Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nnmcom | Structured version Visualization version GIF version |
Description: Multiplication of natural numbers is commutative. Theorem 4K(5) of [Enderton] p. 81. (Contributed by NM, 21-Sep-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
Ref | Expression |
---|---|
nnmcom | ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·o 𝐵) = (𝐵 ·o 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7157 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ·o 𝐵) = (𝐴 ·o 𝐵)) | |
2 | oveq2 7158 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝐵 ·o 𝑥) = (𝐵 ·o 𝐴)) | |
3 | 1, 2 | eqeq12d 2774 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 ·o 𝐵) = (𝐵 ·o 𝑥) ↔ (𝐴 ·o 𝐵) = (𝐵 ·o 𝐴))) |
4 | 3 | imbi2d 344 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝐵 ∈ ω → (𝑥 ·o 𝐵) = (𝐵 ·o 𝑥)) ↔ (𝐵 ∈ ω → (𝐴 ·o 𝐵) = (𝐵 ·o 𝐴)))) |
5 | oveq1 7157 | . . . . 5 ⊢ (𝑥 = ∅ → (𝑥 ·o 𝐵) = (∅ ·o 𝐵)) | |
6 | oveq2 7158 | . . . . 5 ⊢ (𝑥 = ∅ → (𝐵 ·o 𝑥) = (𝐵 ·o ∅)) | |
7 | 5, 6 | eqeq12d 2774 | . . . 4 ⊢ (𝑥 = ∅ → ((𝑥 ·o 𝐵) = (𝐵 ·o 𝑥) ↔ (∅ ·o 𝐵) = (𝐵 ·o ∅))) |
8 | oveq1 7157 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝑥 ·o 𝐵) = (𝑦 ·o 𝐵)) | |
9 | oveq2 7158 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝐵 ·o 𝑥) = (𝐵 ·o 𝑦)) | |
10 | 8, 9 | eqeq12d 2774 | . . . 4 ⊢ (𝑥 = 𝑦 → ((𝑥 ·o 𝐵) = (𝐵 ·o 𝑥) ↔ (𝑦 ·o 𝐵) = (𝐵 ·o 𝑦))) |
11 | oveq1 7157 | . . . . 5 ⊢ (𝑥 = suc 𝑦 → (𝑥 ·o 𝐵) = (suc 𝑦 ·o 𝐵)) | |
12 | oveq2 7158 | . . . . 5 ⊢ (𝑥 = suc 𝑦 → (𝐵 ·o 𝑥) = (𝐵 ·o suc 𝑦)) | |
13 | 11, 12 | eqeq12d 2774 | . . . 4 ⊢ (𝑥 = suc 𝑦 → ((𝑥 ·o 𝐵) = (𝐵 ·o 𝑥) ↔ (suc 𝑦 ·o 𝐵) = (𝐵 ·o suc 𝑦))) |
14 | nnm0r 8246 | . . . . 5 ⊢ (𝐵 ∈ ω → (∅ ·o 𝐵) = ∅) | |
15 | nnm0 8241 | . . . . 5 ⊢ (𝐵 ∈ ω → (𝐵 ·o ∅) = ∅) | |
16 | 14, 15 | eqtr4d 2796 | . . . 4 ⊢ (𝐵 ∈ ω → (∅ ·o 𝐵) = (𝐵 ·o ∅)) |
17 | oveq1 7157 | . . . . . 6 ⊢ ((𝑦 ·o 𝐵) = (𝐵 ·o 𝑦) → ((𝑦 ·o 𝐵) +o 𝐵) = ((𝐵 ·o 𝑦) +o 𝐵)) | |
18 | nnmsucr 8261 | . . . . . . 7 ⊢ ((𝑦 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝑦 ·o 𝐵) = ((𝑦 ·o 𝐵) +o 𝐵)) | |
19 | nnmsuc 8243 | . . . . . . . 8 ⊢ ((𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (𝐵 ·o suc 𝑦) = ((𝐵 ·o 𝑦) +o 𝐵)) | |
20 | 19 | ancoms 462 | . . . . . . 7 ⊢ ((𝑦 ∈ ω ∧ 𝐵 ∈ ω) → (𝐵 ·o suc 𝑦) = ((𝐵 ·o 𝑦) +o 𝐵)) |
21 | 18, 20 | eqeq12d 2774 | . . . . . 6 ⊢ ((𝑦 ∈ ω ∧ 𝐵 ∈ ω) → ((suc 𝑦 ·o 𝐵) = (𝐵 ·o suc 𝑦) ↔ ((𝑦 ·o 𝐵) +o 𝐵) = ((𝐵 ·o 𝑦) +o 𝐵))) |
22 | 17, 21 | syl5ibr 249 | . . . . 5 ⊢ ((𝑦 ∈ ω ∧ 𝐵 ∈ ω) → ((𝑦 ·o 𝐵) = (𝐵 ·o 𝑦) → (suc 𝑦 ·o 𝐵) = (𝐵 ·o suc 𝑦))) |
23 | 22 | ex 416 | . . . 4 ⊢ (𝑦 ∈ ω → (𝐵 ∈ ω → ((𝑦 ·o 𝐵) = (𝐵 ·o 𝑦) → (suc 𝑦 ·o 𝐵) = (𝐵 ·o suc 𝑦)))) |
24 | 7, 10, 13, 16, 23 | finds2 7610 | . . 3 ⊢ (𝑥 ∈ ω → (𝐵 ∈ ω → (𝑥 ·o 𝐵) = (𝐵 ·o 𝑥))) |
25 | 4, 24 | vtoclga 3492 | . 2 ⊢ (𝐴 ∈ ω → (𝐵 ∈ ω → (𝐴 ·o 𝐵) = (𝐵 ·o 𝐴))) |
26 | 25 | imp 410 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·o 𝐵) = (𝐵 ·o 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ∅c0 4225 suc csuc 6171 (class class class)co 7150 ωcom 7579 +o coa 8109 ·o comu 8110 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pr 5298 ax-un 7459 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-ov 7153 df-oprab 7154 df-mpo 7155 df-om 7580 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-oadd 8116 df-omul 8117 |
This theorem is referenced by: nnmwordri 8272 nn2m 8287 omopthlem1 8292 mulcompi 10356 |
Copyright terms: Public domain | W3C validator |