| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > n0sind | Structured version Visualization version GIF version | ||
| Description: Principle of Mathematical Induction (inference schema). Compare nnind 12153 and finds 7835. (Contributed by Scott Fenton, 17-Mar-2025.) |
| Ref | Expression |
|---|---|
| n0sind.1 | ⊢ (𝑥 = 0s → (𝜑 ↔ 𝜓)) |
| n0sind.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) |
| n0sind.3 | ⊢ (𝑥 = (𝑦 +s 1s ) → (𝜑 ↔ 𝜃)) |
| n0sind.4 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) |
| n0sind.5 | ⊢ 𝜓 |
| n0sind.6 | ⊢ (𝑦 ∈ ℕ0s → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| n0sind | ⊢ (𝐴 ∈ ℕ0s → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tru 1545 | . 2 ⊢ ⊤ | |
| 2 | df-n0s 28254 | . . . 4 ⊢ ℕ0s = (rec((𝑛 ∈ V ↦ (𝑛 +s 1s )), 0s ) “ ω) | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → ℕ0s = (rec((𝑛 ∈ V ↦ (𝑛 +s 1s )), 0s ) “ ω)) |
| 4 | 0sno 27780 | . . . 4 ⊢ 0s ∈ No | |
| 5 | 4 | a1i 11 | . . 3 ⊢ (⊤ → 0s ∈ No ) |
| 6 | n0sind.1 | . . 3 ⊢ (𝑥 = 0s → (𝜑 ↔ 𝜓)) | |
| 7 | n0sind.2 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) | |
| 8 | n0sind.3 | . . 3 ⊢ (𝑥 = (𝑦 +s 1s ) → (𝜑 ↔ 𝜃)) | |
| 9 | n0sind.4 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) | |
| 10 | n0sind.5 | . . . 4 ⊢ 𝜓 | |
| 11 | 10 | a1i 11 | . . 3 ⊢ (⊤ → 𝜓) |
| 12 | n0sind.6 | . . . 4 ⊢ (𝑦 ∈ ℕ0s → (𝜒 → 𝜃)) | |
| 13 | 12 | adantl 481 | . . 3 ⊢ ((⊤ ∧ 𝑦 ∈ ℕ0s) → (𝜒 → 𝜃)) |
| 14 | 3, 5, 6, 7, 8, 9, 11, 13 | noseqinds 28233 | . 2 ⊢ ((⊤ ∧ 𝐴 ∈ ℕ0s) → 𝜏) |
| 15 | 1, 14 | mpan 690 | 1 ⊢ (𝐴 ∈ ℕ0s → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ⊤wtru 1542 ∈ wcel 2113 Vcvv 3438 ↦ cmpt 5176 “ cima 5624 (class class class)co 7355 ωcom 7805 reccrdg 8337 No csur 27588 0s c0s 27776 1s c1s 27777 +s cadds 27912 ℕ0scnn0s 28252 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-2o 8395 df-no 27591 df-slt 27592 df-bday 27593 df-sslt 27731 df-scut 27733 df-0s 27778 df-n0s 28254 |
| This theorem is referenced by: n0scut 28272 n0sge0 28276 n0s0suc 28280 n0addscl 28282 n0mulscl 28283 n0sbday 28290 n0s0m1 28298 n0subs 28299 n0p1nns 28306 dfnns2 28307 eucliddivs 28311 peano5uzs 28338 n0seo 28354 expscllem 28363 expadds 28368 expsne0 28369 expsgt0 28370 pw2recs 28371 pw2cut 28390 pw2cut2 28392 zs12zodd 28402 zs12bday 28404 |
| Copyright terms: Public domain | W3C validator |