MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnmcom Structured version   Visualization version   GIF version

Theorem nnmcom 8550
Description: Multiplication of natural numbers is commutative. Theorem 4K(5) of [Enderton] p. 81. (Contributed by NM, 21-Sep-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
nnmcom ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·o 𝐵) = (𝐵 ·o 𝐴))

Proof of Theorem nnmcom
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7362 . . . . 5 (𝑥 = 𝐴 → (𝑥 ·o 𝐵) = (𝐴 ·o 𝐵))
2 oveq2 7363 . . . . 5 (𝑥 = 𝐴 → (𝐵 ·o 𝑥) = (𝐵 ·o 𝐴))
31, 2eqeq12d 2749 . . . 4 (𝑥 = 𝐴 → ((𝑥 ·o 𝐵) = (𝐵 ·o 𝑥) ↔ (𝐴 ·o 𝐵) = (𝐵 ·o 𝐴)))
43imbi2d 340 . . 3 (𝑥 = 𝐴 → ((𝐵 ∈ ω → (𝑥 ·o 𝐵) = (𝐵 ·o 𝑥)) ↔ (𝐵 ∈ ω → (𝐴 ·o 𝐵) = (𝐵 ·o 𝐴))))
5 oveq1 7362 . . . . 5 (𝑥 = ∅ → (𝑥 ·o 𝐵) = (∅ ·o 𝐵))
6 oveq2 7363 . . . . 5 (𝑥 = ∅ → (𝐵 ·o 𝑥) = (𝐵 ·o ∅))
75, 6eqeq12d 2749 . . . 4 (𝑥 = ∅ → ((𝑥 ·o 𝐵) = (𝐵 ·o 𝑥) ↔ (∅ ·o 𝐵) = (𝐵 ·o ∅)))
8 oveq1 7362 . . . . 5 (𝑥 = 𝑦 → (𝑥 ·o 𝐵) = (𝑦 ·o 𝐵))
9 oveq2 7363 . . . . 5 (𝑥 = 𝑦 → (𝐵 ·o 𝑥) = (𝐵 ·o 𝑦))
108, 9eqeq12d 2749 . . . 4 (𝑥 = 𝑦 → ((𝑥 ·o 𝐵) = (𝐵 ·o 𝑥) ↔ (𝑦 ·o 𝐵) = (𝐵 ·o 𝑦)))
11 oveq1 7362 . . . . 5 (𝑥 = suc 𝑦 → (𝑥 ·o 𝐵) = (suc 𝑦 ·o 𝐵))
12 oveq2 7363 . . . . 5 (𝑥 = suc 𝑦 → (𝐵 ·o 𝑥) = (𝐵 ·o suc 𝑦))
1311, 12eqeq12d 2749 . . . 4 (𝑥 = suc 𝑦 → ((𝑥 ·o 𝐵) = (𝐵 ·o 𝑥) ↔ (suc 𝑦 ·o 𝐵) = (𝐵 ·o suc 𝑦)))
14 nnm0r 8534 . . . . 5 (𝐵 ∈ ω → (∅ ·o 𝐵) = ∅)
15 nnm0 8529 . . . . 5 (𝐵 ∈ ω → (𝐵 ·o ∅) = ∅)
1614, 15eqtr4d 2771 . . . 4 (𝐵 ∈ ω → (∅ ·o 𝐵) = (𝐵 ·o ∅))
17 oveq1 7362 . . . . . 6 ((𝑦 ·o 𝐵) = (𝐵 ·o 𝑦) → ((𝑦 ·o 𝐵) +o 𝐵) = ((𝐵 ·o 𝑦) +o 𝐵))
18 nnmsucr 8549 . . . . . . 7 ((𝑦 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝑦 ·o 𝐵) = ((𝑦 ·o 𝐵) +o 𝐵))
19 nnmsuc 8531 . . . . . . . 8 ((𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (𝐵 ·o suc 𝑦) = ((𝐵 ·o 𝑦) +o 𝐵))
2019ancoms 458 . . . . . . 7 ((𝑦 ∈ ω ∧ 𝐵 ∈ ω) → (𝐵 ·o suc 𝑦) = ((𝐵 ·o 𝑦) +o 𝐵))
2118, 20eqeq12d 2749 . . . . . 6 ((𝑦 ∈ ω ∧ 𝐵 ∈ ω) → ((suc 𝑦 ·o 𝐵) = (𝐵 ·o suc 𝑦) ↔ ((𝑦 ·o 𝐵) +o 𝐵) = ((𝐵 ·o 𝑦) +o 𝐵)))
2217, 21imbitrrid 246 . . . . 5 ((𝑦 ∈ ω ∧ 𝐵 ∈ ω) → ((𝑦 ·o 𝐵) = (𝐵 ·o 𝑦) → (suc 𝑦 ·o 𝐵) = (𝐵 ·o suc 𝑦)))
2322ex 412 . . . 4 (𝑦 ∈ ω → (𝐵 ∈ ω → ((𝑦 ·o 𝐵) = (𝐵 ·o 𝑦) → (suc 𝑦 ·o 𝐵) = (𝐵 ·o suc 𝑦))))
247, 10, 13, 16, 23finds2 7837 . . 3 (𝑥 ∈ ω → (𝐵 ∈ ω → (𝑥 ·o 𝐵) = (𝐵 ·o 𝑥)))
254, 24vtoclga 3529 . 2 (𝐴 ∈ ω → (𝐵 ∈ ω → (𝐴 ·o 𝐵) = (𝐵 ·o 𝐴)))
2625imp 406 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·o 𝐵) = (𝐵 ·o 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  c0 4282  suc csuc 6316  (class class class)co 7355  ωcom 7805   +o coa 8391   ·o comu 8392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-oadd 8398  df-omul 8399
This theorem is referenced by:  nnmwordri  8560  nn2m  8578  omopthlem1  8583  mulcompi  10798
  Copyright terms: Public domain W3C validator