| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > n0sind | Structured version Visualization version GIF version | ||
| Description: Principle of Mathematical Induction (inference schema). Compare nnind 12285 and finds 7919. (Contributed by Scott Fenton, 17-Mar-2025.) |
| Ref | Expression |
|---|---|
| n0sind.1 | ⊢ (𝑥 = 0s → (𝜑 ↔ 𝜓)) |
| n0sind.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) |
| n0sind.3 | ⊢ (𝑥 = (𝑦 +s 1s ) → (𝜑 ↔ 𝜃)) |
| n0sind.4 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) |
| n0sind.5 | ⊢ 𝜓 |
| n0sind.6 | ⊢ (𝑦 ∈ ℕ0s → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| n0sind | ⊢ (𝐴 ∈ ℕ0s → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tru 1543 | . 2 ⊢ ⊤ | |
| 2 | df-n0s 28321 | . . . 4 ⊢ ℕ0s = (rec((𝑛 ∈ V ↦ (𝑛 +s 1s )), 0s ) “ ω) | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → ℕ0s = (rec((𝑛 ∈ V ↦ (𝑛 +s 1s )), 0s ) “ ω)) |
| 4 | 0sno 27872 | . . . 4 ⊢ 0s ∈ No | |
| 5 | 4 | a1i 11 | . . 3 ⊢ (⊤ → 0s ∈ No ) |
| 6 | n0sind.1 | . . 3 ⊢ (𝑥 = 0s → (𝜑 ↔ 𝜓)) | |
| 7 | n0sind.2 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) | |
| 8 | n0sind.3 | . . 3 ⊢ (𝑥 = (𝑦 +s 1s ) → (𝜑 ↔ 𝜃)) | |
| 9 | n0sind.4 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) | |
| 10 | n0sind.5 | . . . 4 ⊢ 𝜓 | |
| 11 | 10 | a1i 11 | . . 3 ⊢ (⊤ → 𝜓) |
| 12 | n0sind.6 | . . . 4 ⊢ (𝑦 ∈ ℕ0s → (𝜒 → 𝜃)) | |
| 13 | 12 | adantl 481 | . . 3 ⊢ ((⊤ ∧ 𝑦 ∈ ℕ0s) → (𝜒 → 𝜃)) |
| 14 | 3, 5, 6, 7, 8, 9, 11, 13 | noseqinds 28300 | . 2 ⊢ ((⊤ ∧ 𝐴 ∈ ℕ0s) → 𝜏) |
| 15 | 1, 14 | mpan 690 | 1 ⊢ (𝐴 ∈ ℕ0s → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1539 ⊤wtru 1540 ∈ wcel 2107 Vcvv 3479 ↦ cmpt 5224 “ cima 5687 (class class class)co 7432 ωcom 7888 reccrdg 8450 No csur 27685 0s c0s 27868 1s c1s 27869 +s cadds 27993 ℕ0scnn0s 28319 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-2o 8508 df-no 27688 df-slt 27689 df-bday 27690 df-sslt 27827 df-scut 27829 df-0s 27870 df-n0s 28321 |
| This theorem is referenced by: n0scut 28339 n0sge0 28342 n0s0suc 28346 n0addscl 28348 n0mulscl 28349 n0sbday 28355 n0s0m1 28360 n0subs 28361 n0p1nns 28362 dfnns2 28363 peano5uzs 28391 n0seo 28406 expscl 28414 expsne0 28415 expsgt0 28416 cutpw2 28418 pw2bday 28419 pw2cut 28421 zs12bday 28425 |
| Copyright terms: Public domain | W3C validator |