MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  n0sind Structured version   Visualization version   GIF version

Theorem n0sind 28254
Description: Principle of Mathematical Induction (inference schema). Compare nnind 12135 and finds 7821. (Contributed by Scott Fenton, 17-Mar-2025.)
Hypotheses
Ref Expression
n0sind.1 (𝑥 = 0s → (𝜑𝜓))
n0sind.2 (𝑥 = 𝑦 → (𝜑𝜒))
n0sind.3 (𝑥 = (𝑦 +s 1s ) → (𝜑𝜃))
n0sind.4 (𝑥 = 𝐴 → (𝜑𝜏))
n0sind.5 𝜓
n0sind.6 (𝑦 ∈ ℕ0s → (𝜒𝜃))
Assertion
Ref Expression
n0sind (𝐴 ∈ ℕ0s𝜏)
Distinct variable groups:   𝑥,𝑦   𝑥,𝐴   𝜓,𝑥   𝜒,𝑥   𝜃,𝑥   𝜏,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑦)   𝜃(𝑦)   𝜏(𝑦)   𝐴(𝑦)

Proof of Theorem n0sind
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 tru 1545 . 2
2 df-n0s 28237 . . . 4 0s = (rec((𝑛 ∈ V ↦ (𝑛 +s 1s )), 0s ) “ ω)
32a1i 11 . . 3 (⊤ → ℕ0s = (rec((𝑛 ∈ V ↦ (𝑛 +s 1s )), 0s ) “ ω))
4 0sno 27763 . . . 4 0s No
54a1i 11 . . 3 (⊤ → 0s No )
6 n0sind.1 . . 3 (𝑥 = 0s → (𝜑𝜓))
7 n0sind.2 . . 3 (𝑥 = 𝑦 → (𝜑𝜒))
8 n0sind.3 . . 3 (𝑥 = (𝑦 +s 1s ) → (𝜑𝜃))
9 n0sind.4 . . 3 (𝑥 = 𝐴 → (𝜑𝜏))
10 n0sind.5 . . . 4 𝜓
1110a1i 11 . . 3 (⊤ → 𝜓)
12 n0sind.6 . . . 4 (𝑦 ∈ ℕ0s → (𝜒𝜃))
1312adantl 481 . . 3 ((⊤ ∧ 𝑦 ∈ ℕ0s) → (𝜒𝜃))
143, 5, 6, 7, 8, 9, 11, 13noseqinds 28216 . 2 ((⊤ ∧ 𝐴 ∈ ℕ0s) → 𝜏)
151, 14mpan 690 1 (𝐴 ∈ ℕ0s𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wtru 1542  wcel 2110  Vcvv 3434  cmpt 5170  cima 5617  (class class class)co 7341  ωcom 7791  reccrdg 8323   No csur 27571   0s c0s 27759   1s c1s 27760   +s cadds 27895  0scnn0s 28235
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-tp 4579  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-no 27574  df-slt 27575  df-bday 27576  df-sslt 27714  df-scut 27716  df-0s 27761  df-n0s 28237
This theorem is referenced by:  n0scut  28255  n0sge0  28259  n0s0suc  28263  n0addscl  28265  n0mulscl  28266  n0sbday  28273  n0s0m1  28281  n0subs  28282  n0p1nns  28289  dfnns2  28290  eucliddivs  28294  peano5uzs  28321  n0seo  28337  expscllem  28346  expadds  28351  expsne0  28352  expsgt0  28353  pw2recs  28354  pw2cut  28373  pw2cut2  28375  zs12zodd  28385  zs12bday  28387
  Copyright terms: Public domain W3C validator