MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mplelsfi Structured version   Visualization version   GIF version

Theorem mplelsfi 21774
Description: A polynomial treated as a coefficient function has finitely many nonzero terms. (Contributed by Stefan O'Rear, 22-Mar-2015.) (Revised by AV, 25-Jun-2019.)
Hypotheses
Ref Expression
mplrcl.p 𝑃 = (𝐼 mPoly 𝑅)
mplrcl.b 𝐵 = (Base‘𝑃)
mplelsfi.z 0 = (0g𝑅)
mplelsfi.f (𝜑𝐹𝐵)
mplelsfi.r (𝜑𝑅𝑉)
Assertion
Ref Expression
mplelsfi (𝜑𝐹 finSupp 0 )

Proof of Theorem mplelsfi
StepHypRef Expression
1 mplelsfi.f . 2 (𝜑𝐹𝐵)
2 mplrcl.p . . . 4 𝑃 = (𝐼 mPoly 𝑅)
3 eqid 2731 . . . 4 (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅)
4 eqid 2731 . . . 4 (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑅))
5 mplelsfi.z . . . 4 0 = (0g𝑅)
6 mplrcl.b . . . 4 𝐵 = (Base‘𝑃)
72, 3, 4, 5, 6mplelbas 21770 . . 3 (𝐹𝐵 ↔ (𝐹 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ 𝐹 finSupp 0 ))
87simprbi 496 . 2 (𝐹𝐵𝐹 finSupp 0 )
91, 8syl 17 1 (𝜑𝐹 finSupp 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2105   class class class wbr 5148  cfv 6543  (class class class)co 7412   finSupp cfsupp 9365  Basecbs 17149  0gc0g 17390   mPwSer cmps 21677   mPoly cmpl 21679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11170  ax-1cn 11172  ax-addcl 11174
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-2nd 7980  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-nn 12218  df-sets 17102  df-slot 17120  df-ndx 17132  df-base 17150  df-ress 17179  df-psr 21682  df-mpl 21684
This theorem is referenced by:  evlslem2  21862  evlslem6  21864  coe1sfi  21957  mdegldg  25820  mdegcl  25823  mhmcompl  41423  evlsvvvallem2  41437  evlsvvval  41438  selvvvval  41460  evlselv  41462  mhpind  41469
  Copyright terms: Public domain W3C validator