MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnaordr Structured version   Visualization version   GIF version

Theorem nnaordr 8039
Description: Ordering property of addition of natural numbers. (Contributed by NM, 9-Nov-2002.)
Assertion
Ref Expression
nnaordr ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴𝐵 ↔ (𝐴 +o 𝐶) ∈ (𝐵 +o 𝐶)))

Proof of Theorem nnaordr
StepHypRef Expression
1 nnaord 8038 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴𝐵 ↔ (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵)))
2 nnacom 8036 . . . . 5 ((𝐶 ∈ ω ∧ 𝐴 ∈ ω) → (𝐶 +o 𝐴) = (𝐴 +o 𝐶))
32ancoms 451 . . . 4 ((𝐴 ∈ ω ∧ 𝐶 ∈ ω) → (𝐶 +o 𝐴) = (𝐴 +o 𝐶))
433adant2 1111 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐶 +o 𝐴) = (𝐴 +o 𝐶))
5 nnacom 8036 . . . . 5 ((𝐶 ∈ ω ∧ 𝐵 ∈ ω) → (𝐶 +o 𝐵) = (𝐵 +o 𝐶))
65ancoms 451 . . . 4 ((𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐶 +o 𝐵) = (𝐵 +o 𝐶))
763adant1 1110 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐶 +o 𝐵) = (𝐵 +o 𝐶))
84, 7eleq12d 2854 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵) ↔ (𝐴 +o 𝐶) ∈ (𝐵 +o 𝐶)))
91, 8bitrd 271 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴𝐵 ↔ (𝐴 +o 𝐶) ∈ (𝐵 +o 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  w3a 1068   = wceq 1507  wcel 2048  (class class class)co 6970  ωcom 7390   +o coa 7894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2745  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2754  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-ral 3087  df-rex 3088  df-reu 3089  df-rab 3091  df-v 3411  df-sbc 3678  df-csb 3783  df-dif 3828  df-un 3830  df-in 3832  df-ss 3839  df-pss 3841  df-nul 4174  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4707  df-iun 4788  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5305  df-eprel 5310  df-po 5319  df-so 5320  df-fr 5359  df-we 5361  df-xp 5406  df-rel 5407  df-cnv 5408  df-co 5409  df-dm 5410  df-rn 5411  df-res 5412  df-ima 5413  df-pred 5980  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-ov 6973  df-oprab 6974  df-mpo 6975  df-om 7391  df-wrecs 7743  df-recs 7805  df-rdg 7843  df-oadd 7901
This theorem is referenced by:  pwsdompw  9416
  Copyright terms: Public domain W3C validator