| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > n0sind | Structured version Visualization version GIF version | ||
| Description: Principle of Mathematical Induction (inference schema). Compare nnind 12211 and finds 7875. (Contributed by Scott Fenton, 17-Mar-2025.) |
| Ref | Expression |
|---|---|
| n0sind.1 | ⊢ (𝑥 = 0s → (𝜑 ↔ 𝜓)) |
| n0sind.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) |
| n0sind.3 | ⊢ (𝑥 = (𝑦 +s 1s ) → (𝜑 ↔ 𝜃)) |
| n0sind.4 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) |
| n0sind.5 | ⊢ 𝜓 |
| n0sind.6 | ⊢ (𝑦 ∈ ℕ0s → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| n0sind | ⊢ (𝐴 ∈ ℕ0s → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tru 1544 | . 2 ⊢ ⊤ | |
| 2 | df-n0s 28215 | . . . 4 ⊢ ℕ0s = (rec((𝑛 ∈ V ↦ (𝑛 +s 1s )), 0s ) “ ω) | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → ℕ0s = (rec((𝑛 ∈ V ↦ (𝑛 +s 1s )), 0s ) “ ω)) |
| 4 | 0sno 27745 | . . . 4 ⊢ 0s ∈ No | |
| 5 | 4 | a1i 11 | . . 3 ⊢ (⊤ → 0s ∈ No ) |
| 6 | n0sind.1 | . . 3 ⊢ (𝑥 = 0s → (𝜑 ↔ 𝜓)) | |
| 7 | n0sind.2 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) | |
| 8 | n0sind.3 | . . 3 ⊢ (𝑥 = (𝑦 +s 1s ) → (𝜑 ↔ 𝜃)) | |
| 9 | n0sind.4 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) | |
| 10 | n0sind.5 | . . . 4 ⊢ 𝜓 | |
| 11 | 10 | a1i 11 | . . 3 ⊢ (⊤ → 𝜓) |
| 12 | n0sind.6 | . . . 4 ⊢ (𝑦 ∈ ℕ0s → (𝜒 → 𝜃)) | |
| 13 | 12 | adantl 481 | . . 3 ⊢ ((⊤ ∧ 𝑦 ∈ ℕ0s) → (𝜒 → 𝜃)) |
| 14 | 3, 5, 6, 7, 8, 9, 11, 13 | noseqinds 28194 | . 2 ⊢ ((⊤ ∧ 𝐴 ∈ ℕ0s) → 𝜏) |
| 15 | 1, 14 | mpan 690 | 1 ⊢ (𝐴 ∈ ℕ0s → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 Vcvv 3450 ↦ cmpt 5191 “ cima 5644 (class class class)co 7390 ωcom 7845 reccrdg 8380 No csur 27558 0s c0s 27741 1s c1s 27742 +s cadds 27873 ℕ0scnn0s 28213 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-no 27561 df-slt 27562 df-bday 27563 df-sslt 27700 df-scut 27702 df-0s 27743 df-n0s 28215 |
| This theorem is referenced by: n0scut 28233 n0sge0 28237 n0s0suc 28241 n0addscl 28243 n0mulscl 28244 n0sbday 28251 n0s0m1 28259 n0subs 28260 n0p1nns 28267 dfnns2 28268 eucliddivs 28272 peano5uzs 28299 n0seo 28314 expscllem 28323 expadds 28327 expsne0 28328 expsgt0 28329 pw2recs 28330 pw2cut 28342 zs12bday 28350 |
| Copyright terms: Public domain | W3C validator |