| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ismon1p | Structured version Visualization version GIF version | ||
| Description: Being a monic polynomial. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
| Ref | Expression |
|---|---|
| uc1pval.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| uc1pval.b | ⊢ 𝐵 = (Base‘𝑃) |
| uc1pval.z | ⊢ 0 = (0g‘𝑃) |
| uc1pval.d | ⊢ 𝐷 = (deg1‘𝑅) |
| mon1pval.m | ⊢ 𝑀 = (Monic1p‘𝑅) |
| mon1pval.o | ⊢ 1 = (1r‘𝑅) |
| Ref | Expression |
|---|---|
| ismon1p | ⊢ (𝐹 ∈ 𝑀 ↔ (𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ∧ ((coe1‘𝐹)‘(𝐷‘𝐹)) = 1 )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neeq1 2990 | . . . 4 ⊢ (𝑓 = 𝐹 → (𝑓 ≠ 0 ↔ 𝐹 ≠ 0 )) | |
| 2 | fveq2 6822 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (coe1‘𝑓) = (coe1‘𝐹)) | |
| 3 | fveq2 6822 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (𝐷‘𝑓) = (𝐷‘𝐹)) | |
| 4 | 2, 3 | fveq12d 6829 | . . . . 5 ⊢ (𝑓 = 𝐹 → ((coe1‘𝑓)‘(𝐷‘𝑓)) = ((coe1‘𝐹)‘(𝐷‘𝐹))) |
| 5 | 4 | eqeq1d 2733 | . . . 4 ⊢ (𝑓 = 𝐹 → (((coe1‘𝑓)‘(𝐷‘𝑓)) = 1 ↔ ((coe1‘𝐹)‘(𝐷‘𝐹)) = 1 )) |
| 6 | 1, 5 | anbi12d 632 | . . 3 ⊢ (𝑓 = 𝐹 → ((𝑓 ≠ 0 ∧ ((coe1‘𝑓)‘(𝐷‘𝑓)) = 1 ) ↔ (𝐹 ≠ 0 ∧ ((coe1‘𝐹)‘(𝐷‘𝐹)) = 1 ))) |
| 7 | uc1pval.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 8 | uc1pval.b | . . . 4 ⊢ 𝐵 = (Base‘𝑃) | |
| 9 | uc1pval.z | . . . 4 ⊢ 0 = (0g‘𝑃) | |
| 10 | uc1pval.d | . . . 4 ⊢ 𝐷 = (deg1‘𝑅) | |
| 11 | mon1pval.m | . . . 4 ⊢ 𝑀 = (Monic1p‘𝑅) | |
| 12 | mon1pval.o | . . . 4 ⊢ 1 = (1r‘𝑅) | |
| 13 | 7, 8, 9, 10, 11, 12 | mon1pval 26074 | . . 3 ⊢ 𝑀 = {𝑓 ∈ 𝐵 ∣ (𝑓 ≠ 0 ∧ ((coe1‘𝑓)‘(𝐷‘𝑓)) = 1 )} |
| 14 | 6, 13 | elrab2 3645 | . 2 ⊢ (𝐹 ∈ 𝑀 ↔ (𝐹 ∈ 𝐵 ∧ (𝐹 ≠ 0 ∧ ((coe1‘𝐹)‘(𝐷‘𝐹)) = 1 ))) |
| 15 | 3anass 1094 | . 2 ⊢ ((𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ∧ ((coe1‘𝐹)‘(𝐷‘𝐹)) = 1 ) ↔ (𝐹 ∈ 𝐵 ∧ (𝐹 ≠ 0 ∧ ((coe1‘𝐹)‘(𝐷‘𝐹)) = 1 ))) | |
| 16 | 14, 15 | bitr4i 278 | 1 ⊢ (𝐹 ∈ 𝑀 ↔ (𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ∧ ((coe1‘𝐹)‘(𝐷‘𝐹)) = 1 )) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ‘cfv 6481 Basecbs 17120 0gc0g 17343 1rcur 20099 Poly1cpl1 22089 coe1cco1 22090 deg1cdg1 25986 Monic1pcmn1 26058 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-1cn 11064 ax-addcl 11066 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-nn 12126 df-slot 17093 df-ndx 17105 df-base 17121 df-mon1 26063 |
| This theorem is referenced by: mon1pcl 26077 mon1pn0 26079 mon1pldg 26082 uc1pmon1p 26084 mon1pid 26086 ply1remlem 26097 0ringmon1p 33520 ressply1mon1p 33531 rtelextdg2lem 33739 2sqr3minply 33793 cos9thpiminply 33801 mon1psubm 43302 |
| Copyright terms: Public domain | W3C validator |