MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  n0sind Structured version   Visualization version   GIF version

Theorem n0sind 28271
Description: Principle of Mathematical Induction (inference schema). Compare nnind 12153 and finds 7835. (Contributed by Scott Fenton, 17-Mar-2025.)
Hypotheses
Ref Expression
n0sind.1 (𝑥 = 0s → (𝜑𝜓))
n0sind.2 (𝑥 = 𝑦 → (𝜑𝜒))
n0sind.3 (𝑥 = (𝑦 +s 1s ) → (𝜑𝜃))
n0sind.4 (𝑥 = 𝐴 → (𝜑𝜏))
n0sind.5 𝜓
n0sind.6 (𝑦 ∈ ℕ0s → (𝜒𝜃))
Assertion
Ref Expression
n0sind (𝐴 ∈ ℕ0s𝜏)
Distinct variable groups:   𝑥,𝑦   𝑥,𝐴   𝜓,𝑥   𝜒,𝑥   𝜃,𝑥   𝜏,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑦)   𝜃(𝑦)   𝜏(𝑦)   𝐴(𝑦)

Proof of Theorem n0sind
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 tru 1545 . 2
2 df-n0s 28254 . . . 4 0s = (rec((𝑛 ∈ V ↦ (𝑛 +s 1s )), 0s ) “ ω)
32a1i 11 . . 3 (⊤ → ℕ0s = (rec((𝑛 ∈ V ↦ (𝑛 +s 1s )), 0s ) “ ω))
4 0sno 27780 . . . 4 0s No
54a1i 11 . . 3 (⊤ → 0s No )
6 n0sind.1 . . 3 (𝑥 = 0s → (𝜑𝜓))
7 n0sind.2 . . 3 (𝑥 = 𝑦 → (𝜑𝜒))
8 n0sind.3 . . 3 (𝑥 = (𝑦 +s 1s ) → (𝜑𝜃))
9 n0sind.4 . . 3 (𝑥 = 𝐴 → (𝜑𝜏))
10 n0sind.5 . . . 4 𝜓
1110a1i 11 . . 3 (⊤ → 𝜓)
12 n0sind.6 . . . 4 (𝑦 ∈ ℕ0s → (𝜒𝜃))
1312adantl 481 . . 3 ((⊤ ∧ 𝑦 ∈ ℕ0s) → (𝜒𝜃))
143, 5, 6, 7, 8, 9, 11, 13noseqinds 28233 . 2 ((⊤ ∧ 𝐴 ∈ ℕ0s) → 𝜏)
151, 14mpan 690 1 (𝐴 ∈ ℕ0s𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wtru 1542  wcel 2113  Vcvv 3438  cmpt 5176  cima 5624  (class class class)co 7355  ωcom 7805  reccrdg 8337   No csur 27588   0s c0s 27776   1s c1s 27777   +s cadds 27912  0scnn0s 28252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-no 27591  df-slt 27592  df-bday 27593  df-sslt 27731  df-scut 27733  df-0s 27778  df-n0s 28254
This theorem is referenced by:  n0scut  28272  n0sge0  28276  n0s0suc  28280  n0addscl  28282  n0mulscl  28283  n0sbday  28290  n0s0m1  28298  n0subs  28299  n0p1nns  28306  dfnns2  28307  eucliddivs  28311  peano5uzs  28338  n0seo  28354  expscllem  28363  expadds  28368  expsne0  28369  expsgt0  28370  pw2recs  28371  pw2cut  28390  pw2cut2  28392  zs12zodd  28402  zs12bday  28404
  Copyright terms: Public domain W3C validator