MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnsind Structured version   Visualization version   GIF version

Theorem nnsind 28299
Description: Principle of Mathematical Induction (inference schema). (Contributed by Scott Fenton, 6-Aug-2025.)
Hypotheses
Ref Expression
nnsind.1 (𝑥 = 1s → (𝜑𝜓))
nnsind.2 (𝑥 = 𝑦 → (𝜑𝜒))
nnsind.3 (𝑥 = (𝑦 +s 1s ) → (𝜑𝜃))
nnsind.4 (𝑥 = 𝐴 → (𝜑𝜏))
nnsind.5 𝜓
nnsind.6 (𝑦 ∈ ℕs → (𝜒𝜃))
Assertion
Ref Expression
nnsind (𝐴 ∈ ℕs𝜏)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦   𝜓,𝑥   𝜏,𝑥   𝜑,𝑦   𝜃,𝑥   𝜒,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑦)   𝜃(𝑦)   𝜏(𝑦)   𝐴(𝑦)

Proof of Theorem nnsind
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 tru 1545 . 2
2 dfnns2 28298 . . . 4 s = (rec((𝑛 ∈ V ↦ (𝑛 +s 1s )), 1s ) “ ω)
32a1i 11 . . 3 (⊤ → ℕs = (rec((𝑛 ∈ V ↦ (𝑛 +s 1s )), 1s ) “ ω))
4 1sno 27772 . . . 4 1s No
54a1i 11 . . 3 (⊤ → 1s No )
6 nnsind.1 . . 3 (𝑥 = 1s → (𝜑𝜓))
7 nnsind.2 . . 3 (𝑥 = 𝑦 → (𝜑𝜒))
8 nnsind.3 . . 3 (𝑥 = (𝑦 +s 1s ) → (𝜑𝜃))
9 nnsind.4 . . 3 (𝑥 = 𝐴 → (𝜑𝜏))
10 nnsind.5 . . . 4 𝜓
1110a1i 11 . . 3 (⊤ → 𝜓)
12 nnsind.6 . . . 4 (𝑦 ∈ ℕs → (𝜒𝜃))
1312adantl 481 . . 3 ((⊤ ∧ 𝑦 ∈ ℕs) → (𝜒𝜃))
143, 5, 6, 7, 8, 9, 11, 13noseqinds 28224 . 2 ((⊤ ∧ 𝐴 ∈ ℕs) → 𝜏)
151, 14mpan 690 1 (𝐴 ∈ ℕs𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wtru 1542  wcel 2113  Vcvv 3437  cmpt 5174  cima 5622  (class class class)co 7352  ωcom 7802  reccrdg 8334   No csur 27579   1s c1s 27768   +s cadds 27903  scnns 28244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-ot 4584  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-nadd 8587  df-no 27582  df-slt 27583  df-bday 27584  df-sle 27685  df-sslt 27722  df-scut 27724  df-0s 27769  df-1s 27770  df-made 27789  df-old 27790  df-left 27792  df-right 27793  df-norec2 27893  df-adds 27904  df-n0s 28245  df-nns 28246
This theorem is referenced by:  nn1m1nns  28300
  Copyright terms: Public domain W3C validator