Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mplelsfi | Structured version Visualization version GIF version |
Description: A polynomial treated as a coefficient function has finitely many nonzero terms. (Contributed by Stefan O'Rear, 22-Mar-2015.) (Revised by AV, 25-Jun-2019.) |
Ref | Expression |
---|---|
mplrcl.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
mplrcl.b | ⊢ 𝐵 = (Base‘𝑃) |
mplelsfi.z | ⊢ 0 = (0g‘𝑅) |
mplelsfi.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
mplelsfi.r | ⊢ (𝜑 → 𝑅 ∈ 𝑉) |
Ref | Expression |
---|---|
mplelsfi | ⊢ (𝜑 → 𝐹 finSupp 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mplelsfi.f | . 2 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
2 | mplrcl.p | . . . 4 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
3 | eqid 2738 | . . . 4 ⊢ (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅) | |
4 | eqid 2738 | . . . 4 ⊢ (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑅)) | |
5 | mplelsfi.z | . . . 4 ⊢ 0 = (0g‘𝑅) | |
6 | mplrcl.b | . . . 4 ⊢ 𝐵 = (Base‘𝑃) | |
7 | 2, 3, 4, 5, 6 | mplelbas 21199 | . . 3 ⊢ (𝐹 ∈ 𝐵 ↔ (𝐹 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ 𝐹 finSupp 0 )) |
8 | 7 | simprbi 497 | . 2 ⊢ (𝐹 ∈ 𝐵 → 𝐹 finSupp 0 ) |
9 | 1, 8 | syl 17 | 1 ⊢ (𝜑 → 𝐹 finSupp 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 class class class wbr 5074 ‘cfv 6433 (class class class)co 7275 finSupp cfsupp 9128 Basecbs 16912 0gc0g 17150 mPwSer cmps 21107 mPoly cmpl 21109 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-1cn 10929 ax-addcl 10931 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-nn 11974 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-psr 21112 df-mpl 21114 |
This theorem is referenced by: evlslem2 21289 evlslem6 21291 coe1sfi 21384 mdegldg 25231 mdegcl 25234 selvval2lem4 40228 mhpind 40283 |
Copyright terms: Public domain | W3C validator |