| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > n0sind | Structured version Visualization version GIF version | ||
| Description: Principle of Mathematical Induction (inference schema). Compare nnind 12135 and finds 7821. (Contributed by Scott Fenton, 17-Mar-2025.) |
| Ref | Expression |
|---|---|
| n0sind.1 | ⊢ (𝑥 = 0s → (𝜑 ↔ 𝜓)) |
| n0sind.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) |
| n0sind.3 | ⊢ (𝑥 = (𝑦 +s 1s ) → (𝜑 ↔ 𝜃)) |
| n0sind.4 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) |
| n0sind.5 | ⊢ 𝜓 |
| n0sind.6 | ⊢ (𝑦 ∈ ℕ0s → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| n0sind | ⊢ (𝐴 ∈ ℕ0s → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tru 1545 | . 2 ⊢ ⊤ | |
| 2 | df-n0s 28237 | . . . 4 ⊢ ℕ0s = (rec((𝑛 ∈ V ↦ (𝑛 +s 1s )), 0s ) “ ω) | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → ℕ0s = (rec((𝑛 ∈ V ↦ (𝑛 +s 1s )), 0s ) “ ω)) |
| 4 | 0sno 27763 | . . . 4 ⊢ 0s ∈ No | |
| 5 | 4 | a1i 11 | . . 3 ⊢ (⊤ → 0s ∈ No ) |
| 6 | n0sind.1 | . . 3 ⊢ (𝑥 = 0s → (𝜑 ↔ 𝜓)) | |
| 7 | n0sind.2 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) | |
| 8 | n0sind.3 | . . 3 ⊢ (𝑥 = (𝑦 +s 1s ) → (𝜑 ↔ 𝜃)) | |
| 9 | n0sind.4 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) | |
| 10 | n0sind.5 | . . . 4 ⊢ 𝜓 | |
| 11 | 10 | a1i 11 | . . 3 ⊢ (⊤ → 𝜓) |
| 12 | n0sind.6 | . . . 4 ⊢ (𝑦 ∈ ℕ0s → (𝜒 → 𝜃)) | |
| 13 | 12 | adantl 481 | . . 3 ⊢ ((⊤ ∧ 𝑦 ∈ ℕ0s) → (𝜒 → 𝜃)) |
| 14 | 3, 5, 6, 7, 8, 9, 11, 13 | noseqinds 28216 | . 2 ⊢ ((⊤ ∧ 𝐴 ∈ ℕ0s) → 𝜏) |
| 15 | 1, 14 | mpan 690 | 1 ⊢ (𝐴 ∈ ℕ0s → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ⊤wtru 1542 ∈ wcel 2110 Vcvv 3434 ↦ cmpt 5170 “ cima 5617 (class class class)co 7341 ωcom 7791 reccrdg 8323 No csur 27571 0s c0s 27759 1s c1s 27760 +s cadds 27895 ℕ0scnn0s 28235 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-tp 4579 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-no 27574 df-slt 27575 df-bday 27576 df-sslt 27714 df-scut 27716 df-0s 27761 df-n0s 28237 |
| This theorem is referenced by: n0scut 28255 n0sge0 28259 n0s0suc 28263 n0addscl 28265 n0mulscl 28266 n0sbday 28273 n0s0m1 28281 n0subs 28282 n0p1nns 28289 dfnns2 28290 eucliddivs 28294 peano5uzs 28321 n0seo 28337 expscllem 28346 expadds 28351 expsne0 28352 expsgt0 28353 pw2recs 28354 pw2cut 28373 pw2cut2 28375 zs12zodd 28385 zs12bday 28387 |
| Copyright terms: Public domain | W3C validator |