![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nnmcom | Structured version Visualization version GIF version |
Description: Multiplication of natural numbers is commutative. Theorem 4K(5) of [Enderton] p. 81. (Contributed by NM, 21-Sep-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
Ref | Expression |
---|---|
nnmcom | ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·o 𝐵) = (𝐵 ·o 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 6913 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ·o 𝐵) = (𝐴 ·o 𝐵)) | |
2 | oveq2 6914 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝐵 ·o 𝑥) = (𝐵 ·o 𝐴)) | |
3 | 1, 2 | eqeq12d 2841 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 ·o 𝐵) = (𝐵 ·o 𝑥) ↔ (𝐴 ·o 𝐵) = (𝐵 ·o 𝐴))) |
4 | 3 | imbi2d 332 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝐵 ∈ ω → (𝑥 ·o 𝐵) = (𝐵 ·o 𝑥)) ↔ (𝐵 ∈ ω → (𝐴 ·o 𝐵) = (𝐵 ·o 𝐴)))) |
5 | oveq1 6913 | . . . . 5 ⊢ (𝑥 = ∅ → (𝑥 ·o 𝐵) = (∅ ·o 𝐵)) | |
6 | oveq2 6914 | . . . . 5 ⊢ (𝑥 = ∅ → (𝐵 ·o 𝑥) = (𝐵 ·o ∅)) | |
7 | 5, 6 | eqeq12d 2841 | . . . 4 ⊢ (𝑥 = ∅ → ((𝑥 ·o 𝐵) = (𝐵 ·o 𝑥) ↔ (∅ ·o 𝐵) = (𝐵 ·o ∅))) |
8 | oveq1 6913 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝑥 ·o 𝐵) = (𝑦 ·o 𝐵)) | |
9 | oveq2 6914 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝐵 ·o 𝑥) = (𝐵 ·o 𝑦)) | |
10 | 8, 9 | eqeq12d 2841 | . . . 4 ⊢ (𝑥 = 𝑦 → ((𝑥 ·o 𝐵) = (𝐵 ·o 𝑥) ↔ (𝑦 ·o 𝐵) = (𝐵 ·o 𝑦))) |
11 | oveq1 6913 | . . . . 5 ⊢ (𝑥 = suc 𝑦 → (𝑥 ·o 𝐵) = (suc 𝑦 ·o 𝐵)) | |
12 | oveq2 6914 | . . . . 5 ⊢ (𝑥 = suc 𝑦 → (𝐵 ·o 𝑥) = (𝐵 ·o suc 𝑦)) | |
13 | 11, 12 | eqeq12d 2841 | . . . 4 ⊢ (𝑥 = suc 𝑦 → ((𝑥 ·o 𝐵) = (𝐵 ·o 𝑥) ↔ (suc 𝑦 ·o 𝐵) = (𝐵 ·o suc 𝑦))) |
14 | nnm0r 7958 | . . . . 5 ⊢ (𝐵 ∈ ω → (∅ ·o 𝐵) = ∅) | |
15 | nnm0 7953 | . . . . 5 ⊢ (𝐵 ∈ ω → (𝐵 ·o ∅) = ∅) | |
16 | 14, 15 | eqtr4d 2865 | . . . 4 ⊢ (𝐵 ∈ ω → (∅ ·o 𝐵) = (𝐵 ·o ∅)) |
17 | oveq1 6913 | . . . . . 6 ⊢ ((𝑦 ·o 𝐵) = (𝐵 ·o 𝑦) → ((𝑦 ·o 𝐵) +o 𝐵) = ((𝐵 ·o 𝑦) +o 𝐵)) | |
18 | nnmsucr 7973 | . . . . . . 7 ⊢ ((𝑦 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝑦 ·o 𝐵) = ((𝑦 ·o 𝐵) +o 𝐵)) | |
19 | nnmsuc 7955 | . . . . . . . 8 ⊢ ((𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (𝐵 ·o suc 𝑦) = ((𝐵 ·o 𝑦) +o 𝐵)) | |
20 | 19 | ancoms 452 | . . . . . . 7 ⊢ ((𝑦 ∈ ω ∧ 𝐵 ∈ ω) → (𝐵 ·o suc 𝑦) = ((𝐵 ·o 𝑦) +o 𝐵)) |
21 | 18, 20 | eqeq12d 2841 | . . . . . 6 ⊢ ((𝑦 ∈ ω ∧ 𝐵 ∈ ω) → ((suc 𝑦 ·o 𝐵) = (𝐵 ·o suc 𝑦) ↔ ((𝑦 ·o 𝐵) +o 𝐵) = ((𝐵 ·o 𝑦) +o 𝐵))) |
22 | 17, 21 | syl5ibr 238 | . . . . 5 ⊢ ((𝑦 ∈ ω ∧ 𝐵 ∈ ω) → ((𝑦 ·o 𝐵) = (𝐵 ·o 𝑦) → (suc 𝑦 ·o 𝐵) = (𝐵 ·o suc 𝑦))) |
23 | 22 | ex 403 | . . . 4 ⊢ (𝑦 ∈ ω → (𝐵 ∈ ω → ((𝑦 ·o 𝐵) = (𝐵 ·o 𝑦) → (suc 𝑦 ·o 𝐵) = (𝐵 ·o suc 𝑦)))) |
24 | 7, 10, 13, 16, 23 | finds2 7356 | . . 3 ⊢ (𝑥 ∈ ω → (𝐵 ∈ ω → (𝑥 ·o 𝐵) = (𝐵 ·o 𝑥))) |
25 | 4, 24 | vtoclga 3490 | . 2 ⊢ (𝐴 ∈ ω → (𝐵 ∈ ω → (𝐴 ·o 𝐵) = (𝐵 ·o 𝐴))) |
26 | 25 | imp 397 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·o 𝐵) = (𝐵 ·o 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1658 ∈ wcel 2166 ∅c0 4145 suc csuc 5966 (class class class)co 6906 ωcom 7327 +o coa 7824 ·o comu 7825 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2804 ax-sep 5006 ax-nul 5014 ax-pow 5066 ax-pr 5128 ax-un 7210 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2606 df-eu 2641 df-clab 2813 df-cleq 2819 df-clel 2822 df-nfc 2959 df-ne 3001 df-ral 3123 df-rex 3124 df-reu 3125 df-rab 3127 df-v 3417 df-sbc 3664 df-csb 3759 df-dif 3802 df-un 3804 df-in 3806 df-ss 3813 df-pss 3815 df-nul 4146 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4660 df-iun 4743 df-br 4875 df-opab 4937 df-mpt 4954 df-tr 4977 df-id 5251 df-eprel 5256 df-po 5264 df-so 5265 df-fr 5302 df-we 5304 df-xp 5349 df-rel 5350 df-cnv 5351 df-co 5352 df-dm 5353 df-rn 5354 df-res 5355 df-ima 5356 df-pred 5921 df-ord 5967 df-on 5968 df-lim 5969 df-suc 5970 df-iota 6087 df-fun 6126 df-fn 6127 df-f 6128 df-f1 6129 df-fo 6130 df-f1o 6131 df-fv 6132 df-ov 6909 df-oprab 6910 df-mpt2 6911 df-om 7328 df-wrecs 7673 df-recs 7735 df-rdg 7773 df-oadd 7831 df-omul 7832 |
This theorem is referenced by: nnmwordri 7984 nn2m 7998 omopthlem1 8003 mulcompi 10034 |
Copyright terms: Public domain | W3C validator |