MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noseqind Structured version   Visualization version   GIF version

Theorem noseqind 28242
Description: Peano's inductive postulate for surreal sequences. (Contributed by Scott Fenton, 18-Apr-2025.)
Hypotheses
Ref Expression
noseq.1 (𝜑𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) “ ω))
noseq.2 (𝜑𝐴 No )
noseqind.3 (𝜑𝐴𝐵)
noseqind.4 ((𝜑𝑦𝐵) → (𝑦 +s 1s ) ∈ 𝐵)
Assertion
Ref Expression
noseqind (𝜑𝑍𝐵)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝜑,𝑦   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐵(𝑥)   𝑍(𝑥,𝑦)

Proof of Theorem noseqind
Dummy variables 𝑤 𝑡 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 noseq.1 . . 3 (𝜑𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) “ ω))
2 df-ima 5634 . . 3 (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) “ ω) = ran (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)
31, 2eqtrdi 2784 . 2 (𝜑𝑍 = ran (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω))
4 fveq2 6831 . . . . . . . 8 (𝑧 = ∅ → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑧) = ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘∅))
54eleq1d 2818 . . . . . . 7 (𝑧 = ∅ → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑧) ∈ 𝐵 ↔ ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘∅) ∈ 𝐵))
6 fveq2 6831 . . . . . . . 8 (𝑧 = 𝑤 → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑧) = ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤))
76eleq1d 2818 . . . . . . 7 (𝑧 = 𝑤 → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑧) ∈ 𝐵 ↔ ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤) ∈ 𝐵))
8 fveq2 6831 . . . . . . . 8 (𝑧 = suc 𝑤 → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑧) = ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘suc 𝑤))
98eleq1d 2818 . . . . . . 7 (𝑧 = suc 𝑤 → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑧) ∈ 𝐵 ↔ ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘suc 𝑤) ∈ 𝐵))
10 noseq.2 . . . . . . . . 9 (𝜑𝐴 No )
11 fr0g 8364 . . . . . . . . 9 (𝐴 No → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘∅) = 𝐴)
1210, 11syl 17 . . . . . . . 8 (𝜑 → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘∅) = 𝐴)
13 noseqind.3 . . . . . . . 8 (𝜑𝐴𝐵)
1412, 13eqeltrd 2833 . . . . . . 7 (𝜑 → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘∅) ∈ 𝐵)
15 oveq1 7362 . . . . . . . . . . . . 13 (𝑦 = ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤) → (𝑦 +s 1s ) = (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤) +s 1s ))
1615eleq1d 2818 . . . . . . . . . . . 12 (𝑦 = ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤) → ((𝑦 +s 1s ) ∈ 𝐵 ↔ (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤) +s 1s ) ∈ 𝐵))
1716imbi2d 340 . . . . . . . . . . 11 (𝑦 = ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤) → ((𝜑 → (𝑦 +s 1s ) ∈ 𝐵) ↔ (𝜑 → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤) +s 1s ) ∈ 𝐵)))
18 noseqind.4 . . . . . . . . . . . 12 ((𝜑𝑦𝐵) → (𝑦 +s 1s ) ∈ 𝐵)
1918expcom 413 . . . . . . . . . . 11 (𝑦𝐵 → (𝜑 → (𝑦 +s 1s ) ∈ 𝐵))
2017, 19vtoclga 3529 . . . . . . . . . 10 (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤) ∈ 𝐵 → (𝜑 → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤) +s 1s ) ∈ 𝐵))
2120impcom 407 . . . . . . . . 9 ((𝜑 ∧ ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤) ∈ 𝐵) → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤) +s 1s ) ∈ 𝐵)
22 ovex 7388 . . . . . . . . . . 11 (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤) +s 1s ) ∈ V
23 eqid 2733 . . . . . . . . . . . 12 (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)
24 oveq1 7362 . . . . . . . . . . . 12 (𝑡 = 𝑥 → (𝑡 +s 1s ) = (𝑥 +s 1s ))
25 oveq1 7362 . . . . . . . . . . . 12 (𝑡 = ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤) → (𝑡 +s 1s ) = (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤) +s 1s ))
2623, 24, 25frsucmpt2 8368 . . . . . . . . . . 11 ((𝑤 ∈ ω ∧ (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤) +s 1s ) ∈ V) → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘suc 𝑤) = (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤) +s 1s ))
2722, 26mpan2 691 . . . . . . . . . 10 (𝑤 ∈ ω → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘suc 𝑤) = (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤) +s 1s ))
2827eleq1d 2818 . . . . . . . . 9 (𝑤 ∈ ω → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘suc 𝑤) ∈ 𝐵 ↔ (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤) +s 1s ) ∈ 𝐵))
2921, 28imbitrrid 246 . . . . . . . 8 (𝑤 ∈ ω → ((𝜑 ∧ ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤) ∈ 𝐵) → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘suc 𝑤) ∈ 𝐵))
3029expd 415 . . . . . . 7 (𝑤 ∈ ω → (𝜑 → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤) ∈ 𝐵 → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘suc 𝑤) ∈ 𝐵)))
315, 7, 9, 14, 30finds2 7837 . . . . . 6 (𝑧 ∈ ω → (𝜑 → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑧) ∈ 𝐵))
3231com12 32 . . . . 5 (𝜑 → (𝑧 ∈ ω → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑧) ∈ 𝐵))
3332ralrimiv 3124 . . . 4 (𝜑 → ∀𝑧 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑧) ∈ 𝐵)
34 frfnom 8363 . . . . 5 (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω) Fn ω
35 ffnfv 7061 . . . . 5 ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω):ω⟶𝐵 ↔ ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω) Fn ω ∧ ∀𝑧 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑧) ∈ 𝐵))
3634, 35mpbiran 709 . . . 4 ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω):ω⟶𝐵 ↔ ∀𝑧 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑧) ∈ 𝐵)
3733, 36sylibr 234 . . 3 (𝜑 → (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω):ω⟶𝐵)
3837frnd 6667 . 2 (𝜑 → ran (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω) ⊆ 𝐵)
393, 38eqsstrd 3965 1 (𝜑𝑍𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wral 3048  Vcvv 3437  wss 3898  c0 4282  cmpt 5176  ran crn 5622  cres 5623  cima 5624  suc csuc 6316   Fn wfn 6484  wf 6485  cfv 6489  (class class class)co 7355  ωcom 7805  reccrdg 8337   No csur 27598   1s c1s 27787   +s cadds 27922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-om 7806  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338
This theorem is referenced by:  noseqinds  28243  noseqssno  28244  peano5n0s  28268
  Copyright terms: Public domain W3C validator