MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnsind Structured version   Visualization version   GIF version

Theorem nnsind 28296
Description: Principle of Mathematical Induction (inference schema). (Contributed by Scott Fenton, 6-Aug-2025.)
Hypotheses
Ref Expression
nnsind.1 (𝑥 = 1s → (𝜑𝜓))
nnsind.2 (𝑥 = 𝑦 → (𝜑𝜒))
nnsind.3 (𝑥 = (𝑦 +s 1s ) → (𝜑𝜃))
nnsind.4 (𝑥 = 𝐴 → (𝜑𝜏))
nnsind.5 𝜓
nnsind.6 (𝑦 ∈ ℕs → (𝜒𝜃))
Assertion
Ref Expression
nnsind (𝐴 ∈ ℕs𝜏)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦   𝜓,𝑥   𝜏,𝑥   𝜑,𝑦   𝜃,𝑥   𝜒,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑦)   𝜃(𝑦)   𝜏(𝑦)   𝐴(𝑦)

Proof of Theorem nnsind
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 tru 1545 . 2
2 dfnns2 28295 . . . 4 s = (rec((𝑛 ∈ V ↦ (𝑛 +s 1s )), 1s ) “ ω)
32a1i 11 . . 3 (⊤ → ℕs = (rec((𝑛 ∈ V ↦ (𝑛 +s 1s )), 1s ) “ ω))
4 1sno 27769 . . . 4 1s No
54a1i 11 . . 3 (⊤ → 1s No )
6 nnsind.1 . . 3 (𝑥 = 1s → (𝜑𝜓))
7 nnsind.2 . . 3 (𝑥 = 𝑦 → (𝜑𝜒))
8 nnsind.3 . . 3 (𝑥 = (𝑦 +s 1s ) → (𝜑𝜃))
9 nnsind.4 . . 3 (𝑥 = 𝐴 → (𝜑𝜏))
10 nnsind.5 . . . 4 𝜓
1110a1i 11 . . 3 (⊤ → 𝜓)
12 nnsind.6 . . . 4 (𝑦 ∈ ℕs → (𝜒𝜃))
1312adantl 481 . . 3 ((⊤ ∧ 𝑦 ∈ ℕs) → (𝜒𝜃))
143, 5, 6, 7, 8, 9, 11, 13noseqinds 28221 . 2 ((⊤ ∧ 𝐴 ∈ ℕs) → 𝜏)
151, 14mpan 690 1 (𝐴 ∈ ℕs𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wtru 1542  wcel 2111  Vcvv 3436  cmpt 5172  cima 5619  (class class class)co 7346  ωcom 7796  reccrdg 8328   No csur 27576   1s c1s 27765   +s cadds 27900  scnns 28241
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-ot 4585  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-nadd 8581  df-no 27579  df-slt 27580  df-bday 27581  df-sle 27682  df-sslt 27719  df-scut 27721  df-0s 27766  df-1s 27767  df-made 27786  df-old 27787  df-left 27789  df-right 27790  df-norec2 27890  df-adds 27901  df-n0s 28242  df-nns 28243
This theorem is referenced by:  nn1m1nns  28297
  Copyright terms: Public domain W3C validator