MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noseq0 Structured version   Visualization version   GIF version

Theorem noseq0 28241
Description: The surreal 𝐴 is a member of the sequence starting at 𝐴. (Contributed by Scott Fenton, 18-Apr-2025.)
Hypotheses
Ref Expression
noseq.1 (𝜑𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) “ ω))
noseq.2 (𝜑𝐴 No )
Assertion
Ref Expression
noseq0 (𝜑𝐴𝑍)

Proof of Theorem noseq0
StepHypRef Expression
1 noseq.2 . . . 4 (𝜑𝐴 No )
2 fr0g 8455 . . . 4 (𝐴 No → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘∅) = 𝐴)
31, 2syl 17 . . 3 (𝜑 → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘∅) = 𝐴)
4 frfnom 8454 . . . 4 (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω) Fn ω
5 peano1 7889 . . . 4 ∅ ∈ ω
6 fnfvelrn 7075 . . . 4 (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω) Fn ω ∧ ∅ ∈ ω) → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘∅) ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω))
74, 5, 6mp2an 692 . . 3 ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘∅) ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)
83, 7eqeltrrdi 2844 . 2 (𝜑𝐴 ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω))
9 noseq.1 . . 3 (𝜑𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) “ ω))
10 df-ima 5672 . . 3 (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) “ ω) = ran (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)
119, 10eqtrdi 2787 . 2 (𝜑𝑍 = ran (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω))
128, 11eleqtrrd 2838 1 (𝜑𝐴𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3464  c0 4313  cmpt 5206  ran crn 5660  cres 5661  cima 5662   Fn wfn 6531  cfv 6536  (class class class)co 7410  ωcom 7866  reccrdg 8428   No csur 27608   1s c1s 27792   +s cadds 27923
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429
This theorem is referenced by:  noseqinds  28244  0n0s  28279
  Copyright terms: Public domain W3C validator