MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnacom Structured version   Visualization version   GIF version

Theorem nnacom 8535
Description: Addition of natural numbers is commutative. Theorem 4K(2) of [Enderton] p. 81. (Contributed by NM, 6-May-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
nnacom ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 +o 𝐵) = (𝐵 +o 𝐴))

Proof of Theorem nnacom
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7356 . . . . 5 (𝑥 = 𝐴 → (𝑥 +o 𝐵) = (𝐴 +o 𝐵))
2 oveq2 7357 . . . . 5 (𝑥 = 𝐴 → (𝐵 +o 𝑥) = (𝐵 +o 𝐴))
31, 2eqeq12d 2745 . . . 4 (𝑥 = 𝐴 → ((𝑥 +o 𝐵) = (𝐵 +o 𝑥) ↔ (𝐴 +o 𝐵) = (𝐵 +o 𝐴)))
43imbi2d 340 . . 3 (𝑥 = 𝐴 → ((𝐵 ∈ ω → (𝑥 +o 𝐵) = (𝐵 +o 𝑥)) ↔ (𝐵 ∈ ω → (𝐴 +o 𝐵) = (𝐵 +o 𝐴))))
5 oveq1 7356 . . . . 5 (𝑥 = ∅ → (𝑥 +o 𝐵) = (∅ +o 𝐵))
6 oveq2 7357 . . . . 5 (𝑥 = ∅ → (𝐵 +o 𝑥) = (𝐵 +o ∅))
75, 6eqeq12d 2745 . . . 4 (𝑥 = ∅ → ((𝑥 +o 𝐵) = (𝐵 +o 𝑥) ↔ (∅ +o 𝐵) = (𝐵 +o ∅)))
8 oveq1 7356 . . . . 5 (𝑥 = 𝑦 → (𝑥 +o 𝐵) = (𝑦 +o 𝐵))
9 oveq2 7357 . . . . 5 (𝑥 = 𝑦 → (𝐵 +o 𝑥) = (𝐵 +o 𝑦))
108, 9eqeq12d 2745 . . . 4 (𝑥 = 𝑦 → ((𝑥 +o 𝐵) = (𝐵 +o 𝑥) ↔ (𝑦 +o 𝐵) = (𝐵 +o 𝑦)))
11 oveq1 7356 . . . . 5 (𝑥 = suc 𝑦 → (𝑥 +o 𝐵) = (suc 𝑦 +o 𝐵))
12 oveq2 7357 . . . . 5 (𝑥 = suc 𝑦 → (𝐵 +o 𝑥) = (𝐵 +o suc 𝑦))
1311, 12eqeq12d 2745 . . . 4 (𝑥 = suc 𝑦 → ((𝑥 +o 𝐵) = (𝐵 +o 𝑥) ↔ (suc 𝑦 +o 𝐵) = (𝐵 +o suc 𝑦)))
14 nna0r 8527 . . . . 5 (𝐵 ∈ ω → (∅ +o 𝐵) = 𝐵)
15 nna0 8522 . . . . 5 (𝐵 ∈ ω → (𝐵 +o ∅) = 𝐵)
1614, 15eqtr4d 2767 . . . 4 (𝐵 ∈ ω → (∅ +o 𝐵) = (𝐵 +o ∅))
17 suceq 6375 . . . . . 6 ((𝑦 +o 𝐵) = (𝐵 +o 𝑦) → suc (𝑦 +o 𝐵) = suc (𝐵 +o 𝑦))
18 oveq2 7357 . . . . . . . . . . 11 (𝑥 = 𝐵 → (suc 𝑦 +o 𝑥) = (suc 𝑦 +o 𝐵))
19 oveq2 7357 . . . . . . . . . . . 12 (𝑥 = 𝐵 → (𝑦 +o 𝑥) = (𝑦 +o 𝐵))
20 suceq 6375 . . . . . . . . . . . 12 ((𝑦 +o 𝑥) = (𝑦 +o 𝐵) → suc (𝑦 +o 𝑥) = suc (𝑦 +o 𝐵))
2119, 20syl 17 . . . . . . . . . . 11 (𝑥 = 𝐵 → suc (𝑦 +o 𝑥) = suc (𝑦 +o 𝐵))
2218, 21eqeq12d 2745 . . . . . . . . . 10 (𝑥 = 𝐵 → ((suc 𝑦 +o 𝑥) = suc (𝑦 +o 𝑥) ↔ (suc 𝑦 +o 𝐵) = suc (𝑦 +o 𝐵)))
2322imbi2d 340 . . . . . . . . 9 (𝑥 = 𝐵 → ((𝑦 ∈ ω → (suc 𝑦 +o 𝑥) = suc (𝑦 +o 𝑥)) ↔ (𝑦 ∈ ω → (suc 𝑦 +o 𝐵) = suc (𝑦 +o 𝐵))))
24 oveq2 7357 . . . . . . . . . . 11 (𝑥 = ∅ → (suc 𝑦 +o 𝑥) = (suc 𝑦 +o ∅))
25 oveq2 7357 . . . . . . . . . . . 12 (𝑥 = ∅ → (𝑦 +o 𝑥) = (𝑦 +o ∅))
26 suceq 6375 . . . . . . . . . . . 12 ((𝑦 +o 𝑥) = (𝑦 +o ∅) → suc (𝑦 +o 𝑥) = suc (𝑦 +o ∅))
2725, 26syl 17 . . . . . . . . . . 11 (𝑥 = ∅ → suc (𝑦 +o 𝑥) = suc (𝑦 +o ∅))
2824, 27eqeq12d 2745 . . . . . . . . . 10 (𝑥 = ∅ → ((suc 𝑦 +o 𝑥) = suc (𝑦 +o 𝑥) ↔ (suc 𝑦 +o ∅) = suc (𝑦 +o ∅)))
29 oveq2 7357 . . . . . . . . . . 11 (𝑥 = 𝑧 → (suc 𝑦 +o 𝑥) = (suc 𝑦 +o 𝑧))
30 oveq2 7357 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (𝑦 +o 𝑥) = (𝑦 +o 𝑧))
31 suceq 6375 . . . . . . . . . . . 12 ((𝑦 +o 𝑥) = (𝑦 +o 𝑧) → suc (𝑦 +o 𝑥) = suc (𝑦 +o 𝑧))
3230, 31syl 17 . . . . . . . . . . 11 (𝑥 = 𝑧 → suc (𝑦 +o 𝑥) = suc (𝑦 +o 𝑧))
3329, 32eqeq12d 2745 . . . . . . . . . 10 (𝑥 = 𝑧 → ((suc 𝑦 +o 𝑥) = suc (𝑦 +o 𝑥) ↔ (suc 𝑦 +o 𝑧) = suc (𝑦 +o 𝑧)))
34 oveq2 7357 . . . . . . . . . . 11 (𝑥 = suc 𝑧 → (suc 𝑦 +o 𝑥) = (suc 𝑦 +o suc 𝑧))
35 oveq2 7357 . . . . . . . . . . . 12 (𝑥 = suc 𝑧 → (𝑦 +o 𝑥) = (𝑦 +o suc 𝑧))
36 suceq 6375 . . . . . . . . . . . 12 ((𝑦 +o 𝑥) = (𝑦 +o suc 𝑧) → suc (𝑦 +o 𝑥) = suc (𝑦 +o suc 𝑧))
3735, 36syl 17 . . . . . . . . . . 11 (𝑥 = suc 𝑧 → suc (𝑦 +o 𝑥) = suc (𝑦 +o suc 𝑧))
3834, 37eqeq12d 2745 . . . . . . . . . 10 (𝑥 = suc 𝑧 → ((suc 𝑦 +o 𝑥) = suc (𝑦 +o 𝑥) ↔ (suc 𝑦 +o suc 𝑧) = suc (𝑦 +o suc 𝑧)))
39 peano2 7823 . . . . . . . . . . . 12 (𝑦 ∈ ω → suc 𝑦 ∈ ω)
40 nna0 8522 . . . . . . . . . . . 12 (suc 𝑦 ∈ ω → (suc 𝑦 +o ∅) = suc 𝑦)
4139, 40syl 17 . . . . . . . . . . 11 (𝑦 ∈ ω → (suc 𝑦 +o ∅) = suc 𝑦)
42 nna0 8522 . . . . . . . . . . . 12 (𝑦 ∈ ω → (𝑦 +o ∅) = 𝑦)
43 suceq 6375 . . . . . . . . . . . 12 ((𝑦 +o ∅) = 𝑦 → suc (𝑦 +o ∅) = suc 𝑦)
4442, 43syl 17 . . . . . . . . . . 11 (𝑦 ∈ ω → suc (𝑦 +o ∅) = suc 𝑦)
4541, 44eqtr4d 2767 . . . . . . . . . 10 (𝑦 ∈ ω → (suc 𝑦 +o ∅) = suc (𝑦 +o ∅))
46 suceq 6375 . . . . . . . . . . . 12 ((suc 𝑦 +o 𝑧) = suc (𝑦 +o 𝑧) → suc (suc 𝑦 +o 𝑧) = suc suc (𝑦 +o 𝑧))
47 nnasuc 8524 . . . . . . . . . . . . . 14 ((suc 𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (suc 𝑦 +o suc 𝑧) = suc (suc 𝑦 +o 𝑧))
4839, 47sylan 580 . . . . . . . . . . . . 13 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (suc 𝑦 +o suc 𝑧) = suc (suc 𝑦 +o 𝑧))
49 nnasuc 8524 . . . . . . . . . . . . . 14 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (𝑦 +o suc 𝑧) = suc (𝑦 +o 𝑧))
50 suceq 6375 . . . . . . . . . . . . . 14 ((𝑦 +o suc 𝑧) = suc (𝑦 +o 𝑧) → suc (𝑦 +o suc 𝑧) = suc suc (𝑦 +o 𝑧))
5149, 50syl 17 . . . . . . . . . . . . 13 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → suc (𝑦 +o suc 𝑧) = suc suc (𝑦 +o 𝑧))
5248, 51eqeq12d 2745 . . . . . . . . . . . 12 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → ((suc 𝑦 +o suc 𝑧) = suc (𝑦 +o suc 𝑧) ↔ suc (suc 𝑦 +o 𝑧) = suc suc (𝑦 +o 𝑧)))
5346, 52imbitrrid 246 . . . . . . . . . . 11 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → ((suc 𝑦 +o 𝑧) = suc (𝑦 +o 𝑧) → (suc 𝑦 +o suc 𝑧) = suc (𝑦 +o suc 𝑧)))
5453expcom 413 . . . . . . . . . 10 (𝑧 ∈ ω → (𝑦 ∈ ω → ((suc 𝑦 +o 𝑧) = suc (𝑦 +o 𝑧) → (suc 𝑦 +o suc 𝑧) = suc (𝑦 +o suc 𝑧))))
5528, 33, 38, 45, 54finds2 7831 . . . . . . . . 9 (𝑥 ∈ ω → (𝑦 ∈ ω → (suc 𝑦 +o 𝑥) = suc (𝑦 +o 𝑥)))
5623, 55vtoclga 3532 . . . . . . . 8 (𝐵 ∈ ω → (𝑦 ∈ ω → (suc 𝑦 +o 𝐵) = suc (𝑦 +o 𝐵)))
5756imp 406 . . . . . . 7 ((𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (suc 𝑦 +o 𝐵) = suc (𝑦 +o 𝐵))
58 nnasuc 8524 . . . . . . 7 ((𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (𝐵 +o suc 𝑦) = suc (𝐵 +o 𝑦))
5957, 58eqeq12d 2745 . . . . . 6 ((𝐵 ∈ ω ∧ 𝑦 ∈ ω) → ((suc 𝑦 +o 𝐵) = (𝐵 +o suc 𝑦) ↔ suc (𝑦 +o 𝐵) = suc (𝐵 +o 𝑦)))
6017, 59imbitrrid 246 . . . . 5 ((𝐵 ∈ ω ∧ 𝑦 ∈ ω) → ((𝑦 +o 𝐵) = (𝐵 +o 𝑦) → (suc 𝑦 +o 𝐵) = (𝐵 +o suc 𝑦)))
6160expcom 413 . . . 4 (𝑦 ∈ ω → (𝐵 ∈ ω → ((𝑦 +o 𝐵) = (𝐵 +o 𝑦) → (suc 𝑦 +o 𝐵) = (𝐵 +o suc 𝑦))))
627, 10, 13, 16, 61finds2 7831 . . 3 (𝑥 ∈ ω → (𝐵 ∈ ω → (𝑥 +o 𝐵) = (𝐵 +o 𝑥)))
634, 62vtoclga 3532 . 2 (𝐴 ∈ ω → (𝐵 ∈ ω → (𝐴 +o 𝐵) = (𝐵 +o 𝐴)))
6463imp 406 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 +o 𝐵) = (𝐵 +o 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  c0 4284  suc csuc 6309  (class class class)co 7349  ωcom 7799   +o coa 8385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-oadd 8392
This theorem is referenced by:  nnaordr  8538  nnmsucr  8543  nnaword2  8548  omopthlem2  8578  omopthi  8579  eldifsucnn  8582  addcompi  10788  fineqvnttrclselem3  35082  finxpreclem4  37378  oaabsb  43277  ofoacom  43344  naddcnfcom  43349
  Copyright terms: Public domain W3C validator