![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > naddwordnexlem2 | Structured version Visualization version GIF version |
Description: When ๐ด is the sum of a limit ordinal (or zero) and a natural number and ๐ต is the sum of a larger limit ordinal and a smaller natural number, ๐ต is larger than ๐ด. (Contributed by RP, 14-Feb-2025.) |
Ref | Expression |
---|---|
naddwordnex.a | โข (๐ โ ๐ด = ((ฯ ยทo ๐ถ) +o ๐)) |
naddwordnex.b | โข (๐ โ ๐ต = ((ฯ ยทo ๐ท) +o ๐)) |
naddwordnex.c | โข (๐ โ ๐ถ โ ๐ท) |
naddwordnex.d | โข (๐ โ ๐ท โ On) |
naddwordnex.m | โข (๐ โ ๐ โ ฯ) |
naddwordnex.n | โข (๐ โ ๐ โ ๐) |
Ref | Expression |
---|---|
naddwordnexlem2 | โข (๐ โ ๐ด โ ๐ต) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | naddwordnex.a | . . 3 โข (๐ โ ๐ด = ((ฯ ยทo ๐ถ) +o ๐)) | |
2 | naddwordnex.b | . . 3 โข (๐ โ ๐ต = ((ฯ ยทo ๐ท) +o ๐)) | |
3 | naddwordnex.c | . . 3 โข (๐ โ ๐ถ โ ๐ท) | |
4 | naddwordnex.d | . . 3 โข (๐ โ ๐ท โ On) | |
5 | naddwordnex.m | . . 3 โข (๐ โ ๐ โ ฯ) | |
6 | naddwordnex.n | . . 3 โข (๐ โ ๐ โ ๐) | |
7 | 1, 2, 3, 4, 5, 6 | naddwordnexlem0 42450 | . 2 โข (๐ โ (๐ด โ (ฯ ยทo suc ๐ถ) โง (ฯ ยทo suc ๐ถ) โ ๐ต)) |
8 | ssel 3975 | . . 3 โข ((ฯ ยทo suc ๐ถ) โ ๐ต โ (๐ด โ (ฯ ยทo suc ๐ถ) โ ๐ด โ ๐ต)) | |
9 | 8 | impcom 407 | . 2 โข ((๐ด โ (ฯ ยทo suc ๐ถ) โง (ฯ ยทo suc ๐ถ) โ ๐ต) โ ๐ด โ ๐ต) |
10 | 7, 9 | syl 17 | 1 โข (๐ โ ๐ด โ ๐ต) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 โง wa 395 = wceq 1540 โ wcel 2105 โ wss 3948 Oncon0 6364 suc csuc 6366 (class class class)co 7412 ฯcom 7859 +o coa 8467 ยทo comu 8468 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7729 ax-inf2 9640 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-oadd 8474 df-omul 8475 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |