MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noseqind Structured version   Visualization version   GIF version

Theorem noseqind 28215
Description: Peano's inductive postulate for surreal sequences. (Contributed by Scott Fenton, 18-Apr-2025.)
Hypotheses
Ref Expression
noseq.1 (𝜑𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) “ ω))
noseq.2 (𝜑𝐴 No )
noseqind.3 (𝜑𝐴𝐵)
noseqind.4 ((𝜑𝑦𝐵) → (𝑦 +s 1s ) ∈ 𝐵)
Assertion
Ref Expression
noseqind (𝜑𝑍𝐵)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝜑,𝑦   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐵(𝑥)   𝑍(𝑥,𝑦)

Proof of Theorem noseqind
Dummy variables 𝑤 𝑡 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 noseq.1 . . 3 (𝜑𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) “ ω))
2 df-ima 5667 . . 3 (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) “ ω) = ran (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)
31, 2eqtrdi 2786 . 2 (𝜑𝑍 = ran (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω))
4 fveq2 6875 . . . . . . . 8 (𝑧 = ∅ → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑧) = ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘∅))
54eleq1d 2819 . . . . . . 7 (𝑧 = ∅ → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑧) ∈ 𝐵 ↔ ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘∅) ∈ 𝐵))
6 fveq2 6875 . . . . . . . 8 (𝑧 = 𝑤 → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑧) = ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤))
76eleq1d 2819 . . . . . . 7 (𝑧 = 𝑤 → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑧) ∈ 𝐵 ↔ ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤) ∈ 𝐵))
8 fveq2 6875 . . . . . . . 8 (𝑧 = suc 𝑤 → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑧) = ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘suc 𝑤))
98eleq1d 2819 . . . . . . 7 (𝑧 = suc 𝑤 → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑧) ∈ 𝐵 ↔ ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘suc 𝑤) ∈ 𝐵))
10 noseq.2 . . . . . . . . 9 (𝜑𝐴 No )
11 fr0g 8448 . . . . . . . . 9 (𝐴 No → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘∅) = 𝐴)
1210, 11syl 17 . . . . . . . 8 (𝜑 → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘∅) = 𝐴)
13 noseqind.3 . . . . . . . 8 (𝜑𝐴𝐵)
1412, 13eqeltrd 2834 . . . . . . 7 (𝜑 → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘∅) ∈ 𝐵)
15 oveq1 7410 . . . . . . . . . . . . 13 (𝑦 = ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤) → (𝑦 +s 1s ) = (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤) +s 1s ))
1615eleq1d 2819 . . . . . . . . . . . 12 (𝑦 = ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤) → ((𝑦 +s 1s ) ∈ 𝐵 ↔ (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤) +s 1s ) ∈ 𝐵))
1716imbi2d 340 . . . . . . . . . . 11 (𝑦 = ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤) → ((𝜑 → (𝑦 +s 1s ) ∈ 𝐵) ↔ (𝜑 → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤) +s 1s ) ∈ 𝐵)))
18 noseqind.4 . . . . . . . . . . . 12 ((𝜑𝑦𝐵) → (𝑦 +s 1s ) ∈ 𝐵)
1918expcom 413 . . . . . . . . . . 11 (𝑦𝐵 → (𝜑 → (𝑦 +s 1s ) ∈ 𝐵))
2017, 19vtoclga 3556 . . . . . . . . . 10 (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤) ∈ 𝐵 → (𝜑 → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤) +s 1s ) ∈ 𝐵))
2120impcom 407 . . . . . . . . 9 ((𝜑 ∧ ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤) ∈ 𝐵) → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤) +s 1s ) ∈ 𝐵)
22 ovex 7436 . . . . . . . . . . 11 (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤) +s 1s ) ∈ V
23 eqid 2735 . . . . . . . . . . . 12 (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)
24 oveq1 7410 . . . . . . . . . . . 12 (𝑡 = 𝑥 → (𝑡 +s 1s ) = (𝑥 +s 1s ))
25 oveq1 7410 . . . . . . . . . . . 12 (𝑡 = ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤) → (𝑡 +s 1s ) = (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤) +s 1s ))
2623, 24, 25frsucmpt2 8452 . . . . . . . . . . 11 ((𝑤 ∈ ω ∧ (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤) +s 1s ) ∈ V) → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘suc 𝑤) = (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤) +s 1s ))
2722, 26mpan2 691 . . . . . . . . . 10 (𝑤 ∈ ω → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘suc 𝑤) = (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤) +s 1s ))
2827eleq1d 2819 . . . . . . . . 9 (𝑤 ∈ ω → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘suc 𝑤) ∈ 𝐵 ↔ (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤) +s 1s ) ∈ 𝐵))
2921, 28imbitrrid 246 . . . . . . . 8 (𝑤 ∈ ω → ((𝜑 ∧ ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤) ∈ 𝐵) → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘suc 𝑤) ∈ 𝐵))
3029expd 415 . . . . . . 7 (𝑤 ∈ ω → (𝜑 → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤) ∈ 𝐵 → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘suc 𝑤) ∈ 𝐵)))
315, 7, 9, 14, 30finds2 7892 . . . . . 6 (𝑧 ∈ ω → (𝜑 → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑧) ∈ 𝐵))
3231com12 32 . . . . 5 (𝜑 → (𝑧 ∈ ω → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑧) ∈ 𝐵))
3332ralrimiv 3131 . . . 4 (𝜑 → ∀𝑧 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑧) ∈ 𝐵)
34 frfnom 8447 . . . . 5 (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω) Fn ω
35 ffnfv 7108 . . . . 5 ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω):ω⟶𝐵 ↔ ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω) Fn ω ∧ ∀𝑧 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑧) ∈ 𝐵))
3634, 35mpbiran 709 . . . 4 ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω):ω⟶𝐵 ↔ ∀𝑧 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑧) ∈ 𝐵)
3733, 36sylibr 234 . . 3 (𝜑 → (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω):ω⟶𝐵)
3837frnd 6713 . 2 (𝜑 → ran (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω) ⊆ 𝐵)
393, 38eqsstrd 3993 1 (𝜑𝑍𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3051  Vcvv 3459  wss 3926  c0 4308  cmpt 5201  ran crn 5655  cres 5656  cima 5657  suc csuc 6354   Fn wfn 6525  wf 6526  cfv 6530  (class class class)co 7403  ωcom 7859  reccrdg 8421   No csur 27601   1s c1s 27785   +s cadds 27909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-ov 7406  df-om 7860  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422
This theorem is referenced by:  noseqinds  28216  noseqssno  28217  peano5n0s  28241
  Copyright terms: Public domain W3C validator