![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > noseqinds | Structured version Visualization version GIF version |
Description: Induction schema for surreal sequences. (Contributed by Scott Fenton, 18-Apr-2025.) |
Ref | Expression |
---|---|
noseq.1 | ⊢ (𝜑 → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) “ ω)) |
noseq.2 | ⊢ (𝜑 → 𝐴 ∈ No ) |
noseqinds.3 | ⊢ (𝑦 = 𝐴 → (𝜓 ↔ 𝜒)) |
noseqinds.4 | ⊢ (𝑦 = 𝑧 → (𝜓 ↔ 𝜃)) |
noseqinds.5 | ⊢ (𝑦 = (𝑧 +s 1s ) → (𝜓 ↔ 𝜏)) |
noseqinds.6 | ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜂)) |
noseqinds.7 | ⊢ (𝜑 → 𝜒) |
noseqinds.8 | ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑍) → (𝜃 → 𝜏)) |
Ref | Expression |
---|---|
noseqinds | ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑍) → 𝜂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noseq.1 | . . . . 5 ⊢ (𝜑 → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) “ ω)) | |
2 | noseq.2 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ No ) | |
3 | noseqinds.3 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (𝜓 ↔ 𝜒)) | |
4 | 1, 2 | noseq0 28213 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑍) |
5 | noseqinds.7 | . . . . . 6 ⊢ (𝜑 → 𝜒) | |
6 | 3, 4, 5 | elrabd 3681 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ {𝑦 ∈ 𝑍 ∣ 𝜓}) |
7 | noseqinds.8 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑍) → (𝜃 → 𝜏)) | |
8 | 1 | adantr 479 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑍) → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) “ ω)) |
9 | 2 | adantr 479 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑍) → 𝐴 ∈ No ) |
10 | simpr 483 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑍) → 𝑧 ∈ 𝑍) | |
11 | 8, 9, 10 | noseqp1 28214 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑍) → (𝑧 +s 1s ) ∈ 𝑍) |
12 | 7, 11 | jctild 524 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑍) → (𝜃 → ((𝑧 +s 1s ) ∈ 𝑍 ∧ 𝜏))) |
13 | 12 | expimpd 452 | . . . . . . 7 ⊢ (𝜑 → ((𝑧 ∈ 𝑍 ∧ 𝜃) → ((𝑧 +s 1s ) ∈ 𝑍 ∧ 𝜏))) |
14 | noseqinds.4 | . . . . . . . 8 ⊢ (𝑦 = 𝑧 → (𝜓 ↔ 𝜃)) | |
15 | 14 | elrab 3679 | . . . . . . 7 ⊢ (𝑧 ∈ {𝑦 ∈ 𝑍 ∣ 𝜓} ↔ (𝑧 ∈ 𝑍 ∧ 𝜃)) |
16 | noseqinds.5 | . . . . . . . 8 ⊢ (𝑦 = (𝑧 +s 1s ) → (𝜓 ↔ 𝜏)) | |
17 | 16 | elrab 3679 | . . . . . . 7 ⊢ ((𝑧 +s 1s ) ∈ {𝑦 ∈ 𝑍 ∣ 𝜓} ↔ ((𝑧 +s 1s ) ∈ 𝑍 ∧ 𝜏)) |
18 | 13, 15, 17 | 3imtr4g 295 | . . . . . 6 ⊢ (𝜑 → (𝑧 ∈ {𝑦 ∈ 𝑍 ∣ 𝜓} → (𝑧 +s 1s ) ∈ {𝑦 ∈ 𝑍 ∣ 𝜓})) |
19 | 18 | imp 405 | . . . . 5 ⊢ ((𝜑 ∧ 𝑧 ∈ {𝑦 ∈ 𝑍 ∣ 𝜓}) → (𝑧 +s 1s ) ∈ {𝑦 ∈ 𝑍 ∣ 𝜓}) |
20 | 1, 2, 6, 19 | noseqind 28215 | . . . 4 ⊢ (𝜑 → 𝑍 ⊆ {𝑦 ∈ 𝑍 ∣ 𝜓}) |
21 | 20 | sselda 3976 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑍) → 𝐵 ∈ {𝑦 ∈ 𝑍 ∣ 𝜓}) |
22 | noseqinds.6 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜂)) | |
23 | 22 | elrab 3679 | . . 3 ⊢ (𝐵 ∈ {𝑦 ∈ 𝑍 ∣ 𝜓} ↔ (𝐵 ∈ 𝑍 ∧ 𝜂)) |
24 | 21, 23 | sylib 217 | . 2 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑍) → (𝐵 ∈ 𝑍 ∧ 𝜂)) |
25 | 24 | simprd 494 | 1 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑍) → 𝜂) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 {crab 3418 Vcvv 3461 ↦ cmpt 5232 “ cima 5681 (class class class)co 7419 ωcom 7871 reccrdg 8430 No csur 27618 1s c1s 27802 +s cadds 27922 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 ax-un 7741 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-ov 7422 df-om 7872 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 |
This theorem is referenced by: n0sind 28254 |
Copyright terms: Public domain | W3C validator |