![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > noseq0 | Structured version Visualization version GIF version |
Description: The surreal 𝐴 is a member of the sequence starting at 𝐴. (Contributed by Scott Fenton, 18-Apr-2025.) |
Ref | Expression |
---|---|
noseq.1 | ⊢ (𝜑 → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) “ ω)) |
noseq.2 | ⊢ (𝜑 → 𝐴 ∈ No ) |
Ref | Expression |
---|---|
noseq0 | ⊢ (𝜑 → 𝐴 ∈ 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noseq.2 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ No ) | |
2 | fr0g 8451 | . . . 4 ⊢ (𝐴 ∈ No → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘∅) = 𝐴) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘∅) = 𝐴) |
4 | frfnom 8450 | . . . 4 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω) Fn ω | |
5 | peano1 7889 | . . . 4 ⊢ ∅ ∈ ω | |
6 | fnfvelrn 7085 | . . . 4 ⊢ (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω) Fn ω ∧ ∅ ∈ ω) → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘∅) ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)) | |
7 | 4, 5, 6 | mp2an 691 | . . 3 ⊢ ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘∅) ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω) |
8 | 3, 7 | eqeltrrdi 2838 | . 2 ⊢ (𝜑 → 𝐴 ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)) |
9 | noseq.1 | . . 3 ⊢ (𝜑 → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) “ ω)) | |
10 | df-ima 5686 | . . 3 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) “ ω) = ran (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω) | |
11 | 9, 10 | eqtrdi 2784 | . 2 ⊢ (𝜑 → 𝑍 = ran (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)) |
12 | 8, 11 | eleqtrrd 2832 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 Vcvv 3470 ∅c0 4319 ↦ cmpt 5226 ran crn 5674 ↾ cres 5675 “ cima 5676 Fn wfn 6538 ‘cfv 6543 (class class class)co 7415 ωcom 7865 reccrdg 8424 No csur 27567 1s c1s 27750 +s cadds 27870 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5294 ax-nul 5301 ax-pr 5424 ax-un 7735 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-ral 3058 df-rex 3067 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-iun 4994 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7418 df-om 7866 df-2nd 7989 df-frecs 8281 df-wrecs 8312 df-recs 8386 df-rdg 8425 |
This theorem is referenced by: noseqinds 28160 0n0s 28193 |
Copyright terms: Public domain | W3C validator |