MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  n0sind Structured version   Visualization version   GIF version

Theorem n0sind 28225
Description: Principle of Mathematical Induction (inference schema). Compare nnind 12204 and finds 7872. (Contributed by Scott Fenton, 17-Mar-2025.)
Hypotheses
Ref Expression
n0sind.1 (𝑥 = 0s → (𝜑𝜓))
n0sind.2 (𝑥 = 𝑦 → (𝜑𝜒))
n0sind.3 (𝑥 = (𝑦 +s 1s ) → (𝜑𝜃))
n0sind.4 (𝑥 = 𝐴 → (𝜑𝜏))
n0sind.5 𝜓
n0sind.6 (𝑦 ∈ ℕ0s → (𝜒𝜃))
Assertion
Ref Expression
n0sind (𝐴 ∈ ℕ0s𝜏)
Distinct variable groups:   𝑥,𝑦   𝑥,𝐴   𝜓,𝑥   𝜒,𝑥   𝜃,𝑥   𝜏,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑦)   𝜃(𝑦)   𝜏(𝑦)   𝐴(𝑦)

Proof of Theorem n0sind
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 tru 1544 . 2
2 df-n0s 28208 . . . 4 0s = (rec((𝑛 ∈ V ↦ (𝑛 +s 1s )), 0s ) “ ω)
32a1i 11 . . 3 (⊤ → ℕ0s = (rec((𝑛 ∈ V ↦ (𝑛 +s 1s )), 0s ) “ ω))
4 0sno 27738 . . . 4 0s No
54a1i 11 . . 3 (⊤ → 0s No )
6 n0sind.1 . . 3 (𝑥 = 0s → (𝜑𝜓))
7 n0sind.2 . . 3 (𝑥 = 𝑦 → (𝜑𝜒))
8 n0sind.3 . . 3 (𝑥 = (𝑦 +s 1s ) → (𝜑𝜃))
9 n0sind.4 . . 3 (𝑥 = 𝐴 → (𝜑𝜏))
10 n0sind.5 . . . 4 𝜓
1110a1i 11 . . 3 (⊤ → 𝜓)
12 n0sind.6 . . . 4 (𝑦 ∈ ℕ0s → (𝜒𝜃))
1312adantl 481 . . 3 ((⊤ ∧ 𝑦 ∈ ℕ0s) → (𝜒𝜃))
143, 5, 6, 7, 8, 9, 11, 13noseqinds 28187 . 2 ((⊤ ∧ 𝐴 ∈ ℕ0s) → 𝜏)
151, 14mpan 690 1 (𝐴 ∈ ℕ0s𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wtru 1541  wcel 2109  Vcvv 3447  cmpt 5188  cima 5641  (class class class)co 7387  ωcom 7842  reccrdg 8377   No csur 27551   0s c0s 27734   1s c1s 27735   +s cadds 27866  0scnn0s 28206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-no 27554  df-slt 27555  df-bday 27556  df-sslt 27693  df-scut 27695  df-0s 27736  df-n0s 28208
This theorem is referenced by:  n0scut  28226  n0sge0  28230  n0s0suc  28234  n0addscl  28236  n0mulscl  28237  n0sbday  28244  n0s0m1  28252  n0subs  28253  n0p1nns  28260  dfnns2  28261  eucliddivs  28265  peano5uzs  28292  n0seo  28307  expscllem  28316  expadds  28320  expsne0  28321  expsgt0  28322  pw2recs  28323  pw2cut  28335  zs12bday  28343
  Copyright terms: Public domain W3C validator