MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismon1p Structured version   Visualization version   GIF version

Theorem ismon1p 26048
Description: Being a monic polynomial. (Contributed by Stefan O'Rear, 28-Mar-2015.)
Hypotheses
Ref Expression
uc1pval.p 𝑃 = (Poly1𝑅)
uc1pval.b 𝐵 = (Base‘𝑃)
uc1pval.z 0 = (0g𝑃)
uc1pval.d 𝐷 = (deg1𝑅)
mon1pval.m 𝑀 = (Monic1p𝑅)
mon1pval.o 1 = (1r𝑅)
Assertion
Ref Expression
ismon1p (𝐹𝑀 ↔ (𝐹𝐵𝐹0 ∧ ((coe1𝐹)‘(𝐷𝐹)) = 1 ))

Proof of Theorem ismon1p
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 neeq1 2987 . . . 4 (𝑓 = 𝐹 → (𝑓0𝐹0 ))
2 fveq2 6858 . . . . . 6 (𝑓 = 𝐹 → (coe1𝑓) = (coe1𝐹))
3 fveq2 6858 . . . . . 6 (𝑓 = 𝐹 → (𝐷𝑓) = (𝐷𝐹))
42, 3fveq12d 6865 . . . . 5 (𝑓 = 𝐹 → ((coe1𝑓)‘(𝐷𝑓)) = ((coe1𝐹)‘(𝐷𝐹)))
54eqeq1d 2731 . . . 4 (𝑓 = 𝐹 → (((coe1𝑓)‘(𝐷𝑓)) = 1 ↔ ((coe1𝐹)‘(𝐷𝐹)) = 1 ))
61, 5anbi12d 632 . . 3 (𝑓 = 𝐹 → ((𝑓0 ∧ ((coe1𝑓)‘(𝐷𝑓)) = 1 ) ↔ (𝐹0 ∧ ((coe1𝐹)‘(𝐷𝐹)) = 1 )))
7 uc1pval.p . . . 4 𝑃 = (Poly1𝑅)
8 uc1pval.b . . . 4 𝐵 = (Base‘𝑃)
9 uc1pval.z . . . 4 0 = (0g𝑃)
10 uc1pval.d . . . 4 𝐷 = (deg1𝑅)
11 mon1pval.m . . . 4 𝑀 = (Monic1p𝑅)
12 mon1pval.o . . . 4 1 = (1r𝑅)
137, 8, 9, 10, 11, 12mon1pval 26047 . . 3 𝑀 = {𝑓𝐵 ∣ (𝑓0 ∧ ((coe1𝑓)‘(𝐷𝑓)) = 1 )}
146, 13elrab2 3662 . 2 (𝐹𝑀 ↔ (𝐹𝐵 ∧ (𝐹0 ∧ ((coe1𝐹)‘(𝐷𝐹)) = 1 )))
15 3anass 1094 . 2 ((𝐹𝐵𝐹0 ∧ ((coe1𝐹)‘(𝐷𝐹)) = 1 ) ↔ (𝐹𝐵 ∧ (𝐹0 ∧ ((coe1𝐹)‘(𝐷𝐹)) = 1 )))
1614, 15bitr4i 278 1 (𝐹𝑀 ↔ (𝐹𝐵𝐹0 ∧ ((coe1𝐹)‘(𝐷𝐹)) = 1 ))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  cfv 6511  Basecbs 17179  0gc0g 17402  1rcur 20090  Poly1cpl1 22061  coe1cco1 22062  deg1cdg1 25959  Monic1pcmn1 26031
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-1cn 11126  ax-addcl 11128
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-nn 12187  df-slot 17152  df-ndx 17164  df-base 17180  df-mon1 26036
This theorem is referenced by:  mon1pcl  26050  mon1pn0  26052  mon1pldg  26055  uc1pmon1p  26057  mon1pid  26059  ply1remlem  26070  0ringmon1p  33526  ressply1mon1p  33537  rtelextdg2lem  33716  2sqr3minply  33770  cos9thpiminply  33778  mon1psubm  43188
  Copyright terms: Public domain W3C validator