|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > nnmcom | Structured version Visualization version GIF version | ||
| Description: Multiplication of natural numbers is commutative. Theorem 4K(5) of [Enderton] p. 81. (Contributed by NM, 21-Sep-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) | 
| Ref | Expression | 
|---|---|
| nnmcom | ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·o 𝐵) = (𝐵 ·o 𝐴)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | oveq1 7438 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ·o 𝐵) = (𝐴 ·o 𝐵)) | |
| 2 | oveq2 7439 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝐵 ·o 𝑥) = (𝐵 ·o 𝐴)) | |
| 3 | 1, 2 | eqeq12d 2753 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 ·o 𝐵) = (𝐵 ·o 𝑥) ↔ (𝐴 ·o 𝐵) = (𝐵 ·o 𝐴))) | 
| 4 | 3 | imbi2d 340 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝐵 ∈ ω → (𝑥 ·o 𝐵) = (𝐵 ·o 𝑥)) ↔ (𝐵 ∈ ω → (𝐴 ·o 𝐵) = (𝐵 ·o 𝐴)))) | 
| 5 | oveq1 7438 | . . . . 5 ⊢ (𝑥 = ∅ → (𝑥 ·o 𝐵) = (∅ ·o 𝐵)) | |
| 6 | oveq2 7439 | . . . . 5 ⊢ (𝑥 = ∅ → (𝐵 ·o 𝑥) = (𝐵 ·o ∅)) | |
| 7 | 5, 6 | eqeq12d 2753 | . . . 4 ⊢ (𝑥 = ∅ → ((𝑥 ·o 𝐵) = (𝐵 ·o 𝑥) ↔ (∅ ·o 𝐵) = (𝐵 ·o ∅))) | 
| 8 | oveq1 7438 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝑥 ·o 𝐵) = (𝑦 ·o 𝐵)) | |
| 9 | oveq2 7439 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝐵 ·o 𝑥) = (𝐵 ·o 𝑦)) | |
| 10 | 8, 9 | eqeq12d 2753 | . . . 4 ⊢ (𝑥 = 𝑦 → ((𝑥 ·o 𝐵) = (𝐵 ·o 𝑥) ↔ (𝑦 ·o 𝐵) = (𝐵 ·o 𝑦))) | 
| 11 | oveq1 7438 | . . . . 5 ⊢ (𝑥 = suc 𝑦 → (𝑥 ·o 𝐵) = (suc 𝑦 ·o 𝐵)) | |
| 12 | oveq2 7439 | . . . . 5 ⊢ (𝑥 = suc 𝑦 → (𝐵 ·o 𝑥) = (𝐵 ·o suc 𝑦)) | |
| 13 | 11, 12 | eqeq12d 2753 | . . . 4 ⊢ (𝑥 = suc 𝑦 → ((𝑥 ·o 𝐵) = (𝐵 ·o 𝑥) ↔ (suc 𝑦 ·o 𝐵) = (𝐵 ·o suc 𝑦))) | 
| 14 | nnm0r 8648 | . . . . 5 ⊢ (𝐵 ∈ ω → (∅ ·o 𝐵) = ∅) | |
| 15 | nnm0 8643 | . . . . 5 ⊢ (𝐵 ∈ ω → (𝐵 ·o ∅) = ∅) | |
| 16 | 14, 15 | eqtr4d 2780 | . . . 4 ⊢ (𝐵 ∈ ω → (∅ ·o 𝐵) = (𝐵 ·o ∅)) | 
| 17 | oveq1 7438 | . . . . . 6 ⊢ ((𝑦 ·o 𝐵) = (𝐵 ·o 𝑦) → ((𝑦 ·o 𝐵) +o 𝐵) = ((𝐵 ·o 𝑦) +o 𝐵)) | |
| 18 | nnmsucr 8663 | . . . . . . 7 ⊢ ((𝑦 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝑦 ·o 𝐵) = ((𝑦 ·o 𝐵) +o 𝐵)) | |
| 19 | nnmsuc 8645 | . . . . . . . 8 ⊢ ((𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (𝐵 ·o suc 𝑦) = ((𝐵 ·o 𝑦) +o 𝐵)) | |
| 20 | 19 | ancoms 458 | . . . . . . 7 ⊢ ((𝑦 ∈ ω ∧ 𝐵 ∈ ω) → (𝐵 ·o suc 𝑦) = ((𝐵 ·o 𝑦) +o 𝐵)) | 
| 21 | 18, 20 | eqeq12d 2753 | . . . . . 6 ⊢ ((𝑦 ∈ ω ∧ 𝐵 ∈ ω) → ((suc 𝑦 ·o 𝐵) = (𝐵 ·o suc 𝑦) ↔ ((𝑦 ·o 𝐵) +o 𝐵) = ((𝐵 ·o 𝑦) +o 𝐵))) | 
| 22 | 17, 21 | imbitrrid 246 | . . . . 5 ⊢ ((𝑦 ∈ ω ∧ 𝐵 ∈ ω) → ((𝑦 ·o 𝐵) = (𝐵 ·o 𝑦) → (suc 𝑦 ·o 𝐵) = (𝐵 ·o suc 𝑦))) | 
| 23 | 22 | ex 412 | . . . 4 ⊢ (𝑦 ∈ ω → (𝐵 ∈ ω → ((𝑦 ·o 𝐵) = (𝐵 ·o 𝑦) → (suc 𝑦 ·o 𝐵) = (𝐵 ·o suc 𝑦)))) | 
| 24 | 7, 10, 13, 16, 23 | finds2 7920 | . . 3 ⊢ (𝑥 ∈ ω → (𝐵 ∈ ω → (𝑥 ·o 𝐵) = (𝐵 ·o 𝑥))) | 
| 25 | 4, 24 | vtoclga 3577 | . 2 ⊢ (𝐴 ∈ ω → (𝐵 ∈ ω → (𝐴 ·o 𝐵) = (𝐵 ·o 𝐴))) | 
| 26 | 25 | imp 406 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·o 𝐵) = (𝐵 ·o 𝐴)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∅c0 4333 suc csuc 6386 (class class class)co 7431 ωcom 7887 +o coa 8503 ·o comu 8504 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 ax-un 7755 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-oadd 8510 df-omul 8511 | 
| This theorem is referenced by: nnmwordri 8674 nn2m 8692 omopthlem1 8697 mulcompi 10936 | 
| Copyright terms: Public domain | W3C validator |