![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > n0sind | Structured version Visualization version GIF version |
Description: Principle of Mathematical Induction (inference schema). Compare nnind 12234 and finds 7891. (Contributed by Scott Fenton, 17-Mar-2025.) |
Ref | Expression |
---|---|
n0sind.1 | ⊢ (𝑥 = 0s → (𝜑 ↔ 𝜓)) |
n0sind.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) |
n0sind.3 | ⊢ (𝑥 = (𝑦 +s 1s ) → (𝜑 ↔ 𝜃)) |
n0sind.4 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) |
n0sind.5 | ⊢ 𝜓 |
n0sind.6 | ⊢ (𝑦 ∈ ℕ0s → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
n0sind | ⊢ (𝐴 ∈ ℕ0s → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0n0s 27939 | . . . . . 6 ⊢ 0s ∈ ℕ0s | |
2 | n0sind.5 | . . . . . 6 ⊢ 𝜓 | |
3 | n0sind.1 | . . . . . . 7 ⊢ (𝑥 = 0s → (𝜑 ↔ 𝜓)) | |
4 | 3 | elrab 3682 | . . . . . 6 ⊢ ( 0s ∈ {𝑥 ∈ ℕ0s ∣ 𝜑} ↔ ( 0s ∈ ℕ0s ∧ 𝜓)) |
5 | 1, 2, 4 | mpbir2an 707 | . . . . 5 ⊢ 0s ∈ {𝑥 ∈ ℕ0s ∣ 𝜑} |
6 | n0sind.6 | . . . . . . . . 9 ⊢ (𝑦 ∈ ℕ0s → (𝜒 → 𝜃)) | |
7 | peano2n0s 27940 | . . . . . . . . 9 ⊢ (𝑦 ∈ ℕ0s → (𝑦 +s 1s ) ∈ ℕ0s) | |
8 | 6, 7 | jctild 524 | . . . . . . . 8 ⊢ (𝑦 ∈ ℕ0s → (𝜒 → ((𝑦 +s 1s ) ∈ ℕ0s ∧ 𝜃))) |
9 | 8 | imp 405 | . . . . . . 7 ⊢ ((𝑦 ∈ ℕ0s ∧ 𝜒) → ((𝑦 +s 1s ) ∈ ℕ0s ∧ 𝜃)) |
10 | n0sind.2 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) | |
11 | 10 | elrab 3682 | . . . . . . 7 ⊢ (𝑦 ∈ {𝑥 ∈ ℕ0s ∣ 𝜑} ↔ (𝑦 ∈ ℕ0s ∧ 𝜒)) |
12 | n0sind.3 | . . . . . . . 8 ⊢ (𝑥 = (𝑦 +s 1s ) → (𝜑 ↔ 𝜃)) | |
13 | 12 | elrab 3682 | . . . . . . 7 ⊢ ((𝑦 +s 1s ) ∈ {𝑥 ∈ ℕ0s ∣ 𝜑} ↔ ((𝑦 +s 1s ) ∈ ℕ0s ∧ 𝜃)) |
14 | 9, 11, 13 | 3imtr4i 291 | . . . . . 6 ⊢ (𝑦 ∈ {𝑥 ∈ ℕ0s ∣ 𝜑} → (𝑦 +s 1s ) ∈ {𝑥 ∈ ℕ0s ∣ 𝜑}) |
15 | 14 | rgen 3061 | . . . . 5 ⊢ ∀𝑦 ∈ {𝑥 ∈ ℕ0s ∣ 𝜑} (𝑦 +s 1s ) ∈ {𝑥 ∈ ℕ0s ∣ 𝜑} |
16 | peano5n0s 27935 | . . . . 5 ⊢ (( 0s ∈ {𝑥 ∈ ℕ0s ∣ 𝜑} ∧ ∀𝑦 ∈ {𝑥 ∈ ℕ0s ∣ 𝜑} (𝑦 +s 1s ) ∈ {𝑥 ∈ ℕ0s ∣ 𝜑}) → ℕ0s ⊆ {𝑥 ∈ ℕ0s ∣ 𝜑}) | |
17 | 5, 15, 16 | mp2an 688 | . . . 4 ⊢ ℕ0s ⊆ {𝑥 ∈ ℕ0s ∣ 𝜑} |
18 | 17 | sseli 3977 | . . 3 ⊢ (𝐴 ∈ ℕ0s → 𝐴 ∈ {𝑥 ∈ ℕ0s ∣ 𝜑}) |
19 | n0sind.4 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) | |
20 | 19 | elrab 3682 | . . 3 ⊢ (𝐴 ∈ {𝑥 ∈ ℕ0s ∣ 𝜑} ↔ (𝐴 ∈ ℕ0s ∧ 𝜏)) |
21 | 18, 20 | sylib 217 | . 2 ⊢ (𝐴 ∈ ℕ0s → (𝐴 ∈ ℕ0s ∧ 𝜏)) |
22 | 21 | simprd 494 | 1 ⊢ (𝐴 ∈ ℕ0s → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1539 ∈ wcel 2104 ∀wral 3059 {crab 3430 ⊆ wss 3947 (class class class)co 7411 0s c0s 27560 1s c1s 27561 +s cadds 27681 ℕ0scnn0s 27929 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-2o 8469 df-no 27382 df-slt 27383 df-bday 27384 df-sslt 27519 df-scut 27521 df-0s 27562 df-n0s 27931 |
This theorem is referenced by: n0scut 27943 |
Copyright terms: Public domain | W3C validator |