MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noseqp1 Structured version   Visualization version   GIF version

Theorem noseqp1 28221
Description: One plus an element of 𝑍 is an element of 𝑍. (Contributed by Scott Fenton, 18-Apr-2025.)
Hypotheses
Ref Expression
noseq.1 (𝜑𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) “ ω))
noseq.2 (𝜑𝐴 No )
noseqp1.3 (𝜑𝐵𝑍)
Assertion
Ref Expression
noseqp1 (𝜑 → (𝐵 +s 1s ) ∈ 𝑍)
Distinct variable group:   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝑍(𝑥)

Proof of Theorem noseqp1
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 noseqp1.3 . . . . 5 (𝜑𝐵𝑍)
2 noseq.1 . . . . 5 (𝜑𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) “ ω))
31, 2eleqtrd 2833 . . . 4 (𝜑𝐵 ∈ (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) “ ω))
4 df-ima 5627 . . . 4 (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) “ ω) = ran (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)
53, 4eleqtrdi 2841 . . 3 (𝜑𝐵 ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω))
6 frfnom 8354 . . . 4 (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω) Fn ω
7 fvelrnb 6882 . . . 4 ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω) Fn ω → (𝐵 ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω) ↔ ∃𝑦 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑦) = 𝐵))
86, 7ax-mp 5 . . 3 (𝐵 ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω) ↔ ∃𝑦 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑦) = 𝐵)
95, 8sylib 218 . 2 (𝜑 → ∃𝑦 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑦) = 𝐵)
10 ovex 7379 . . . . . . 7 (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑦) +s 1s ) ∈ V
11 eqid 2731 . . . . . . . 8 (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)
12 oveq1 7353 . . . . . . . 8 (𝑧 = 𝑥 → (𝑧 +s 1s ) = (𝑥 +s 1s ))
13 oveq1 7353 . . . . . . . 8 (𝑧 = ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑦) → (𝑧 +s 1s ) = (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑦) +s 1s ))
1411, 12, 13frsucmpt2 8359 . . . . . . 7 ((𝑦 ∈ ω ∧ (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑦) +s 1s ) ∈ V) → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘suc 𝑦) = (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑦) +s 1s ))
1510, 14mpan2 691 . . . . . 6 (𝑦 ∈ ω → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘suc 𝑦) = (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑦) +s 1s ))
1615adantl 481 . . . . 5 ((𝜑𝑦 ∈ ω) → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘suc 𝑦) = (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑦) +s 1s ))
17 peano2 7820 . . . . . . . 8 (𝑦 ∈ ω → suc 𝑦 ∈ ω)
18 fnfvelrn 7013 . . . . . . . 8 (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω) Fn ω ∧ suc 𝑦 ∈ ω) → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘suc 𝑦) ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω))
196, 17, 18sylancr 587 . . . . . . 7 (𝑦 ∈ ω → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘suc 𝑦) ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω))
2019adantl 481 . . . . . 6 ((𝜑𝑦 ∈ ω) → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘suc 𝑦) ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω))
212, 4eqtrdi 2782 . . . . . . 7 (𝜑𝑍 = ran (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω))
2221adantr 480 . . . . . 6 ((𝜑𝑦 ∈ ω) → 𝑍 = ran (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω))
2320, 22eleqtrrd 2834 . . . . 5 ((𝜑𝑦 ∈ ω) → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘suc 𝑦) ∈ 𝑍)
2416, 23eqeltrrd 2832 . . . 4 ((𝜑𝑦 ∈ ω) → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑦) +s 1s ) ∈ 𝑍)
25 oveq1 7353 . . . . 5 (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑦) = 𝐵 → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑦) +s 1s ) = (𝐵 +s 1s ))
2625eleq1d 2816 . . . 4 (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑦) = 𝐵 → ((((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑦) +s 1s ) ∈ 𝑍 ↔ (𝐵 +s 1s ) ∈ 𝑍))
2724, 26syl5ibcom 245 . . 3 ((𝜑𝑦 ∈ ω) → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑦) = 𝐵 → (𝐵 +s 1s ) ∈ 𝑍))
2827impr 454 . 2 ((𝜑 ∧ (𝑦 ∈ ω ∧ ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑦) = 𝐵)) → (𝐵 +s 1s ) ∈ 𝑍)
299, 28rexlimddv 3139 1 (𝜑 → (𝐵 +s 1s ) ∈ 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wrex 3056  Vcvv 3436  cmpt 5170  ran crn 5615  cres 5616  cima 5617  suc csuc 6308   Fn wfn 6476  cfv 6481  (class class class)co 7346  ωcom 7796  reccrdg 8328   No csur 27578   1s c1s 27767   +s cadds 27902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329
This theorem is referenced by:  noseqinds  28223  noseqrdgsuc  28238  peano2n0s  28259
  Copyright terms: Public domain W3C validator