| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ismon1p | Structured version Visualization version GIF version | ||
| Description: Being a monic polynomial. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
| Ref | Expression |
|---|---|
| uc1pval.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| uc1pval.b | ⊢ 𝐵 = (Base‘𝑃) |
| uc1pval.z | ⊢ 0 = (0g‘𝑃) |
| uc1pval.d | ⊢ 𝐷 = (deg1‘𝑅) |
| mon1pval.m | ⊢ 𝑀 = (Monic1p‘𝑅) |
| mon1pval.o | ⊢ 1 = (1r‘𝑅) |
| Ref | Expression |
|---|---|
| ismon1p | ⊢ (𝐹 ∈ 𝑀 ↔ (𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ∧ ((coe1‘𝐹)‘(𝐷‘𝐹)) = 1 )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neeq1 2987 | . . . 4 ⊢ (𝑓 = 𝐹 → (𝑓 ≠ 0 ↔ 𝐹 ≠ 0 )) | |
| 2 | fveq2 6822 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (coe1‘𝑓) = (coe1‘𝐹)) | |
| 3 | fveq2 6822 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (𝐷‘𝑓) = (𝐷‘𝐹)) | |
| 4 | 2, 3 | fveq12d 6829 | . . . . 5 ⊢ (𝑓 = 𝐹 → ((coe1‘𝑓)‘(𝐷‘𝑓)) = ((coe1‘𝐹)‘(𝐷‘𝐹))) |
| 5 | 4 | eqeq1d 2731 | . . . 4 ⊢ (𝑓 = 𝐹 → (((coe1‘𝑓)‘(𝐷‘𝑓)) = 1 ↔ ((coe1‘𝐹)‘(𝐷‘𝐹)) = 1 )) |
| 6 | 1, 5 | anbi12d 632 | . . 3 ⊢ (𝑓 = 𝐹 → ((𝑓 ≠ 0 ∧ ((coe1‘𝑓)‘(𝐷‘𝑓)) = 1 ) ↔ (𝐹 ≠ 0 ∧ ((coe1‘𝐹)‘(𝐷‘𝐹)) = 1 ))) |
| 7 | uc1pval.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 8 | uc1pval.b | . . . 4 ⊢ 𝐵 = (Base‘𝑃) | |
| 9 | uc1pval.z | . . . 4 ⊢ 0 = (0g‘𝑃) | |
| 10 | uc1pval.d | . . . 4 ⊢ 𝐷 = (deg1‘𝑅) | |
| 11 | mon1pval.m | . . . 4 ⊢ 𝑀 = (Monic1p‘𝑅) | |
| 12 | mon1pval.o | . . . 4 ⊢ 1 = (1r‘𝑅) | |
| 13 | 7, 8, 9, 10, 11, 12 | mon1pval 26045 | . . 3 ⊢ 𝑀 = {𝑓 ∈ 𝐵 ∣ (𝑓 ≠ 0 ∧ ((coe1‘𝑓)‘(𝐷‘𝑓)) = 1 )} |
| 14 | 6, 13 | elrab2 3651 | . 2 ⊢ (𝐹 ∈ 𝑀 ↔ (𝐹 ∈ 𝐵 ∧ (𝐹 ≠ 0 ∧ ((coe1‘𝐹)‘(𝐷‘𝐹)) = 1 ))) |
| 15 | 3anass 1094 | . 2 ⊢ ((𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ∧ ((coe1‘𝐹)‘(𝐷‘𝐹)) = 1 ) ↔ (𝐹 ∈ 𝐵 ∧ (𝐹 ≠ 0 ∧ ((coe1‘𝐹)‘(𝐷‘𝐹)) = 1 ))) | |
| 16 | 14, 15 | bitr4i 278 | 1 ⊢ (𝐹 ∈ 𝑀 ↔ (𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ∧ ((coe1‘𝐹)‘(𝐷‘𝐹)) = 1 )) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ‘cfv 6482 Basecbs 17120 0gc0g 17343 1rcur 20066 Poly1cpl1 22059 coe1cco1 22060 deg1cdg1 25957 Monic1pcmn1 26029 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-1cn 11067 ax-addcl 11069 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-om 7800 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-nn 12129 df-slot 17093 df-ndx 17105 df-base 17121 df-mon1 26034 |
| This theorem is referenced by: mon1pcl 26048 mon1pn0 26050 mon1pldg 26053 uc1pmon1p 26055 mon1pid 26057 ply1remlem 26068 0ringmon1p 33492 ressply1mon1p 33503 rtelextdg2lem 33693 2sqr3minply 33747 cos9thpiminply 33755 mon1psubm 43176 |
| Copyright terms: Public domain | W3C validator |