![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > n0sind | Structured version Visualization version GIF version |
Description: Principle of Mathematical Induction (inference schema). Compare nnind 12275 and finds 7900. (Contributed by Scott Fenton, 17-Mar-2025.) |
Ref | Expression |
---|---|
n0sind.1 | ⊢ (𝑥 = 0s → (𝜑 ↔ 𝜓)) |
n0sind.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) |
n0sind.3 | ⊢ (𝑥 = (𝑦 +s 1s ) → (𝜑 ↔ 𝜃)) |
n0sind.4 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) |
n0sind.5 | ⊢ 𝜓 |
n0sind.6 | ⊢ (𝑦 ∈ ℕ0s → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
n0sind | ⊢ (𝐴 ∈ ℕ0s → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tru 1538 | . 2 ⊢ ⊤ | |
2 | df-n0s 28284 | . . . 4 ⊢ ℕ0s = (rec((𝑛 ∈ V ↦ (𝑛 +s 1s )), 0s ) “ ω) | |
3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → ℕ0s = (rec((𝑛 ∈ V ↦ (𝑛 +s 1s )), 0s ) “ ω)) |
4 | 0sno 27852 | . . . 4 ⊢ 0s ∈ No | |
5 | 4 | a1i 11 | . . 3 ⊢ (⊤ → 0s ∈ No ) |
6 | n0sind.1 | . . 3 ⊢ (𝑥 = 0s → (𝜑 ↔ 𝜓)) | |
7 | n0sind.2 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) | |
8 | n0sind.3 | . . 3 ⊢ (𝑥 = (𝑦 +s 1s ) → (𝜑 ↔ 𝜃)) | |
9 | n0sind.4 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) | |
10 | n0sind.5 | . . . 4 ⊢ 𝜓 | |
11 | 10 | a1i 11 | . . 3 ⊢ (⊤ → 𝜓) |
12 | n0sind.6 | . . . 4 ⊢ (𝑦 ∈ ℕ0s → (𝜒 → 𝜃)) | |
13 | 12 | adantl 480 | . . 3 ⊢ ((⊤ ∧ 𝑦 ∈ ℕ0s) → (𝜒 → 𝜃)) |
14 | 3, 5, 6, 7, 8, 9, 11, 13 | noseqinds 28263 | . 2 ⊢ ((⊤ ∧ 𝐴 ∈ ℕ0s) → 𝜏) |
15 | 1, 14 | mpan 688 | 1 ⊢ (𝐴 ∈ ℕ0s → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1534 ⊤wtru 1535 ∈ wcel 2099 Vcvv 3464 ↦ cmpt 5228 “ cima 5677 (class class class)co 7415 ωcom 7867 reccrdg 8430 No csur 27665 0s c0s 27848 1s c1s 27849 +s cadds 27969 ℕ0scnn0s 28282 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5282 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7737 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rmo 3365 df-reu 3366 df-rab 3421 df-v 3466 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3968 df-nul 4325 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4908 df-int 4949 df-iun 4997 df-br 5146 df-opab 5208 df-mpt 5229 df-tr 5263 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6304 df-ord 6370 df-on 6371 df-lim 6372 df-suc 6373 df-iota 6497 df-fun 6547 df-fn 6548 df-f 6549 df-f1 6550 df-fo 6551 df-f1o 6552 df-fv 6553 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-om 7868 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-2o 8488 df-no 27668 df-slt 27669 df-bday 27670 df-sslt 27807 df-scut 27809 df-0s 27850 df-n0s 28284 |
This theorem is referenced by: n0scut 28302 n0sge0 28305 n0addscl 28309 n0mulscl 28310 n0sbday 28316 n0s0m1 28321 n0subs 28322 n0p1nns 28323 |
Copyright terms: Public domain | W3C validator |