![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ismon1p | Structured version Visualization version GIF version |
Description: Being a monic polynomial. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
Ref | Expression |
---|---|
uc1pval.p | ⊢ 𝑃 = (Poly1‘𝑅) |
uc1pval.b | ⊢ 𝐵 = (Base‘𝑃) |
uc1pval.z | ⊢ 0 = (0g‘𝑃) |
uc1pval.d | ⊢ 𝐷 = (deg1‘𝑅) |
mon1pval.m | ⊢ 𝑀 = (Monic1p‘𝑅) |
mon1pval.o | ⊢ 1 = (1r‘𝑅) |
Ref | Expression |
---|---|
ismon1p | ⊢ (𝐹 ∈ 𝑀 ↔ (𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ∧ ((coe1‘𝐹)‘(𝐷‘𝐹)) = 1 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neeq1 3001 | . . . 4 ⊢ (𝑓 = 𝐹 → (𝑓 ≠ 0 ↔ 𝐹 ≠ 0 )) | |
2 | fveq2 6907 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (coe1‘𝑓) = (coe1‘𝐹)) | |
3 | fveq2 6907 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (𝐷‘𝑓) = (𝐷‘𝐹)) | |
4 | 2, 3 | fveq12d 6914 | . . . . 5 ⊢ (𝑓 = 𝐹 → ((coe1‘𝑓)‘(𝐷‘𝑓)) = ((coe1‘𝐹)‘(𝐷‘𝐹))) |
5 | 4 | eqeq1d 2737 | . . . 4 ⊢ (𝑓 = 𝐹 → (((coe1‘𝑓)‘(𝐷‘𝑓)) = 1 ↔ ((coe1‘𝐹)‘(𝐷‘𝐹)) = 1 )) |
6 | 1, 5 | anbi12d 632 | . . 3 ⊢ (𝑓 = 𝐹 → ((𝑓 ≠ 0 ∧ ((coe1‘𝑓)‘(𝐷‘𝑓)) = 1 ) ↔ (𝐹 ≠ 0 ∧ ((coe1‘𝐹)‘(𝐷‘𝐹)) = 1 ))) |
7 | uc1pval.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
8 | uc1pval.b | . . . 4 ⊢ 𝐵 = (Base‘𝑃) | |
9 | uc1pval.z | . . . 4 ⊢ 0 = (0g‘𝑃) | |
10 | uc1pval.d | . . . 4 ⊢ 𝐷 = (deg1‘𝑅) | |
11 | mon1pval.m | . . . 4 ⊢ 𝑀 = (Monic1p‘𝑅) | |
12 | mon1pval.o | . . . 4 ⊢ 1 = (1r‘𝑅) | |
13 | 7, 8, 9, 10, 11, 12 | mon1pval 26196 | . . 3 ⊢ 𝑀 = {𝑓 ∈ 𝐵 ∣ (𝑓 ≠ 0 ∧ ((coe1‘𝑓)‘(𝐷‘𝑓)) = 1 )} |
14 | 6, 13 | elrab2 3698 | . 2 ⊢ (𝐹 ∈ 𝑀 ↔ (𝐹 ∈ 𝐵 ∧ (𝐹 ≠ 0 ∧ ((coe1‘𝐹)‘(𝐷‘𝐹)) = 1 ))) |
15 | 3anass 1094 | . 2 ⊢ ((𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ∧ ((coe1‘𝐹)‘(𝐷‘𝐹)) = 1 ) ↔ (𝐹 ∈ 𝐵 ∧ (𝐹 ≠ 0 ∧ ((coe1‘𝐹)‘(𝐷‘𝐹)) = 1 ))) | |
16 | 14, 15 | bitr4i 278 | 1 ⊢ (𝐹 ∈ 𝑀 ↔ (𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ∧ ((coe1‘𝐹)‘(𝐷‘𝐹)) = 1 )) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ‘cfv 6563 Basecbs 17245 0gc0g 17486 1rcur 20199 Poly1cpl1 22194 coe1cco1 22195 deg1cdg1 26108 Monic1pcmn1 26180 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-1cn 11211 ax-addcl 11213 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-nn 12265 df-slot 17216 df-ndx 17228 df-base 17246 df-mon1 26185 |
This theorem is referenced by: mon1pcl 26199 mon1pn0 26201 mon1pldg 26204 uc1pmon1p 26206 mon1pid 26208 ply1remlem 26219 0ringmon1p 33563 ressply1mon1p 33573 rtelextdg2lem 33732 2sqr3minply 33753 mon1psubm 43188 |
Copyright terms: Public domain | W3C validator |