![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > n0sind | Structured version Visualization version GIF version |
Description: Principle of Mathematical Induction (inference schema). Compare nnind 12311 and finds 7936. (Contributed by Scott Fenton, 17-Mar-2025.) |
Ref | Expression |
---|---|
n0sind.1 | ⊢ (𝑥 = 0s → (𝜑 ↔ 𝜓)) |
n0sind.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) |
n0sind.3 | ⊢ (𝑥 = (𝑦 +s 1s ) → (𝜑 ↔ 𝜃)) |
n0sind.4 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) |
n0sind.5 | ⊢ 𝜓 |
n0sind.6 | ⊢ (𝑦 ∈ ℕ0s → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
n0sind | ⊢ (𝐴 ∈ ℕ0s → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tru 1541 | . 2 ⊢ ⊤ | |
2 | df-n0s 28338 | . . . 4 ⊢ ℕ0s = (rec((𝑛 ∈ V ↦ (𝑛 +s 1s )), 0s ) “ ω) | |
3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → ℕ0s = (rec((𝑛 ∈ V ↦ (𝑛 +s 1s )), 0s ) “ ω)) |
4 | 0sno 27889 | . . . 4 ⊢ 0s ∈ No | |
5 | 4 | a1i 11 | . . 3 ⊢ (⊤ → 0s ∈ No ) |
6 | n0sind.1 | . . 3 ⊢ (𝑥 = 0s → (𝜑 ↔ 𝜓)) | |
7 | n0sind.2 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) | |
8 | n0sind.3 | . . 3 ⊢ (𝑥 = (𝑦 +s 1s ) → (𝜑 ↔ 𝜃)) | |
9 | n0sind.4 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) | |
10 | n0sind.5 | . . . 4 ⊢ 𝜓 | |
11 | 10 | a1i 11 | . . 3 ⊢ (⊤ → 𝜓) |
12 | n0sind.6 | . . . 4 ⊢ (𝑦 ∈ ℕ0s → (𝜒 → 𝜃)) | |
13 | 12 | adantl 481 | . . 3 ⊢ ((⊤ ∧ 𝑦 ∈ ℕ0s) → (𝜒 → 𝜃)) |
14 | 3, 5, 6, 7, 8, 9, 11, 13 | noseqinds 28317 | . 2 ⊢ ((⊤ ∧ 𝐴 ∈ ℕ0s) → 𝜏) |
15 | 1, 14 | mpan 689 | 1 ⊢ (𝐴 ∈ ℕ0s → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ⊤wtru 1538 ∈ wcel 2108 Vcvv 3488 ↦ cmpt 5249 “ cima 5703 (class class class)co 7448 ωcom 7903 reccrdg 8465 No csur 27702 0s c0s 27885 1s c1s 27886 +s cadds 28010 ℕ0scnn0s 28336 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-no 27705 df-slt 27706 df-bday 27707 df-sslt 27844 df-scut 27846 df-0s 27887 df-n0s 28338 |
This theorem is referenced by: n0scut 28356 n0sge0 28359 n0s0suc 28363 n0addscl 28365 n0mulscl 28366 n0sbday 28372 n0s0m1 28377 n0subs 28378 n0p1nns 28379 dfnns2 28380 peano5uzs 28408 n0seo 28423 expscl 28431 expsne0 28432 expsgt0 28433 cutpw2 28435 pw2bday 28436 pw2cut 28438 zs12bday 28442 |
Copyright terms: Public domain | W3C validator |