MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  n0sind Structured version   Visualization version   GIF version

Theorem n0sind 27942
Description: Principle of Mathematical Induction (inference schema). Compare nnind 12234 and finds 7891. (Contributed by Scott Fenton, 17-Mar-2025.)
Hypotheses
Ref Expression
n0sind.1 (𝑥 = 0s → (𝜑𝜓))
n0sind.2 (𝑥 = 𝑦 → (𝜑𝜒))
n0sind.3 (𝑥 = (𝑦 +s 1s ) → (𝜑𝜃))
n0sind.4 (𝑥 = 𝐴 → (𝜑𝜏))
n0sind.5 𝜓
n0sind.6 (𝑦 ∈ ℕ0s → (𝜒𝜃))
Assertion
Ref Expression
n0sind (𝐴 ∈ ℕ0s𝜏)
Distinct variable groups:   𝑥,𝑦   𝑥,𝐴   𝜓,𝑥   𝜒,𝑥   𝜃,𝑥   𝜏,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑦)   𝜃(𝑦)   𝜏(𝑦)   𝐴(𝑦)

Proof of Theorem n0sind
StepHypRef Expression
1 0n0s 27939 . . . . . 6 0s ∈ ℕ0s
2 n0sind.5 . . . . . 6 𝜓
3 n0sind.1 . . . . . . 7 (𝑥 = 0s → (𝜑𝜓))
43elrab 3682 . . . . . 6 ( 0s ∈ {𝑥 ∈ ℕ0s𝜑} ↔ ( 0s ∈ ℕ0s𝜓))
51, 2, 4mpbir2an 707 . . . . 5 0s ∈ {𝑥 ∈ ℕ0s𝜑}
6 n0sind.6 . . . . . . . . 9 (𝑦 ∈ ℕ0s → (𝜒𝜃))
7 peano2n0s 27940 . . . . . . . . 9 (𝑦 ∈ ℕ0s → (𝑦 +s 1s ) ∈ ℕ0s)
86, 7jctild 524 . . . . . . . 8 (𝑦 ∈ ℕ0s → (𝜒 → ((𝑦 +s 1s ) ∈ ℕ0s𝜃)))
98imp 405 . . . . . . 7 ((𝑦 ∈ ℕ0s𝜒) → ((𝑦 +s 1s ) ∈ ℕ0s𝜃))
10 n0sind.2 . . . . . . . 8 (𝑥 = 𝑦 → (𝜑𝜒))
1110elrab 3682 . . . . . . 7 (𝑦 ∈ {𝑥 ∈ ℕ0s𝜑} ↔ (𝑦 ∈ ℕ0s𝜒))
12 n0sind.3 . . . . . . . 8 (𝑥 = (𝑦 +s 1s ) → (𝜑𝜃))
1312elrab 3682 . . . . . . 7 ((𝑦 +s 1s ) ∈ {𝑥 ∈ ℕ0s𝜑} ↔ ((𝑦 +s 1s ) ∈ ℕ0s𝜃))
149, 11, 133imtr4i 291 . . . . . 6 (𝑦 ∈ {𝑥 ∈ ℕ0s𝜑} → (𝑦 +s 1s ) ∈ {𝑥 ∈ ℕ0s𝜑})
1514rgen 3061 . . . . 5 𝑦 ∈ {𝑥 ∈ ℕ0s𝜑} (𝑦 +s 1s ) ∈ {𝑥 ∈ ℕ0s𝜑}
16 peano5n0s 27935 . . . . 5 (( 0s ∈ {𝑥 ∈ ℕ0s𝜑} ∧ ∀𝑦 ∈ {𝑥 ∈ ℕ0s𝜑} (𝑦 +s 1s ) ∈ {𝑥 ∈ ℕ0s𝜑}) → ℕ0s ⊆ {𝑥 ∈ ℕ0s𝜑})
175, 15, 16mp2an 688 . . . 4 0s ⊆ {𝑥 ∈ ℕ0s𝜑}
1817sseli 3977 . . 3 (𝐴 ∈ ℕ0s𝐴 ∈ {𝑥 ∈ ℕ0s𝜑})
19 n0sind.4 . . . 4 (𝑥 = 𝐴 → (𝜑𝜏))
2019elrab 3682 . . 3 (𝐴 ∈ {𝑥 ∈ ℕ0s𝜑} ↔ (𝐴 ∈ ℕ0s𝜏))
2118, 20sylib 217 . 2 (𝐴 ∈ ℕ0s → (𝐴 ∈ ℕ0s𝜏))
2221simprd 494 1 (𝐴 ∈ ℕ0s𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1539  wcel 2104  wral 3059  {crab 3430  wss 3947  (class class class)co 7411   0s c0s 27560   1s c1s 27561   +s cadds 27681  0scnn0s 27929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-2o 8469  df-no 27382  df-slt 27383  df-bday 27384  df-sslt 27519  df-scut 27521  df-0s 27562  df-n0s 27931
This theorem is referenced by:  n0scut  27943
  Copyright terms: Public domain W3C validator