(𝐷‘𝑓)) = 1 ↔ ((coe1‘𝐹)‘(𝐷‘𝐹)) = 1 )) |
6 | 1, 5 | anbi12d 634 | . . 3 ⊢ (𝑓 = 𝐹 → ((𝑓 ≠ 0 ∧ ((coe1‘𝑓)‘(𝐷‘𝑓)) = 1 ) ↔ (𝐹 ≠ 0 ∧ ((coe1‘𝐹)‘(𝐷‘𝐹)) = 1 ))) |
7 | uc1pval.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
8 | uc1pval.b | . . . 4 ⊢ 𝐵 = (Base‘𝑃) | |
9 | uc1pval.z | . . . 4 ⊢ 0 = (0g‘𝑃) | |
10 | uc1pval.d | . . . 4 ⊢ 𝐷 = ( deg1 ‘𝑅) | |
11 | mon1pval.m | . . . 4 ⊢ 𝑀 = (Monic1p‘𝑅) | |
12 | mon1pval.o | . . . 4 ⊢ 1 = (1r‘𝑅) | |
13 | 7, 8, 9, 10, 11, 12 | mon1pval 25039 | . . 3 ⊢ 𝑀 = {𝑓 ∈ 𝐵 ∣ (𝑓 ≠ 0 ∧ ((coe1‘𝑓)‘(𝐷‘𝑓)) = 1 )} |
14 | 6, 13 | elrab2 3605 | . 2 ⊢ (𝐹 ∈ 𝑀 ↔ (𝐹 ∈ 𝐵 ∧ (𝐹 ≠ 0 ∧ ((coe1‘𝐹)‘(𝐷‘𝐹)) = 1 ))) |
15 | 3anass 1097 | . 2 ⊢ ((𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ∧ ((coe1‘𝐹)‘(𝐷‘𝐹)) = 1 ) ↔ (𝐹 ∈ 𝐵 ∧ (𝐹 ≠ 0 ∧ ((coe1‘𝐹)‘(𝐷‘𝐹)) = 1 ))) | |
16 | 14, 15 | bitr4i 281 | 1 ⊢ (𝐹 ∈ 𝑀 ↔ (𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ∧ ((coe1‘𝐹)‘(𝐷‘𝐹)) = 1 )) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2110 ≠ wne 2940 ‘cfv 6380 Basecbs 16760 0gc0g 16944 1rcur 19516 Poly1cpl1 21098 coe1cco1 21099 deg1 cdg1 24949 Monic1pcmn1 25023 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-1cn 10787 ax-addcl 10789 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-ov 7216 df-om 7645 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-nn 11831 df-slot 16735 df-ndx 16745 df-base 16761 df-mon1 25028 |
This theorem is referenced by: mon1pcl 25042 mon1pn0 25044 mon1pldg 25047 uc1pmon1p 25049 ply1remlem 25060 mon1pid 40733 mon1psubm 40734 |
Copyright terms: Public domain | W3C validator |