Step | Hyp | Ref
| Expression |
1 | | noseqp1.3 |
. . . . 5
⊢ (𝜑 → 𝐵 ∈ 𝑍) |
2 | | noseq.1 |
. . . . 5
⊢ (𝜑 → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) “
ω)) |
3 | 1, 2 | eleqtrd 2830 |
. . . 4
⊢ (𝜑 → 𝐵 ∈ (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) “
ω)) |
4 | | df-ima 5685 |
. . . 4
⊢
(rec((𝑥 ∈ V
↦ (𝑥 +s
1s )), 𝐴)
“ ω) = ran (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾
ω) |
5 | 3, 4 | eleqtrdi 2838 |
. . 3
⊢ (𝜑 → 𝐵 ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾
ω)) |
6 | | frfnom 8449 |
. . . 4
⊢
(rec((𝑥 ∈ V
↦ (𝑥 +s
1s )), 𝐴)
↾ ω) Fn ω |
7 | | fvelrnb 6953 |
. . . 4
⊢
((rec((𝑥 ∈ V
↦ (𝑥 +s
1s )), 𝐴)
↾ ω) Fn ω → (𝐵 ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω) ↔
∃𝑦 ∈ ω
((rec((𝑥 ∈ V ↦
(𝑥 +s
1s )), 𝐴)
↾ ω)‘𝑦) =
𝐵)) |
8 | 6, 7 | ax-mp 5 |
. . 3
⊢ (𝐵 ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )),
𝐴) ↾ ω) ↔
∃𝑦 ∈ ω
((rec((𝑥 ∈ V ↦
(𝑥 +s
1s )), 𝐴)
↾ ω)‘𝑦) =
𝐵) |
9 | 5, 8 | sylib 217 |
. 2
⊢ (𝜑 → ∃𝑦 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑦) = 𝐵) |
10 | | ovex 7447 |
. . . . . . 7
⊢
(((rec((𝑥 ∈ V
↦ (𝑥 +s
1s )), 𝐴)
↾ ω)‘𝑦)
+s 1s ) ∈ V |
11 | | eqid 2727 |
. . . . . . . 8
⊢
(rec((𝑥 ∈ V
↦ (𝑥 +s
1s )), 𝐴)
↾ ω) = (rec((𝑥
∈ V ↦ (𝑥
+s 1s )), 𝐴) ↾ ω) |
12 | | oveq1 7421 |
. . . . . . . 8
⊢ (𝑧 = 𝑥 → (𝑧 +s 1s ) = (𝑥 +s 1s
)) |
13 | | oveq1 7421 |
. . . . . . . 8
⊢ (𝑧 = ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑦) → (𝑧 +s 1s ) =
(((rec((𝑥 ∈ V ↦
(𝑥 +s
1s )), 𝐴)
↾ ω)‘𝑦)
+s 1s )) |
14 | 11, 12, 13 | frsucmpt2 8454 |
. . . . . . 7
⊢ ((𝑦 ∈ ω ∧
(((rec((𝑥 ∈ V ↦
(𝑥 +s
1s )), 𝐴)
↾ ω)‘𝑦)
+s 1s ) ∈ V) → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘suc
𝑦) = (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )),
𝐴) ↾
ω)‘𝑦)
+s 1s )) |
15 | 10, 14 | mpan2 690 |
. . . . . 6
⊢ (𝑦 ∈ ω →
((rec((𝑥 ∈ V ↦
(𝑥 +s
1s )), 𝐴)
↾ ω)‘suc 𝑦) = (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑦) +s 1s
)) |
16 | 15 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ ω) → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )),
𝐴) ↾
ω)‘suc 𝑦) =
(((rec((𝑥 ∈ V ↦
(𝑥 +s
1s )), 𝐴)
↾ ω)‘𝑦)
+s 1s )) |
17 | | peano2 7890 |
. . . . . . . 8
⊢ (𝑦 ∈ ω → suc 𝑦 ∈
ω) |
18 | | fnfvelrn 7084 |
. . . . . . . 8
⊢
(((rec((𝑥 ∈ V
↦ (𝑥 +s
1s )), 𝐴)
↾ ω) Fn ω ∧ suc 𝑦 ∈ ω) → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )),
𝐴) ↾
ω)‘suc 𝑦)
∈ ran (rec((𝑥 ∈ V
↦ (𝑥 +s
1s )), 𝐴)
↾ ω)) |
19 | 6, 17, 18 | sylancr 586 |
. . . . . . 7
⊢ (𝑦 ∈ ω →
((rec((𝑥 ∈ V ↦
(𝑥 +s
1s )), 𝐴)
↾ ω)‘suc 𝑦) ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾
ω)) |
20 | 19 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ ω) → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )),
𝐴) ↾
ω)‘suc 𝑦)
∈ ran (rec((𝑥 ∈ V
↦ (𝑥 +s
1s )), 𝐴)
↾ ω)) |
21 | 2, 4 | eqtrdi 2783 |
. . . . . . 7
⊢ (𝜑 → 𝑍 = ran (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾
ω)) |
22 | 21 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ ω) → 𝑍 = ran (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾
ω)) |
23 | 20, 22 | eleqtrrd 2831 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ ω) → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )),
𝐴) ↾
ω)‘suc 𝑦)
∈ 𝑍) |
24 | 16, 23 | eqeltrrd 2829 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ ω) → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )),
𝐴) ↾
ω)‘𝑦)
+s 1s ) ∈ 𝑍) |
25 | | oveq1 7421 |
. . . . 5
⊢
(((rec((𝑥 ∈ V
↦ (𝑥 +s
1s )), 𝐴)
↾ ω)‘𝑦) =
𝐵 → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )),
𝐴) ↾
ω)‘𝑦)
+s 1s ) = (𝐵 +s 1s
)) |
26 | 25 | eleq1d 2813 |
. . . 4
⊢
(((rec((𝑥 ∈ V
↦ (𝑥 +s
1s )), 𝐴)
↾ ω)‘𝑦) =
𝐵 → ((((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )),
𝐴) ↾
ω)‘𝑦)
+s 1s ) ∈ 𝑍 ↔ (𝐵 +s 1s ) ∈ 𝑍)) |
27 | 24, 26 | syl5ibcom 244 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ ω) → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )),
𝐴) ↾
ω)‘𝑦) = 𝐵 → (𝐵 +s 1s ) ∈ 𝑍)) |
28 | 27 | impr 454 |
. 2
⊢ ((𝜑 ∧ (𝑦 ∈ ω ∧ ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )),
𝐴) ↾
ω)‘𝑦) = 𝐵)) → (𝐵 +s 1s ) ∈ 𝑍) |
29 | 9, 28 | rexlimddv 3156 |
1
⊢ (𝜑 → (𝐵 +s 1s ) ∈ 𝑍) |