![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > noseqinds | Structured version Visualization version GIF version |
Description: Induction schema for surreal sequences. (Contributed by Scott Fenton, 18-Apr-2025.) |
Ref | Expression |
---|---|
noseq.1 | ⊢ (𝜑 → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) “ ω)) |
noseq.2 | ⊢ (𝜑 → 𝐴 ∈ No ) |
noseqinds.3 | ⊢ (𝑦 = 𝐴 → (𝜓 ↔ 𝜒)) |
noseqinds.4 | ⊢ (𝑦 = 𝑧 → (𝜓 ↔ 𝜃)) |
noseqinds.5 | ⊢ (𝑦 = (𝑧 +s 1s ) → (𝜓 ↔ 𝜏)) |
noseqinds.6 | ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜂)) |
noseqinds.7 | ⊢ (𝜑 → 𝜒) |
noseqinds.8 | ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑍) → (𝜃 → 𝜏)) |
Ref | Expression |
---|---|
noseqinds | ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑍) → 𝜂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noseq.1 | . . . . 5 ⊢ (𝜑 → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) “ ω)) | |
2 | noseq.2 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ No ) | |
3 | noseqinds.3 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (𝜓 ↔ 𝜒)) | |
4 | 1, 2 | noseq0 28314 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑍) |
5 | noseqinds.7 | . . . . . 6 ⊢ (𝜑 → 𝜒) | |
6 | 3, 4, 5 | elrabd 3710 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ {𝑦 ∈ 𝑍 ∣ 𝜓}) |
7 | noseqinds.8 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑍) → (𝜃 → 𝜏)) | |
8 | 1 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑍) → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) “ ω)) |
9 | 2 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑍) → 𝐴 ∈ No ) |
10 | simpr 484 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑍) → 𝑧 ∈ 𝑍) | |
11 | 8, 9, 10 | noseqp1 28315 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑍) → (𝑧 +s 1s ) ∈ 𝑍) |
12 | 7, 11 | jctild 525 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑍) → (𝜃 → ((𝑧 +s 1s ) ∈ 𝑍 ∧ 𝜏))) |
13 | 12 | expimpd 453 | . . . . . . 7 ⊢ (𝜑 → ((𝑧 ∈ 𝑍 ∧ 𝜃) → ((𝑧 +s 1s ) ∈ 𝑍 ∧ 𝜏))) |
14 | noseqinds.4 | . . . . . . . 8 ⊢ (𝑦 = 𝑧 → (𝜓 ↔ 𝜃)) | |
15 | 14 | elrab 3708 | . . . . . . 7 ⊢ (𝑧 ∈ {𝑦 ∈ 𝑍 ∣ 𝜓} ↔ (𝑧 ∈ 𝑍 ∧ 𝜃)) |
16 | noseqinds.5 | . . . . . . . 8 ⊢ (𝑦 = (𝑧 +s 1s ) → (𝜓 ↔ 𝜏)) | |
17 | 16 | elrab 3708 | . . . . . . 7 ⊢ ((𝑧 +s 1s ) ∈ {𝑦 ∈ 𝑍 ∣ 𝜓} ↔ ((𝑧 +s 1s ) ∈ 𝑍 ∧ 𝜏)) |
18 | 13, 15, 17 | 3imtr4g 296 | . . . . . 6 ⊢ (𝜑 → (𝑧 ∈ {𝑦 ∈ 𝑍 ∣ 𝜓} → (𝑧 +s 1s ) ∈ {𝑦 ∈ 𝑍 ∣ 𝜓})) |
19 | 18 | imp 406 | . . . . 5 ⊢ ((𝜑 ∧ 𝑧 ∈ {𝑦 ∈ 𝑍 ∣ 𝜓}) → (𝑧 +s 1s ) ∈ {𝑦 ∈ 𝑍 ∣ 𝜓}) |
20 | 1, 2, 6, 19 | noseqind 28316 | . . . 4 ⊢ (𝜑 → 𝑍 ⊆ {𝑦 ∈ 𝑍 ∣ 𝜓}) |
21 | 20 | sselda 4008 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑍) → 𝐵 ∈ {𝑦 ∈ 𝑍 ∣ 𝜓}) |
22 | noseqinds.6 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜂)) | |
23 | 22 | elrab 3708 | . . 3 ⊢ (𝐵 ∈ {𝑦 ∈ 𝑍 ∣ 𝜓} ↔ (𝐵 ∈ 𝑍 ∧ 𝜂)) |
24 | 21, 23 | sylib 218 | . 2 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑍) → (𝐵 ∈ 𝑍 ∧ 𝜂)) |
25 | 24 | simprd 495 | 1 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑍) → 𝜂) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {crab 3443 Vcvv 3488 ↦ cmpt 5249 “ cima 5703 (class class class)co 7448 ωcom 7903 reccrdg 8465 No csur 27702 1s c1s 27886 +s cadds 28010 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 |
This theorem is referenced by: n0sind 28355 nnsind 28381 |
Copyright terms: Public domain | W3C validator |