MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noseqind Structured version   Visualization version   GIF version

Theorem noseqind 28316
Description: Peano's inductive postulate for surreal sequences. (Contributed by Scott Fenton, 18-Apr-2025.)
Hypotheses
Ref Expression
noseq.1 (𝜑𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) “ ω))
noseq.2 (𝜑𝐴 No )
noseqind.3 (𝜑𝐴𝐵)
noseqind.4 ((𝜑𝑦𝐵) → (𝑦 +s 1s ) ∈ 𝐵)
Assertion
Ref Expression
noseqind (𝜑𝑍𝐵)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝜑,𝑦   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐵(𝑥)   𝑍(𝑥,𝑦)

Proof of Theorem noseqind
Dummy variables 𝑤 𝑡 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 noseq.1 . . 3 (𝜑𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) “ ω))
2 df-ima 5713 . . 3 (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) “ ω) = ran (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)
31, 2eqtrdi 2796 . 2 (𝜑𝑍 = ran (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω))
4 fveq2 6920 . . . . . . . 8 (𝑧 = ∅ → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑧) = ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘∅))
54eleq1d 2829 . . . . . . 7 (𝑧 = ∅ → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑧) ∈ 𝐵 ↔ ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘∅) ∈ 𝐵))
6 fveq2 6920 . . . . . . . 8 (𝑧 = 𝑤 → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑧) = ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤))
76eleq1d 2829 . . . . . . 7 (𝑧 = 𝑤 → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑧) ∈ 𝐵 ↔ ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤) ∈ 𝐵))
8 fveq2 6920 . . . . . . . 8 (𝑧 = suc 𝑤 → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑧) = ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘suc 𝑤))
98eleq1d 2829 . . . . . . 7 (𝑧 = suc 𝑤 → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑧) ∈ 𝐵 ↔ ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘suc 𝑤) ∈ 𝐵))
10 noseq.2 . . . . . . . . 9 (𝜑𝐴 No )
11 fr0g 8492 . . . . . . . . 9 (𝐴 No → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘∅) = 𝐴)
1210, 11syl 17 . . . . . . . 8 (𝜑 → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘∅) = 𝐴)
13 noseqind.3 . . . . . . . 8 (𝜑𝐴𝐵)
1412, 13eqeltrd 2844 . . . . . . 7 (𝜑 → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘∅) ∈ 𝐵)
15 oveq1 7455 . . . . . . . . . . . . 13 (𝑦 = ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤) → (𝑦 +s 1s ) = (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤) +s 1s ))
1615eleq1d 2829 . . . . . . . . . . . 12 (𝑦 = ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤) → ((𝑦 +s 1s ) ∈ 𝐵 ↔ (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤) +s 1s ) ∈ 𝐵))
1716imbi2d 340 . . . . . . . . . . 11 (𝑦 = ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤) → ((𝜑 → (𝑦 +s 1s ) ∈ 𝐵) ↔ (𝜑 → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤) +s 1s ) ∈ 𝐵)))
18 noseqind.4 . . . . . . . . . . . 12 ((𝜑𝑦𝐵) → (𝑦 +s 1s ) ∈ 𝐵)
1918expcom 413 . . . . . . . . . . 11 (𝑦𝐵 → (𝜑 → (𝑦 +s 1s ) ∈ 𝐵))
2017, 19vtoclga 3589 . . . . . . . . . 10 (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤) ∈ 𝐵 → (𝜑 → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤) +s 1s ) ∈ 𝐵))
2120impcom 407 . . . . . . . . 9 ((𝜑 ∧ ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤) ∈ 𝐵) → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤) +s 1s ) ∈ 𝐵)
22 ovex 7481 . . . . . . . . . . 11 (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤) +s 1s ) ∈ V
23 eqid 2740 . . . . . . . . . . . 12 (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)
24 oveq1 7455 . . . . . . . . . . . 12 (𝑡 = 𝑥 → (𝑡 +s 1s ) = (𝑥 +s 1s ))
25 oveq1 7455 . . . . . . . . . . . 12 (𝑡 = ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤) → (𝑡 +s 1s ) = (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤) +s 1s ))
2623, 24, 25frsucmpt2 8496 . . . . . . . . . . 11 ((𝑤 ∈ ω ∧ (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤) +s 1s ) ∈ V) → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘suc 𝑤) = (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤) +s 1s ))
2722, 26mpan2 690 . . . . . . . . . 10 (𝑤 ∈ ω → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘suc 𝑤) = (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤) +s 1s ))
2827eleq1d 2829 . . . . . . . . 9 (𝑤 ∈ ω → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘suc 𝑤) ∈ 𝐵 ↔ (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤) +s 1s ) ∈ 𝐵))
2921, 28imbitrrid 246 . . . . . . . 8 (𝑤 ∈ ω → ((𝜑 ∧ ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤) ∈ 𝐵) → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘suc 𝑤) ∈ 𝐵))
3029expd 415 . . . . . . 7 (𝑤 ∈ ω → (𝜑 → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤) ∈ 𝐵 → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘suc 𝑤) ∈ 𝐵)))
315, 7, 9, 14, 30finds2 7938 . . . . . 6 (𝑧 ∈ ω → (𝜑 → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑧) ∈ 𝐵))
3231com12 32 . . . . 5 (𝜑 → (𝑧 ∈ ω → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑧) ∈ 𝐵))
3332ralrimiv 3151 . . . 4 (𝜑 → ∀𝑧 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑧) ∈ 𝐵)
34 frfnom 8491 . . . . 5 (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω) Fn ω
35 ffnfv 7153 . . . . 5 ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω):ω⟶𝐵 ↔ ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω) Fn ω ∧ ∀𝑧 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑧) ∈ 𝐵))
3634, 35mpbiran 708 . . . 4 ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω):ω⟶𝐵 ↔ ∀𝑧 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑧) ∈ 𝐵)
3733, 36sylibr 234 . . 3 (𝜑 → (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω):ω⟶𝐵)
3837frnd 6755 . 2 (𝜑 → ran (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω) ⊆ 𝐵)
393, 38eqsstrd 4047 1 (𝜑𝑍𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  Vcvv 3488  wss 3976  c0 4352  cmpt 5249  ran crn 5701  cres 5702  cima 5703  suc csuc 6397   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  ωcom 7903  reccrdg 8465   No csur 27702   1s c1s 27886   +s cadds 28010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466
This theorem is referenced by:  noseqinds  28317  noseqssno  28318  peano5n0s  28342
  Copyright terms: Public domain W3C validator