MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noseqp1 Structured version   Visualization version   GIF version

Theorem noseqp1 28192
Description: One plus an element of 𝑍 is an element of 𝑍. (Contributed by Scott Fenton, 18-Apr-2025.)
Hypotheses
Ref Expression
noseq.1 (𝜑𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) “ ω))
noseq.2 (𝜑𝐴 No )
noseqp1.3 (𝜑𝐵𝑍)
Assertion
Ref Expression
noseqp1 (𝜑 → (𝐵 +s 1s ) ∈ 𝑍)
Distinct variable group:   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝑍(𝑥)

Proof of Theorem noseqp1
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 noseqp1.3 . . . . 5 (𝜑𝐵𝑍)
2 noseq.1 . . . . 5 (𝜑𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) “ ω))
31, 2eleqtrd 2831 . . . 4 (𝜑𝐵 ∈ (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) “ ω))
4 df-ima 5654 . . . 4 (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) “ ω) = ran (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)
53, 4eleqtrdi 2839 . . 3 (𝜑𝐵 ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω))
6 frfnom 8406 . . . 4 (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω) Fn ω
7 fvelrnb 6924 . . . 4 ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω) Fn ω → (𝐵 ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω) ↔ ∃𝑦 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑦) = 𝐵))
86, 7ax-mp 5 . . 3 (𝐵 ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω) ↔ ∃𝑦 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑦) = 𝐵)
95, 8sylib 218 . 2 (𝜑 → ∃𝑦 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑦) = 𝐵)
10 ovex 7423 . . . . . . 7 (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑦) +s 1s ) ∈ V
11 eqid 2730 . . . . . . . 8 (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)
12 oveq1 7397 . . . . . . . 8 (𝑧 = 𝑥 → (𝑧 +s 1s ) = (𝑥 +s 1s ))
13 oveq1 7397 . . . . . . . 8 (𝑧 = ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑦) → (𝑧 +s 1s ) = (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑦) +s 1s ))
1411, 12, 13frsucmpt2 8411 . . . . . . 7 ((𝑦 ∈ ω ∧ (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑦) +s 1s ) ∈ V) → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘suc 𝑦) = (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑦) +s 1s ))
1510, 14mpan2 691 . . . . . 6 (𝑦 ∈ ω → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘suc 𝑦) = (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑦) +s 1s ))
1615adantl 481 . . . . 5 ((𝜑𝑦 ∈ ω) → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘suc 𝑦) = (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑦) +s 1s ))
17 peano2 7869 . . . . . . . 8 (𝑦 ∈ ω → suc 𝑦 ∈ ω)
18 fnfvelrn 7055 . . . . . . . 8 (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω) Fn ω ∧ suc 𝑦 ∈ ω) → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘suc 𝑦) ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω))
196, 17, 18sylancr 587 . . . . . . 7 (𝑦 ∈ ω → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘suc 𝑦) ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω))
2019adantl 481 . . . . . 6 ((𝜑𝑦 ∈ ω) → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘suc 𝑦) ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω))
212, 4eqtrdi 2781 . . . . . . 7 (𝜑𝑍 = ran (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω))
2221adantr 480 . . . . . 6 ((𝜑𝑦 ∈ ω) → 𝑍 = ran (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω))
2320, 22eleqtrrd 2832 . . . . 5 ((𝜑𝑦 ∈ ω) → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘suc 𝑦) ∈ 𝑍)
2416, 23eqeltrrd 2830 . . . 4 ((𝜑𝑦 ∈ ω) → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑦) +s 1s ) ∈ 𝑍)
25 oveq1 7397 . . . . 5 (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑦) = 𝐵 → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑦) +s 1s ) = (𝐵 +s 1s ))
2625eleq1d 2814 . . . 4 (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑦) = 𝐵 → ((((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑦) +s 1s ) ∈ 𝑍 ↔ (𝐵 +s 1s ) ∈ 𝑍))
2724, 26syl5ibcom 245 . . 3 ((𝜑𝑦 ∈ ω) → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑦) = 𝐵 → (𝐵 +s 1s ) ∈ 𝑍))
2827impr 454 . 2 ((𝜑 ∧ (𝑦 ∈ ω ∧ ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑦) = 𝐵)) → (𝐵 +s 1s ) ∈ 𝑍)
299, 28rexlimddv 3141 1 (𝜑 → (𝐵 +s 1s ) ∈ 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3054  Vcvv 3450  cmpt 5191  ran crn 5642  cres 5643  cima 5644  suc csuc 6337   Fn wfn 6509  cfv 6514  (class class class)co 7390  ωcom 7845  reccrdg 8380   No csur 27558   1s c1s 27742   +s cadds 27873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381
This theorem is referenced by:  noseqinds  28194  noseqrdgsuc  28209  peano2n0s  28230
  Copyright terms: Public domain W3C validator