MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn2m Structured version   Visualization version   GIF version

Theorem nn2m 8564
Description: Multiply an element of ω by 2o. (Contributed by Scott Fenton, 16-Apr-2012.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
nn2m (𝐴 ∈ ω → (2o ·o 𝐴) = (𝐴 +o 𝐴))

Proof of Theorem nn2m
StepHypRef Expression
1 2onn 8552 . . 3 2o ∈ ω
2 nnmcom 8536 . . 3 ((2o ∈ ω ∧ 𝐴 ∈ ω) → (2o ·o 𝐴) = (𝐴 ·o 2o))
31, 2mpan 690 . 2 (𝐴 ∈ ω → (2o ·o 𝐴) = (𝐴 ·o 2o))
4 nnm2 8563 . 2 (𝐴 ∈ ω → (𝐴 ·o 2o) = (𝐴 +o 𝐴))
53, 4eqtrd 2766 1 (𝐴 ∈ ω → (2o ·o 𝐴) = (𝐴 +o 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  (class class class)co 7341  ωcom 7791  2oc2o 8374   +o coa 8377   ·o comu 8378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-oadd 8384  df-omul 8385
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator