| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > noseqinds | Structured version Visualization version GIF version | ||
| Description: Induction schema for surreal sequences. (Contributed by Scott Fenton, 18-Apr-2025.) |
| Ref | Expression |
|---|---|
| noseq.1 | ⊢ (𝜑 → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) “ ω)) |
| noseq.2 | ⊢ (𝜑 → 𝐴 ∈ No ) |
| noseqinds.3 | ⊢ (𝑦 = 𝐴 → (𝜓 ↔ 𝜒)) |
| noseqinds.4 | ⊢ (𝑦 = 𝑧 → (𝜓 ↔ 𝜃)) |
| noseqinds.5 | ⊢ (𝑦 = (𝑧 +s 1s ) → (𝜓 ↔ 𝜏)) |
| noseqinds.6 | ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜂)) |
| noseqinds.7 | ⊢ (𝜑 → 𝜒) |
| noseqinds.8 | ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑍) → (𝜃 → 𝜏)) |
| Ref | Expression |
|---|---|
| noseqinds | ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑍) → 𝜂) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noseq.1 | . . . . 5 ⊢ (𝜑 → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) “ ω)) | |
| 2 | noseq.2 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ No ) | |
| 3 | noseqinds.3 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (𝜓 ↔ 𝜒)) | |
| 4 | 1, 2 | noseq0 28215 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑍) |
| 5 | noseqinds.7 | . . . . . 6 ⊢ (𝜑 → 𝜒) | |
| 6 | 3, 4, 5 | elrabd 3644 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ {𝑦 ∈ 𝑍 ∣ 𝜓}) |
| 7 | noseqinds.8 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑍) → (𝜃 → 𝜏)) | |
| 8 | 1 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑍) → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) “ ω)) |
| 9 | 2 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑍) → 𝐴 ∈ No ) |
| 10 | simpr 484 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑍) → 𝑧 ∈ 𝑍) | |
| 11 | 8, 9, 10 | noseqp1 28216 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑍) → (𝑧 +s 1s ) ∈ 𝑍) |
| 12 | 7, 11 | jctild 525 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑍) → (𝜃 → ((𝑧 +s 1s ) ∈ 𝑍 ∧ 𝜏))) |
| 13 | 12 | expimpd 453 | . . . . . . 7 ⊢ (𝜑 → ((𝑧 ∈ 𝑍 ∧ 𝜃) → ((𝑧 +s 1s ) ∈ 𝑍 ∧ 𝜏))) |
| 14 | noseqinds.4 | . . . . . . . 8 ⊢ (𝑦 = 𝑧 → (𝜓 ↔ 𝜃)) | |
| 15 | 14 | elrab 3642 | . . . . . . 7 ⊢ (𝑧 ∈ {𝑦 ∈ 𝑍 ∣ 𝜓} ↔ (𝑧 ∈ 𝑍 ∧ 𝜃)) |
| 16 | noseqinds.5 | . . . . . . . 8 ⊢ (𝑦 = (𝑧 +s 1s ) → (𝜓 ↔ 𝜏)) | |
| 17 | 16 | elrab 3642 | . . . . . . 7 ⊢ ((𝑧 +s 1s ) ∈ {𝑦 ∈ 𝑍 ∣ 𝜓} ↔ ((𝑧 +s 1s ) ∈ 𝑍 ∧ 𝜏)) |
| 18 | 13, 15, 17 | 3imtr4g 296 | . . . . . 6 ⊢ (𝜑 → (𝑧 ∈ {𝑦 ∈ 𝑍 ∣ 𝜓} → (𝑧 +s 1s ) ∈ {𝑦 ∈ 𝑍 ∣ 𝜓})) |
| 19 | 18 | imp 406 | . . . . 5 ⊢ ((𝜑 ∧ 𝑧 ∈ {𝑦 ∈ 𝑍 ∣ 𝜓}) → (𝑧 +s 1s ) ∈ {𝑦 ∈ 𝑍 ∣ 𝜓}) |
| 20 | 1, 2, 6, 19 | noseqind 28217 | . . . 4 ⊢ (𝜑 → 𝑍 ⊆ {𝑦 ∈ 𝑍 ∣ 𝜓}) |
| 21 | 20 | sselda 3929 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑍) → 𝐵 ∈ {𝑦 ∈ 𝑍 ∣ 𝜓}) |
| 22 | noseqinds.6 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜂)) | |
| 23 | 22 | elrab 3642 | . . 3 ⊢ (𝐵 ∈ {𝑦 ∈ 𝑍 ∣ 𝜓} ↔ (𝐵 ∈ 𝑍 ∧ 𝜂)) |
| 24 | 21, 23 | sylib 218 | . 2 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑍) → (𝐵 ∈ 𝑍 ∧ 𝜂)) |
| 25 | 24 | simprd 495 | 1 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑍) → 𝜂) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {crab 3395 Vcvv 3436 ↦ cmpt 5167 “ cima 5614 (class class class)co 7341 ωcom 7791 reccrdg 8323 No csur 27573 1s c1s 27762 +s cadds 27897 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 |
| This theorem is referenced by: n0sind 28256 nnsind 28293 |
| Copyright terms: Public domain | W3C validator |