MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noseqinds Structured version   Visualization version   GIF version

Theorem noseqinds 28300
Description: Induction schema for surreal sequences. (Contributed by Scott Fenton, 18-Apr-2025.)
Hypotheses
Ref Expression
noseq.1 (𝜑𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) “ ω))
noseq.2 (𝜑𝐴 No )
noseqinds.3 (𝑦 = 𝐴 → (𝜓𝜒))
noseqinds.4 (𝑦 = 𝑧 → (𝜓𝜃))
noseqinds.5 (𝑦 = (𝑧 +s 1s ) → (𝜓𝜏))
noseqinds.6 (𝑦 = 𝐵 → (𝜓𝜂))
noseqinds.7 (𝜑𝜒)
noseqinds.8 ((𝜑𝑧𝑍) → (𝜃𝜏))
Assertion
Ref Expression
noseqinds ((𝜑𝐵𝑍) → 𝜂)
Distinct variable groups:   𝑦,𝑧,𝐴   𝑦,𝐵   𝜒,𝑦   𝜂,𝑦   𝜑,𝑧   𝜓,𝑧   𝜏,𝑦   𝜃,𝑦   𝑦,𝑍,𝑧   𝑥,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝜒(𝑥,𝑧)   𝜃(𝑥,𝑧)   𝜏(𝑥,𝑧)   𝜂(𝑥,𝑧)   𝐴(𝑥)   𝐵(𝑥,𝑧)   𝑍(𝑥)

Proof of Theorem noseqinds
StepHypRef Expression
1 noseq.1 . . . . 5 (𝜑𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) “ ω))
2 noseq.2 . . . . 5 (𝜑𝐴 No )
3 noseqinds.3 . . . . . 6 (𝑦 = 𝐴 → (𝜓𝜒))
41, 2noseq0 28297 . . . . . 6 (𝜑𝐴𝑍)
5 noseqinds.7 . . . . . 6 (𝜑𝜒)
63, 4, 5elrabd 3693 . . . . 5 (𝜑𝐴 ∈ {𝑦𝑍𝜓})
7 noseqinds.8 . . . . . . . . 9 ((𝜑𝑧𝑍) → (𝜃𝜏))
81adantr 480 . . . . . . . . . 10 ((𝜑𝑧𝑍) → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) “ ω))
92adantr 480 . . . . . . . . . 10 ((𝜑𝑧𝑍) → 𝐴 No )
10 simpr 484 . . . . . . . . . 10 ((𝜑𝑧𝑍) → 𝑧𝑍)
118, 9, 10noseqp1 28298 . . . . . . . . 9 ((𝜑𝑧𝑍) → (𝑧 +s 1s ) ∈ 𝑍)
127, 11jctild 525 . . . . . . . 8 ((𝜑𝑧𝑍) → (𝜃 → ((𝑧 +s 1s ) ∈ 𝑍𝜏)))
1312expimpd 453 . . . . . . 7 (𝜑 → ((𝑧𝑍𝜃) → ((𝑧 +s 1s ) ∈ 𝑍𝜏)))
14 noseqinds.4 . . . . . . . 8 (𝑦 = 𝑧 → (𝜓𝜃))
1514elrab 3691 . . . . . . 7 (𝑧 ∈ {𝑦𝑍𝜓} ↔ (𝑧𝑍𝜃))
16 noseqinds.5 . . . . . . . 8 (𝑦 = (𝑧 +s 1s ) → (𝜓𝜏))
1716elrab 3691 . . . . . . 7 ((𝑧 +s 1s ) ∈ {𝑦𝑍𝜓} ↔ ((𝑧 +s 1s ) ∈ 𝑍𝜏))
1813, 15, 173imtr4g 296 . . . . . 6 (𝜑 → (𝑧 ∈ {𝑦𝑍𝜓} → (𝑧 +s 1s ) ∈ {𝑦𝑍𝜓}))
1918imp 406 . . . . 5 ((𝜑𝑧 ∈ {𝑦𝑍𝜓}) → (𝑧 +s 1s ) ∈ {𝑦𝑍𝜓})
201, 2, 6, 19noseqind 28299 . . . 4 (𝜑𝑍 ⊆ {𝑦𝑍𝜓})
2120sselda 3982 . . 3 ((𝜑𝐵𝑍) → 𝐵 ∈ {𝑦𝑍𝜓})
22 noseqinds.6 . . . 4 (𝑦 = 𝐵 → (𝜓𝜂))
2322elrab 3691 . . 3 (𝐵 ∈ {𝑦𝑍𝜓} ↔ (𝐵𝑍𝜂))
2421, 23sylib 218 . 2 ((𝜑𝐵𝑍) → (𝐵𝑍𝜂))
2524simprd 495 1 ((𝜑𝐵𝑍) → 𝜂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  {crab 3435  Vcvv 3479  cmpt 5224  cima 5687  (class class class)co 7432  ωcom 7888  reccrdg 8450   No csur 27685   1s c1s 27869   +s cadds 27993
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-ov 7435  df-om 7889  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451
This theorem is referenced by:  n0sind  28338  nnsind  28364
  Copyright terms: Public domain W3C validator