MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noseqind Structured version   Visualization version   GIF version

Theorem noseqind 28159
Description: Peano's inductive postulate for surreal sequences. (Contributed by Scott Fenton, 18-Apr-2025.)
Hypotheses
Ref Expression
noseq.1 (𝜑𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) “ ω))
noseq.2 (𝜑𝐴 No )
noseqind.3 (𝜑𝐴𝐵)
noseqind.4 ((𝜑𝑦𝐵) → (𝑦 +s 1s ) ∈ 𝐵)
Assertion
Ref Expression
noseqind (𝜑𝑍𝐵)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝜑,𝑦   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐵(𝑥)   𝑍(𝑥,𝑦)

Proof of Theorem noseqind
Dummy variables 𝑤 𝑡 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 noseq.1 . . 3 (𝜑𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) “ ω))
2 df-ima 5686 . . 3 (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) “ ω) = ran (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)
31, 2eqtrdi 2784 . 2 (𝜑𝑍 = ran (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω))
4 fveq2 6892 . . . . . . . 8 (𝑧 = ∅ → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑧) = ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘∅))
54eleq1d 2814 . . . . . . 7 (𝑧 = ∅ → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑧) ∈ 𝐵 ↔ ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘∅) ∈ 𝐵))
6 fveq2 6892 . . . . . . . 8 (𝑧 = 𝑤 → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑧) = ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤))
76eleq1d 2814 . . . . . . 7 (𝑧 = 𝑤 → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑧) ∈ 𝐵 ↔ ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤) ∈ 𝐵))
8 fveq2 6892 . . . . . . . 8 (𝑧 = suc 𝑤 → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑧) = ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘suc 𝑤))
98eleq1d 2814 . . . . . . 7 (𝑧 = suc 𝑤 → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑧) ∈ 𝐵 ↔ ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘suc 𝑤) ∈ 𝐵))
10 noseq.2 . . . . . . . . 9 (𝜑𝐴 No )
11 fr0g 8451 . . . . . . . . 9 (𝐴 No → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘∅) = 𝐴)
1210, 11syl 17 . . . . . . . 8 (𝜑 → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘∅) = 𝐴)
13 noseqind.3 . . . . . . . 8 (𝜑𝐴𝐵)
1412, 13eqeltrd 2829 . . . . . . 7 (𝜑 → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘∅) ∈ 𝐵)
15 oveq1 7422 . . . . . . . . . . . . 13 (𝑦 = ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤) → (𝑦 +s 1s ) = (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤) +s 1s ))
1615eleq1d 2814 . . . . . . . . . . . 12 (𝑦 = ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤) → ((𝑦 +s 1s ) ∈ 𝐵 ↔ (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤) +s 1s ) ∈ 𝐵))
1716imbi2d 340 . . . . . . . . . . 11 (𝑦 = ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤) → ((𝜑 → (𝑦 +s 1s ) ∈ 𝐵) ↔ (𝜑 → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤) +s 1s ) ∈ 𝐵)))
18 noseqind.4 . . . . . . . . . . . 12 ((𝜑𝑦𝐵) → (𝑦 +s 1s ) ∈ 𝐵)
1918expcom 413 . . . . . . . . . . 11 (𝑦𝐵 → (𝜑 → (𝑦 +s 1s ) ∈ 𝐵))
2017, 19vtoclga 3562 . . . . . . . . . 10 (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤) ∈ 𝐵 → (𝜑 → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤) +s 1s ) ∈ 𝐵))
2120impcom 407 . . . . . . . . 9 ((𝜑 ∧ ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤) ∈ 𝐵) → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤) +s 1s ) ∈ 𝐵)
22 ovex 7448 . . . . . . . . . . 11 (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤) +s 1s ) ∈ V
23 eqid 2728 . . . . . . . . . . . 12 (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)
24 oveq1 7422 . . . . . . . . . . . 12 (𝑡 = 𝑥 → (𝑡 +s 1s ) = (𝑥 +s 1s ))
25 oveq1 7422 . . . . . . . . . . . 12 (𝑡 = ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤) → (𝑡 +s 1s ) = (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤) +s 1s ))
2623, 24, 25frsucmpt2 8455 . . . . . . . . . . 11 ((𝑤 ∈ ω ∧ (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤) +s 1s ) ∈ V) → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘suc 𝑤) = (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤) +s 1s ))
2722, 26mpan2 690 . . . . . . . . . 10 (𝑤 ∈ ω → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘suc 𝑤) = (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤) +s 1s ))
2827eleq1d 2814 . . . . . . . . 9 (𝑤 ∈ ω → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘suc 𝑤) ∈ 𝐵 ↔ (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤) +s 1s ) ∈ 𝐵))
2921, 28imbitrrid 245 . . . . . . . 8 (𝑤 ∈ ω → ((𝜑 ∧ ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤) ∈ 𝐵) → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘suc 𝑤) ∈ 𝐵))
3029expd 415 . . . . . . 7 (𝑤 ∈ ω → (𝜑 → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑤) ∈ 𝐵 → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘suc 𝑤) ∈ 𝐵)))
315, 7, 9, 14, 30finds2 7901 . . . . . 6 (𝑧 ∈ ω → (𝜑 → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑧) ∈ 𝐵))
3231com12 32 . . . . 5 (𝜑 → (𝑧 ∈ ω → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑧) ∈ 𝐵))
3332ralrimiv 3141 . . . 4 (𝜑 → ∀𝑧 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑧) ∈ 𝐵)
34 frfnom 8450 . . . . 5 (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω) Fn ω
35 ffnfv 7124 . . . . 5 ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω):ω⟶𝐵 ↔ ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω) Fn ω ∧ ∀𝑧 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑧) ∈ 𝐵))
3634, 35mpbiran 708 . . . 4 ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω):ω⟶𝐵 ↔ ∀𝑧 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω)‘𝑧) ∈ 𝐵)
3733, 36sylibr 233 . . 3 (𝜑 → (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω):ω⟶𝐵)
3837frnd 6725 . 2 (𝜑 → ran (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) ↾ ω) ⊆ 𝐵)
393, 38eqsstrd 4017 1 (𝜑𝑍𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  wral 3057  Vcvv 3470  wss 3945  c0 4319  cmpt 5226  ran crn 5674  cres 5675  cima 5676  suc csuc 6366   Fn wfn 6538  wf 6539  cfv 6543  (class class class)co 7415  ωcom 7865  reccrdg 8424   No csur 27567   1s c1s 27750   +s cadds 27870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5294  ax-nul 5301  ax-pr 5424  ax-un 7735
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-ral 3058  df-rex 3067  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-iun 4994  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7418  df-om 7866  df-2nd 7989  df-frecs 8281  df-wrecs 8312  df-recs 8386  df-rdg 8425
This theorem is referenced by:  noseqinds  28160  noseqssno  28161  peano5n0s  28185
  Copyright terms: Public domain W3C validator