| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > noseq0 | Structured version Visualization version GIF version | ||
| Description: The surreal 𝐴 is a member of the sequence starting at 𝐴. (Contributed by Scott Fenton, 18-Apr-2025.) |
| Ref | Expression |
|---|---|
| noseq.1 | ⊢ (𝜑 → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) “ ω)) |
| noseq.2 | ⊢ (𝜑 → 𝐴 ∈ No ) |
| Ref | Expression |
|---|---|
| noseq0 | ⊢ (𝜑 → 𝐴 ∈ 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noseq.2 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ No ) | |
| 2 | fr0g 8350 | . . . 4 ⊢ (𝐴 ∈ No → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘∅) = 𝐴) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘∅) = 𝐴) |
| 4 | frfnom 8349 | . . . 4 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω) Fn ω | |
| 5 | peano1 7814 | . . . 4 ⊢ ∅ ∈ ω | |
| 6 | fnfvelrn 7008 | . . . 4 ⊢ (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω) Fn ω ∧ ∅ ∈ ω) → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘∅) ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)) | |
| 7 | 4, 5, 6 | mp2an 692 | . . 3 ⊢ ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘∅) ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω) |
| 8 | 3, 7 | eqeltrrdi 2840 | . 2 ⊢ (𝜑 → 𝐴 ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)) |
| 9 | noseq.1 | . . 3 ⊢ (𝜑 → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) “ ω)) | |
| 10 | df-ima 5624 | . . 3 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) “ ω) = ran (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω) | |
| 11 | 9, 10 | eqtrdi 2782 | . 2 ⊢ (𝜑 → 𝑍 = ran (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)) |
| 12 | 8, 11 | eleqtrrd 2834 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∅c0 4278 ↦ cmpt 5167 ran crn 5612 ↾ cres 5613 “ cima 5614 Fn wfn 6471 ‘cfv 6476 (class class class)co 7341 ωcom 7791 reccrdg 8323 No csur 27573 1s c1s 27762 +s cadds 27897 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 |
| This theorem is referenced by: noseqinds 28218 0n0s 28253 |
| Copyright terms: Public domain | W3C validator |