| Step | Hyp | Ref
| Expression |
| 1 | | noseqp1.3 |
. . . . 5
⊢ (𝜑 → 𝐵 ∈ 𝑍) |
| 2 | | noseq.1 |
. . . . 5
⊢ (𝜑 → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) “
ω)) |
| 3 | 1, 2 | eleqtrd 2837 |
. . . 4
⊢ (𝜑 → 𝐵 ∈ (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) “
ω)) |
| 4 | | df-ima 5672 |
. . . 4
⊢
(rec((𝑥 ∈ V
↦ (𝑥 +s
1s )), 𝐴)
“ ω) = ran (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾
ω) |
| 5 | 3, 4 | eleqtrdi 2845 |
. . 3
⊢ (𝜑 → 𝐵 ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾
ω)) |
| 6 | | frfnom 8454 |
. . . 4
⊢
(rec((𝑥 ∈ V
↦ (𝑥 +s
1s )), 𝐴)
↾ ω) Fn ω |
| 7 | | fvelrnb 6944 |
. . . 4
⊢
((rec((𝑥 ∈ V
↦ (𝑥 +s
1s )), 𝐴)
↾ ω) Fn ω → (𝐵 ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω) ↔
∃𝑦 ∈ ω
((rec((𝑥 ∈ V ↦
(𝑥 +s
1s )), 𝐴)
↾ ω)‘𝑦) =
𝐵)) |
| 8 | 6, 7 | ax-mp 5 |
. . 3
⊢ (𝐵 ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )),
𝐴) ↾ ω) ↔
∃𝑦 ∈ ω
((rec((𝑥 ∈ V ↦
(𝑥 +s
1s )), 𝐴)
↾ ω)‘𝑦) =
𝐵) |
| 9 | 5, 8 | sylib 218 |
. 2
⊢ (𝜑 → ∃𝑦 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑦) = 𝐵) |
| 10 | | ovex 7443 |
. . . . . . 7
⊢
(((rec((𝑥 ∈ V
↦ (𝑥 +s
1s )), 𝐴)
↾ ω)‘𝑦)
+s 1s ) ∈ V |
| 11 | | eqid 2736 |
. . . . . . . 8
⊢
(rec((𝑥 ∈ V
↦ (𝑥 +s
1s )), 𝐴)
↾ ω) = (rec((𝑥
∈ V ↦ (𝑥
+s 1s )), 𝐴) ↾ ω) |
| 12 | | oveq1 7417 |
. . . . . . . 8
⊢ (𝑧 = 𝑥 → (𝑧 +s 1s ) = (𝑥 +s 1s
)) |
| 13 | | oveq1 7417 |
. . . . . . . 8
⊢ (𝑧 = ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑦) → (𝑧 +s 1s ) =
(((rec((𝑥 ∈ V ↦
(𝑥 +s
1s )), 𝐴)
↾ ω)‘𝑦)
+s 1s )) |
| 14 | 11, 12, 13 | frsucmpt2 8459 |
. . . . . . 7
⊢ ((𝑦 ∈ ω ∧
(((rec((𝑥 ∈ V ↦
(𝑥 +s
1s )), 𝐴)
↾ ω)‘𝑦)
+s 1s ) ∈ V) → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘suc
𝑦) = (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )),
𝐴) ↾
ω)‘𝑦)
+s 1s )) |
| 15 | 10, 14 | mpan2 691 |
. . . . . 6
⊢ (𝑦 ∈ ω →
((rec((𝑥 ∈ V ↦
(𝑥 +s
1s )), 𝐴)
↾ ω)‘suc 𝑦) = (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑦) +s 1s
)) |
| 16 | 15 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ ω) → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )),
𝐴) ↾
ω)‘suc 𝑦) =
(((rec((𝑥 ∈ V ↦
(𝑥 +s
1s )), 𝐴)
↾ ω)‘𝑦)
+s 1s )) |
| 17 | | peano2 7891 |
. . . . . . . 8
⊢ (𝑦 ∈ ω → suc 𝑦 ∈
ω) |
| 18 | | fnfvelrn 7075 |
. . . . . . . 8
⊢
(((rec((𝑥 ∈ V
↦ (𝑥 +s
1s )), 𝐴)
↾ ω) Fn ω ∧ suc 𝑦 ∈ ω) → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )),
𝐴) ↾
ω)‘suc 𝑦)
∈ ran (rec((𝑥 ∈ V
↦ (𝑥 +s
1s )), 𝐴)
↾ ω)) |
| 19 | 6, 17, 18 | sylancr 587 |
. . . . . . 7
⊢ (𝑦 ∈ ω →
((rec((𝑥 ∈ V ↦
(𝑥 +s
1s )), 𝐴)
↾ ω)‘suc 𝑦) ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾
ω)) |
| 20 | 19 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ ω) → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )),
𝐴) ↾
ω)‘suc 𝑦)
∈ ran (rec((𝑥 ∈ V
↦ (𝑥 +s
1s )), 𝐴)
↾ ω)) |
| 21 | 2, 4 | eqtrdi 2787 |
. . . . . . 7
⊢ (𝜑 → 𝑍 = ran (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾
ω)) |
| 22 | 21 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ ω) → 𝑍 = ran (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾
ω)) |
| 23 | 20, 22 | eleqtrrd 2838 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ ω) → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )),
𝐴) ↾
ω)‘suc 𝑦)
∈ 𝑍) |
| 24 | 16, 23 | eqeltrrd 2836 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ ω) → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )),
𝐴) ↾
ω)‘𝑦)
+s 1s ) ∈ 𝑍) |
| 25 | | oveq1 7417 |
. . . . 5
⊢
(((rec((𝑥 ∈ V
↦ (𝑥 +s
1s )), 𝐴)
↾ ω)‘𝑦) =
𝐵 → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )),
𝐴) ↾
ω)‘𝑦)
+s 1s ) = (𝐵 +s 1s
)) |
| 26 | 25 | eleq1d 2820 |
. . . 4
⊢
(((rec((𝑥 ∈ V
↦ (𝑥 +s
1s )), 𝐴)
↾ ω)‘𝑦) =
𝐵 → ((((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )),
𝐴) ↾
ω)‘𝑦)
+s 1s ) ∈ 𝑍 ↔ (𝐵 +s 1s ) ∈ 𝑍)) |
| 27 | 24, 26 | syl5ibcom 245 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ ω) → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )),
𝐴) ↾
ω)‘𝑦) = 𝐵 → (𝐵 +s 1s ) ∈ 𝑍)) |
| 28 | 27 | impr 454 |
. 2
⊢ ((𝜑 ∧ (𝑦 ∈ ω ∧ ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )),
𝐴) ↾
ω)‘𝑦) = 𝐵)) → (𝐵 +s 1s ) ∈ 𝑍) |
| 29 | 9, 28 | rexlimddv 3148 |
1
⊢ (𝜑 → (𝐵 +s 1s ) ∈ 𝑍) |