| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mplelsfi | Structured version Visualization version GIF version | ||
| Description: A polynomial treated as a coefficient function has finitely many nonzero terms. (Contributed by Stefan O'Rear, 22-Mar-2015.) (Revised by AV, 25-Jun-2019.) |
| Ref | Expression |
|---|---|
| mplrcl.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
| mplrcl.b | ⊢ 𝐵 = (Base‘𝑃) |
| mplelsfi.z | ⊢ 0 = (0g‘𝑅) |
| mplelsfi.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| mplelsfi | ⊢ (𝜑 → 𝐹 finSupp 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mplelsfi.f | . 2 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
| 2 | mplrcl.p | . . . 4 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
| 3 | eqid 2731 | . . . 4 ⊢ (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅) | |
| 4 | eqid 2731 | . . . 4 ⊢ (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑅)) | |
| 5 | mplelsfi.z | . . . 4 ⊢ 0 = (0g‘𝑅) | |
| 6 | mplrcl.b | . . . 4 ⊢ 𝐵 = (Base‘𝑃) | |
| 7 | 2, 3, 4, 5, 6 | mplelbas 21928 | . . 3 ⊢ (𝐹 ∈ 𝐵 ↔ (𝐹 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ 𝐹 finSupp 0 )) |
| 8 | 7 | simprbi 496 | . 2 ⊢ (𝐹 ∈ 𝐵 → 𝐹 finSupp 0 ) |
| 9 | 1, 8 | syl 17 | 1 ⊢ (𝜑 → 𝐹 finSupp 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 class class class wbr 5089 ‘cfv 6481 (class class class)co 7346 finSupp cfsupp 9245 Basecbs 17120 0gc0g 17343 mPwSer cmps 21841 mPoly cmpl 21843 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-1cn 11064 ax-addcl 11066 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-nn 12126 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-psr 21846 df-mpl 21848 |
| This theorem is referenced by: evlslem2 22014 evlslem6 22016 psdmplcl 22077 coe1sfi 22126 mhmcompl 22295 mdegldg 25998 mdegcl 26001 mplvrpmfgalem 33574 mplvrpmrhm 33577 evlsvvvallem2 42665 evlsvvval 42666 selvvvval 42688 evlselv 42690 mhpind 42697 |
| Copyright terms: Public domain | W3C validator |