MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noseqinds Structured version   Visualization version   GIF version

Theorem noseqinds 28243
Description: Induction schema for surreal sequences. (Contributed by Scott Fenton, 18-Apr-2025.)
Hypotheses
Ref Expression
noseq.1 (𝜑𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) “ ω))
noseq.2 (𝜑𝐴 No )
noseqinds.3 (𝑦 = 𝐴 → (𝜓𝜒))
noseqinds.4 (𝑦 = 𝑧 → (𝜓𝜃))
noseqinds.5 (𝑦 = (𝑧 +s 1s ) → (𝜓𝜏))
noseqinds.6 (𝑦 = 𝐵 → (𝜓𝜂))
noseqinds.7 (𝜑𝜒)
noseqinds.8 ((𝜑𝑧𝑍) → (𝜃𝜏))
Assertion
Ref Expression
noseqinds ((𝜑𝐵𝑍) → 𝜂)
Distinct variable groups:   𝑦,𝑧,𝐴   𝑦,𝐵   𝜒,𝑦   𝜂,𝑦   𝜑,𝑧   𝜓,𝑧   𝜏,𝑦   𝜃,𝑦   𝑦,𝑍,𝑧   𝑥,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝜒(𝑥,𝑧)   𝜃(𝑥,𝑧)   𝜏(𝑥,𝑧)   𝜂(𝑥,𝑧)   𝐴(𝑥)   𝐵(𝑥,𝑧)   𝑍(𝑥)

Proof of Theorem noseqinds
StepHypRef Expression
1 noseq.1 . . . . 5 (𝜑𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) “ ω))
2 noseq.2 . . . . 5 (𝜑𝐴 No )
3 noseqinds.3 . . . . . 6 (𝑦 = 𝐴 → (𝜓𝜒))
41, 2noseq0 28240 . . . . . 6 (𝜑𝐴𝑍)
5 noseqinds.7 . . . . . 6 (𝜑𝜒)
63, 4, 5elrabd 3645 . . . . 5 (𝜑𝐴 ∈ {𝑦𝑍𝜓})
7 noseqinds.8 . . . . . . . . 9 ((𝜑𝑧𝑍) → (𝜃𝜏))
81adantr 480 . . . . . . . . . 10 ((𝜑𝑧𝑍) → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) “ ω))
92adantr 480 . . . . . . . . . 10 ((𝜑𝑧𝑍) → 𝐴 No )
10 simpr 484 . . . . . . . . . 10 ((𝜑𝑧𝑍) → 𝑧𝑍)
118, 9, 10noseqp1 28241 . . . . . . . . 9 ((𝜑𝑧𝑍) → (𝑧 +s 1s ) ∈ 𝑍)
127, 11jctild 525 . . . . . . . 8 ((𝜑𝑧𝑍) → (𝜃 → ((𝑧 +s 1s ) ∈ 𝑍𝜏)))
1312expimpd 453 . . . . . . 7 (𝜑 → ((𝑧𝑍𝜃) → ((𝑧 +s 1s ) ∈ 𝑍𝜏)))
14 noseqinds.4 . . . . . . . 8 (𝑦 = 𝑧 → (𝜓𝜃))
1514elrab 3643 . . . . . . 7 (𝑧 ∈ {𝑦𝑍𝜓} ↔ (𝑧𝑍𝜃))
16 noseqinds.5 . . . . . . . 8 (𝑦 = (𝑧 +s 1s ) → (𝜓𝜏))
1716elrab 3643 . . . . . . 7 ((𝑧 +s 1s ) ∈ {𝑦𝑍𝜓} ↔ ((𝑧 +s 1s ) ∈ 𝑍𝜏))
1813, 15, 173imtr4g 296 . . . . . 6 (𝜑 → (𝑧 ∈ {𝑦𝑍𝜓} → (𝑧 +s 1s ) ∈ {𝑦𝑍𝜓}))
1918imp 406 . . . . 5 ((𝜑𝑧 ∈ {𝑦𝑍𝜓}) → (𝑧 +s 1s ) ∈ {𝑦𝑍𝜓})
201, 2, 6, 19noseqind 28242 . . . 4 (𝜑𝑍 ⊆ {𝑦𝑍𝜓})
2120sselda 3930 . . 3 ((𝜑𝐵𝑍) → 𝐵 ∈ {𝑦𝑍𝜓})
22 noseqinds.6 . . . 4 (𝑦 = 𝐵 → (𝜓𝜂))
2322elrab 3643 . . 3 (𝐵 ∈ {𝑦𝑍𝜓} ↔ (𝐵𝑍𝜂))
2421, 23sylib 218 . 2 ((𝜑𝐵𝑍) → (𝐵𝑍𝜂))
2524simprd 495 1 ((𝜑𝐵𝑍) → 𝜂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  {crab 3396  Vcvv 3437  cmpt 5176  cima 5624  (class class class)co 7355  ωcom 7805  reccrdg 8337   No csur 27598   1s c1s 27787   +s cadds 27922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-om 7806  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338
This theorem is referenced by:  n0sind  28281  nnsind  28318
  Copyright terms: Public domain W3C validator