MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noseqinds Structured version   Visualization version   GIF version

Theorem noseqinds 28216
Description: Induction schema for surreal sequences. (Contributed by Scott Fenton, 18-Apr-2025.)
Hypotheses
Ref Expression
noseq.1 (𝜑𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) “ ω))
noseq.2 (𝜑𝐴 No )
noseqinds.3 (𝑦 = 𝐴 → (𝜓𝜒))
noseqinds.4 (𝑦 = 𝑧 → (𝜓𝜃))
noseqinds.5 (𝑦 = (𝑧 +s 1s ) → (𝜓𝜏))
noseqinds.6 (𝑦 = 𝐵 → (𝜓𝜂))
noseqinds.7 (𝜑𝜒)
noseqinds.8 ((𝜑𝑧𝑍) → (𝜃𝜏))
Assertion
Ref Expression
noseqinds ((𝜑𝐵𝑍) → 𝜂)
Distinct variable groups:   𝑦,𝑧,𝐴   𝑦,𝐵   𝜒,𝑦   𝜂,𝑦   𝜑,𝑧   𝜓,𝑧   𝜏,𝑦   𝜃,𝑦   𝑦,𝑍,𝑧   𝑥,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝜒(𝑥,𝑧)   𝜃(𝑥,𝑧)   𝜏(𝑥,𝑧)   𝜂(𝑥,𝑧)   𝐴(𝑥)   𝐵(𝑥,𝑧)   𝑍(𝑥)

Proof of Theorem noseqinds
StepHypRef Expression
1 noseq.1 . . . . 5 (𝜑𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) “ ω))
2 noseq.2 . . . . 5 (𝜑𝐴 No )
3 noseqinds.3 . . . . . 6 (𝑦 = 𝐴 → (𝜓𝜒))
41, 2noseq0 28213 . . . . . 6 (𝜑𝐴𝑍)
5 noseqinds.7 . . . . . 6 (𝜑𝜒)
63, 4, 5elrabd 3681 . . . . 5 (𝜑𝐴 ∈ {𝑦𝑍𝜓})
7 noseqinds.8 . . . . . . . . 9 ((𝜑𝑧𝑍) → (𝜃𝜏))
81adantr 479 . . . . . . . . . 10 ((𝜑𝑧𝑍) → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) “ ω))
92adantr 479 . . . . . . . . . 10 ((𝜑𝑧𝑍) → 𝐴 No )
10 simpr 483 . . . . . . . . . 10 ((𝜑𝑧𝑍) → 𝑧𝑍)
118, 9, 10noseqp1 28214 . . . . . . . . 9 ((𝜑𝑧𝑍) → (𝑧 +s 1s ) ∈ 𝑍)
127, 11jctild 524 . . . . . . . 8 ((𝜑𝑧𝑍) → (𝜃 → ((𝑧 +s 1s ) ∈ 𝑍𝜏)))
1312expimpd 452 . . . . . . 7 (𝜑 → ((𝑧𝑍𝜃) → ((𝑧 +s 1s ) ∈ 𝑍𝜏)))
14 noseqinds.4 . . . . . . . 8 (𝑦 = 𝑧 → (𝜓𝜃))
1514elrab 3679 . . . . . . 7 (𝑧 ∈ {𝑦𝑍𝜓} ↔ (𝑧𝑍𝜃))
16 noseqinds.5 . . . . . . . 8 (𝑦 = (𝑧 +s 1s ) → (𝜓𝜏))
1716elrab 3679 . . . . . . 7 ((𝑧 +s 1s ) ∈ {𝑦𝑍𝜓} ↔ ((𝑧 +s 1s ) ∈ 𝑍𝜏))
1813, 15, 173imtr4g 295 . . . . . 6 (𝜑 → (𝑧 ∈ {𝑦𝑍𝜓} → (𝑧 +s 1s ) ∈ {𝑦𝑍𝜓}))
1918imp 405 . . . . 5 ((𝜑𝑧 ∈ {𝑦𝑍𝜓}) → (𝑧 +s 1s ) ∈ {𝑦𝑍𝜓})
201, 2, 6, 19noseqind 28215 . . . 4 (𝜑𝑍 ⊆ {𝑦𝑍𝜓})
2120sselda 3976 . . 3 ((𝜑𝐵𝑍) → 𝐵 ∈ {𝑦𝑍𝜓})
22 noseqinds.6 . . . 4 (𝑦 = 𝐵 → (𝜓𝜂))
2322elrab 3679 . . 3 (𝐵 ∈ {𝑦𝑍𝜓} ↔ (𝐵𝑍𝜂))
2421, 23sylib 217 . 2 ((𝜑𝐵𝑍) → (𝐵𝑍𝜂))
2524simprd 494 1 ((𝜑𝐵𝑍) → 𝜂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  {crab 3418  Vcvv 3461  cmpt 5232  cima 5681  (class class class)co 7419  ωcom 7871  reccrdg 8430   No csur 27618   1s c1s 27802   +s cadds 27922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-ov 7422  df-om 7872  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431
This theorem is referenced by:  n0sind  28254
  Copyright terms: Public domain W3C validator