| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > n0sind | Structured version Visualization version GIF version | ||
| Description: Principle of Mathematical Induction (inference schema). Compare nnind 12164 and finds 7836. (Contributed by Scott Fenton, 17-Mar-2025.) |
| Ref | Expression |
|---|---|
| n0sind.1 | ⊢ (𝑥 = 0s → (𝜑 ↔ 𝜓)) |
| n0sind.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) |
| n0sind.3 | ⊢ (𝑥 = (𝑦 +s 1s ) → (𝜑 ↔ 𝜃)) |
| n0sind.4 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) |
| n0sind.5 | ⊢ 𝜓 |
| n0sind.6 | ⊢ (𝑦 ∈ ℕ0s → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| n0sind | ⊢ (𝐴 ∈ ℕ0s → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tru 1544 | . 2 ⊢ ⊤ | |
| 2 | df-n0s 28231 | . . . 4 ⊢ ℕ0s = (rec((𝑛 ∈ V ↦ (𝑛 +s 1s )), 0s ) “ ω) | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → ℕ0s = (rec((𝑛 ∈ V ↦ (𝑛 +s 1s )), 0s ) “ ω)) |
| 4 | 0sno 27758 | . . . 4 ⊢ 0s ∈ No | |
| 5 | 4 | a1i 11 | . . 3 ⊢ (⊤ → 0s ∈ No ) |
| 6 | n0sind.1 | . . 3 ⊢ (𝑥 = 0s → (𝜑 ↔ 𝜓)) | |
| 7 | n0sind.2 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) | |
| 8 | n0sind.3 | . . 3 ⊢ (𝑥 = (𝑦 +s 1s ) → (𝜑 ↔ 𝜃)) | |
| 9 | n0sind.4 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) | |
| 10 | n0sind.5 | . . . 4 ⊢ 𝜓 | |
| 11 | 10 | a1i 11 | . . 3 ⊢ (⊤ → 𝜓) |
| 12 | n0sind.6 | . . . 4 ⊢ (𝑦 ∈ ℕ0s → (𝜒 → 𝜃)) | |
| 13 | 12 | adantl 481 | . . 3 ⊢ ((⊤ ∧ 𝑦 ∈ ℕ0s) → (𝜒 → 𝜃)) |
| 14 | 3, 5, 6, 7, 8, 9, 11, 13 | noseqinds 28210 | . 2 ⊢ ((⊤ ∧ 𝐴 ∈ ℕ0s) → 𝜏) |
| 15 | 1, 14 | mpan 690 | 1 ⊢ (𝐴 ∈ ℕ0s → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 Vcvv 3438 ↦ cmpt 5176 “ cima 5626 (class class class)co 7353 ωcom 7806 reccrdg 8338 No csur 27567 0s c0s 27754 1s c1s 27755 +s cadds 27889 ℕ0scnn0s 28229 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-no 27570 df-slt 27571 df-bday 27572 df-sslt 27710 df-scut 27712 df-0s 27756 df-n0s 28231 |
| This theorem is referenced by: n0scut 28249 n0sge0 28253 n0s0suc 28257 n0addscl 28259 n0mulscl 28260 n0sbday 28267 n0s0m1 28275 n0subs 28276 n0p1nns 28283 dfnns2 28284 eucliddivs 28288 peano5uzs 28315 n0seo 28331 expscllem 28340 expadds 28345 expsne0 28346 expsgt0 28347 pw2recs 28348 pw2cut 28366 zs12zodd 28377 zs12bday 28379 |
| Copyright terms: Public domain | W3C validator |