MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnmcom Structured version   Visualization version   GIF version

Theorem nnmcom 8638
Description: Multiplication of natural numbers is commutative. Theorem 4K(5) of [Enderton] p. 81. (Contributed by NM, 21-Sep-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
nnmcom ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·o 𝐵) = (𝐵 ·o 𝐴))

Proof of Theorem nnmcom
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7412 . . . . 5 (𝑥 = 𝐴 → (𝑥 ·o 𝐵) = (𝐴 ·o 𝐵))
2 oveq2 7413 . . . . 5 (𝑥 = 𝐴 → (𝐵 ·o 𝑥) = (𝐵 ·o 𝐴))
31, 2eqeq12d 2751 . . . 4 (𝑥 = 𝐴 → ((𝑥 ·o 𝐵) = (𝐵 ·o 𝑥) ↔ (𝐴 ·o 𝐵) = (𝐵 ·o 𝐴)))
43imbi2d 340 . . 3 (𝑥 = 𝐴 → ((𝐵 ∈ ω → (𝑥 ·o 𝐵) = (𝐵 ·o 𝑥)) ↔ (𝐵 ∈ ω → (𝐴 ·o 𝐵) = (𝐵 ·o 𝐴))))
5 oveq1 7412 . . . . 5 (𝑥 = ∅ → (𝑥 ·o 𝐵) = (∅ ·o 𝐵))
6 oveq2 7413 . . . . 5 (𝑥 = ∅ → (𝐵 ·o 𝑥) = (𝐵 ·o ∅))
75, 6eqeq12d 2751 . . . 4 (𝑥 = ∅ → ((𝑥 ·o 𝐵) = (𝐵 ·o 𝑥) ↔ (∅ ·o 𝐵) = (𝐵 ·o ∅)))
8 oveq1 7412 . . . . 5 (𝑥 = 𝑦 → (𝑥 ·o 𝐵) = (𝑦 ·o 𝐵))
9 oveq2 7413 . . . . 5 (𝑥 = 𝑦 → (𝐵 ·o 𝑥) = (𝐵 ·o 𝑦))
108, 9eqeq12d 2751 . . . 4 (𝑥 = 𝑦 → ((𝑥 ·o 𝐵) = (𝐵 ·o 𝑥) ↔ (𝑦 ·o 𝐵) = (𝐵 ·o 𝑦)))
11 oveq1 7412 . . . . 5 (𝑥 = suc 𝑦 → (𝑥 ·o 𝐵) = (suc 𝑦 ·o 𝐵))
12 oveq2 7413 . . . . 5 (𝑥 = suc 𝑦 → (𝐵 ·o 𝑥) = (𝐵 ·o suc 𝑦))
1311, 12eqeq12d 2751 . . . 4 (𝑥 = suc 𝑦 → ((𝑥 ·o 𝐵) = (𝐵 ·o 𝑥) ↔ (suc 𝑦 ·o 𝐵) = (𝐵 ·o suc 𝑦)))
14 nnm0r 8622 . . . . 5 (𝐵 ∈ ω → (∅ ·o 𝐵) = ∅)
15 nnm0 8617 . . . . 5 (𝐵 ∈ ω → (𝐵 ·o ∅) = ∅)
1614, 15eqtr4d 2773 . . . 4 (𝐵 ∈ ω → (∅ ·o 𝐵) = (𝐵 ·o ∅))
17 oveq1 7412 . . . . . 6 ((𝑦 ·o 𝐵) = (𝐵 ·o 𝑦) → ((𝑦 ·o 𝐵) +o 𝐵) = ((𝐵 ·o 𝑦) +o 𝐵))
18 nnmsucr 8637 . . . . . . 7 ((𝑦 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝑦 ·o 𝐵) = ((𝑦 ·o 𝐵) +o 𝐵))
19 nnmsuc 8619 . . . . . . . 8 ((𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (𝐵 ·o suc 𝑦) = ((𝐵 ·o 𝑦) +o 𝐵))
2019ancoms 458 . . . . . . 7 ((𝑦 ∈ ω ∧ 𝐵 ∈ ω) → (𝐵 ·o suc 𝑦) = ((𝐵 ·o 𝑦) +o 𝐵))
2118, 20eqeq12d 2751 . . . . . 6 ((𝑦 ∈ ω ∧ 𝐵 ∈ ω) → ((suc 𝑦 ·o 𝐵) = (𝐵 ·o suc 𝑦) ↔ ((𝑦 ·o 𝐵) +o 𝐵) = ((𝐵 ·o 𝑦) +o 𝐵)))
2217, 21imbitrrid 246 . . . . 5 ((𝑦 ∈ ω ∧ 𝐵 ∈ ω) → ((𝑦 ·o 𝐵) = (𝐵 ·o 𝑦) → (suc 𝑦 ·o 𝐵) = (𝐵 ·o suc 𝑦)))
2322ex 412 . . . 4 (𝑦 ∈ ω → (𝐵 ∈ ω → ((𝑦 ·o 𝐵) = (𝐵 ·o 𝑦) → (suc 𝑦 ·o 𝐵) = (𝐵 ·o suc 𝑦))))
247, 10, 13, 16, 23finds2 7894 . . 3 (𝑥 ∈ ω → (𝐵 ∈ ω → (𝑥 ·o 𝐵) = (𝐵 ·o 𝑥)))
254, 24vtoclga 3556 . 2 (𝐴 ∈ ω → (𝐵 ∈ ω → (𝐴 ·o 𝐵) = (𝐵 ·o 𝐴)))
2625imp 406 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·o 𝐵) = (𝐵 ·o 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  c0 4308  suc csuc 6354  (class class class)co 7405  ωcom 7861   +o coa 8477   ·o comu 8478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-oadd 8484  df-omul 8485
This theorem is referenced by:  nnmwordri  8648  nn2m  8666  omopthlem1  8671  mulcompi  10910
  Copyright terms: Public domain W3C validator