MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mplelsfi Structured version   Visualization version   GIF version

Theorem mplelsfi 21880
Description: A polynomial treated as a coefficient function has finitely many nonzero terms. (Contributed by Stefan O'Rear, 22-Mar-2015.) (Revised by AV, 25-Jun-2019.)
Hypotheses
Ref Expression
mplrcl.p 𝑃 = (𝐼 mPoly 𝑅)
mplrcl.b 𝐵 = (Base‘𝑃)
mplelsfi.z 0 = (0g𝑅)
mplelsfi.f (𝜑𝐹𝐵)
Assertion
Ref Expression
mplelsfi (𝜑𝐹 finSupp 0 )

Proof of Theorem mplelsfi
StepHypRef Expression
1 mplelsfi.f . 2 (𝜑𝐹𝐵)
2 mplrcl.p . . . 4 𝑃 = (𝐼 mPoly 𝑅)
3 eqid 2729 . . . 4 (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅)
4 eqid 2729 . . . 4 (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑅))
5 mplelsfi.z . . . 4 0 = (0g𝑅)
6 mplrcl.b . . . 4 𝐵 = (Base‘𝑃)
72, 3, 4, 5, 6mplelbas 21876 . . 3 (𝐹𝐵 ↔ (𝐹 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ 𝐹 finSupp 0 ))
87simprbi 496 . 2 (𝐹𝐵𝐹 finSupp 0 )
91, 8syl 17 1 (𝜑𝐹 finSupp 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109   class class class wbr 5102  cfv 6499  (class class class)co 7369   finSupp cfsupp 9288  Basecbs 17155  0gc0g 17378   mPwSer cmps 21789   mPoly cmpl 21791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-1cn 11102  ax-addcl 11104
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-nn 12163  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-psr 21794  df-mpl 21796
This theorem is referenced by:  evlslem2  21962  evlslem6  21964  psdmplcl  22025  coe1sfi  22074  mhmcompl  22243  mdegldg  25947  mdegcl  25950  evlsvvvallem2  42523  evlsvvval  42524  selvvvval  42546  evlselv  42548  mhpind  42555
  Copyright terms: Public domain W3C validator