MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noseqind Structured version   Visualization version   GIF version

Theorem noseqind 28312
Description: Peano's inductive postulate for surreal sequences. (Contributed by Scott Fenton, 18-Apr-2025.)
Hypotheses
Ref Expression
noseq.1 (𝜑𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) “ ω))
noseq.2 (𝜑𝐴 No )
noseqind.3 (𝜑𝐴𝐵)
noseqind.4 ((𝜑𝑦𝐵) → (𝑦 +s 1s ) ∈ 𝐵)
Assertion
Ref Expression
noseqind (𝜑𝑍𝐵)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝜑,𝑦   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐵(𝑥)   𝑍(𝑥,𝑦)

Proof of Theorem noseqind
Dummy variables 𝑤 𝑡 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 noseq.1 . . 3 (𝜑𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) “ ω))
2 df-ima 5701 . . 3 (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) “ ω) = ran (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)
31, 2eqtrdi 2790 . 2 (𝜑𝑍 = ran (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω))
4 fveq2 6906 . . . . . . . 8 (𝑧 = ∅ → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑧) = ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘∅))
54eleq1d 2823 . . . . . . 7 (𝑧 = ∅ → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑧) ∈ 𝐵 ↔ ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘∅) ∈ 𝐵))
6 fveq2 6906 . . . . . . . 8 (𝑧 = 𝑤 → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑧) = ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤))
76eleq1d 2823 . . . . . . 7 (𝑧 = 𝑤 → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑧) ∈ 𝐵 ↔ ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤) ∈ 𝐵))
8 fveq2 6906 . . . . . . . 8 (𝑧 = suc 𝑤 → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑧) = ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘suc 𝑤))
98eleq1d 2823 . . . . . . 7 (𝑧 = suc 𝑤 → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑧) ∈ 𝐵 ↔ ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘suc 𝑤) ∈ 𝐵))
10 noseq.2 . . . . . . . . 9 (𝜑𝐴 No )
11 fr0g 8474 . . . . . . . . 9 (𝐴 No → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘∅) = 𝐴)
1210, 11syl 17 . . . . . . . 8 (𝜑 → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘∅) = 𝐴)
13 noseqind.3 . . . . . . . 8 (𝜑𝐴𝐵)
1412, 13eqeltrd 2838 . . . . . . 7 (𝜑 → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘∅) ∈ 𝐵)
15 oveq1 7437 . . . . . . . . . . . . 13 (𝑦 = ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤) → (𝑦 +s 1s ) = (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤) +s 1s ))
1615eleq1d 2823 . . . . . . . . . . . 12 (𝑦 = ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤) → ((𝑦 +s 1s ) ∈ 𝐵 ↔ (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤) +s 1s ) ∈ 𝐵))
1716imbi2d 340 . . . . . . . . . . 11 (𝑦 = ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤) → ((𝜑 → (𝑦 +s 1s ) ∈ 𝐵) ↔ (𝜑 → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤) +s 1s ) ∈ 𝐵)))
18 noseqind.4 . . . . . . . . . . . 12 ((𝜑𝑦𝐵) → (𝑦 +s 1s ) ∈ 𝐵)
1918expcom 413 . . . . . . . . . . 11 (𝑦𝐵 → (𝜑 → (𝑦 +s 1s ) ∈ 𝐵))
2017, 19vtoclga 3576 . . . . . . . . . 10 (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤) ∈ 𝐵 → (𝜑 → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤) +s 1s ) ∈ 𝐵))
2120impcom 407 . . . . . . . . 9 ((𝜑 ∧ ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤) ∈ 𝐵) → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤) +s 1s ) ∈ 𝐵)
22 ovex 7463 . . . . . . . . . . 11 (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤) +s 1s ) ∈ V
23 eqid 2734 . . . . . . . . . . . 12 (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)
24 oveq1 7437 . . . . . . . . . . . 12 (𝑡 = 𝑥 → (𝑡 +s 1s ) = (𝑥 +s 1s ))
25 oveq1 7437 . . . . . . . . . . . 12 (𝑡 = ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤) → (𝑡 +s 1s ) = (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤) +s 1s ))
2623, 24, 25frsucmpt2 8478 . . . . . . . . . . 11 ((𝑤 ∈ ω ∧ (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤) +s 1s ) ∈ V) → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘suc 𝑤) = (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤) +s 1s ))
2722, 26mpan2 691 . . . . . . . . . 10 (𝑤 ∈ ω → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘suc 𝑤) = (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤) +s 1s ))
2827eleq1d 2823 . . . . . . . . 9 (𝑤 ∈ ω → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘suc 𝑤) ∈ 𝐵 ↔ (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤) +s 1s ) ∈ 𝐵))
2921, 28imbitrrid 246 . . . . . . . 8 (𝑤 ∈ ω → ((𝜑 ∧ ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤) ∈ 𝐵) → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘suc 𝑤) ∈ 𝐵))
3029expd 415 . . . . . . 7 (𝑤 ∈ ω → (𝜑 → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤) ∈ 𝐵 → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘suc 𝑤) ∈ 𝐵)))
315, 7, 9, 14, 30finds2 7920 . . . . . 6 (𝑧 ∈ ω → (𝜑 → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑧) ∈ 𝐵))
3231com12 32 . . . . 5 (𝜑 → (𝑧 ∈ ω → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑧) ∈ 𝐵))
3332ralrimiv 3142 . . . 4 (𝜑 → ∀𝑧 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑧) ∈ 𝐵)
34 frfnom 8473 . . . . 5 (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω) Fn ω
35 ffnfv 7138 . . . . 5 ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω):ω⟶𝐵 ↔ ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω) Fn ω ∧ ∀𝑧 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑧) ∈ 𝐵))
3634, 35mpbiran 709 . . . 4 ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω):ω⟶𝐵 ↔ ∀𝑧 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑧) ∈ 𝐵)
3733, 36sylibr 234 . . 3 (𝜑 → (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω):ω⟶𝐵)
3837frnd 6744 . 2 (𝜑 → ran (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω) ⊆ 𝐵)
393, 38eqsstrd 4033 1 (𝜑𝑍𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1536  wcel 2105  wral 3058  Vcvv 3477  wss 3962  c0 4338  cmpt 5230  ran crn 5689  cres 5690  cima 5691  suc csuc 6387   Fn wfn 6557  wf 6558  cfv 6562  (class class class)co 7430  ωcom 7886  reccrdg 8447   No csur 27698   1s c1s 27882   +s cadds 28006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pr 5437  ax-un 7753
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-ov 7433  df-om 7887  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448
This theorem is referenced by:  noseqinds  28313  noseqssno  28314  peano5n0s  28338
  Copyright terms: Public domain W3C validator