| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mplelsfi | Structured version Visualization version GIF version | ||
| Description: A polynomial treated as a coefficient function has finitely many nonzero terms. (Contributed by Stefan O'Rear, 22-Mar-2015.) (Revised by AV, 25-Jun-2019.) |
| Ref | Expression |
|---|---|
| mplrcl.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
| mplrcl.b | ⊢ 𝐵 = (Base‘𝑃) |
| mplelsfi.z | ⊢ 0 = (0g‘𝑅) |
| mplelsfi.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| mplelsfi | ⊢ (𝜑 → 𝐹 finSupp 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mplelsfi.f | . 2 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
| 2 | mplrcl.p | . . . 4 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
| 3 | eqid 2736 | . . . 4 ⊢ (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅) | |
| 4 | eqid 2736 | . . . 4 ⊢ (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑅)) | |
| 5 | mplelsfi.z | . . . 4 ⊢ 0 = (0g‘𝑅) | |
| 6 | mplrcl.b | . . . 4 ⊢ 𝐵 = (Base‘𝑃) | |
| 7 | 2, 3, 4, 5, 6 | mplelbas 21956 | . . 3 ⊢ (𝐹 ∈ 𝐵 ↔ (𝐹 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ 𝐹 finSupp 0 )) |
| 8 | 7 | simprbi 496 | . 2 ⊢ (𝐹 ∈ 𝐵 → 𝐹 finSupp 0 ) |
| 9 | 1, 8 | syl 17 | 1 ⊢ (𝜑 → 𝐹 finSupp 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 class class class wbr 5124 ‘cfv 6536 (class class class)co 7410 finSupp cfsupp 9378 Basecbs 17233 0gc0g 17458 mPwSer cmps 21869 mPoly cmpl 21871 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-1cn 11192 ax-addcl 11194 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-nn 12246 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-psr 21874 df-mpl 21876 |
| This theorem is referenced by: evlslem2 22042 evlslem6 22044 psdmplcl 22105 coe1sfi 22154 mhmcompl 22323 mdegldg 26028 mdegcl 26031 evlsvvvallem2 42552 evlsvvval 42553 selvvvval 42575 evlselv 42577 mhpind 42584 |
| Copyright terms: Public domain | W3C validator |