MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnsind Structured version   Visualization version   GIF version

Theorem nnsind 28269
Description: Principle of Mathematical Induction (inference schema). (Contributed by Scott Fenton, 6-Aug-2025.)
Hypotheses
Ref Expression
nnsind.1 (𝑥 = 1s → (𝜑𝜓))
nnsind.2 (𝑥 = 𝑦 → (𝜑𝜒))
nnsind.3 (𝑥 = (𝑦 +s 1s ) → (𝜑𝜃))
nnsind.4 (𝑥 = 𝐴 → (𝜑𝜏))
nnsind.5 𝜓
nnsind.6 (𝑦 ∈ ℕs → (𝜒𝜃))
Assertion
Ref Expression
nnsind (𝐴 ∈ ℕs𝜏)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦   𝜓,𝑥   𝜏,𝑥   𝜑,𝑦   𝜃,𝑥   𝜒,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑦)   𝜃(𝑦)   𝜏(𝑦)   𝐴(𝑦)

Proof of Theorem nnsind
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 tru 1544 . 2
2 dfnns2 28268 . . . 4 s = (rec((𝑛 ∈ V ↦ (𝑛 +s 1s )), 1s ) “ ω)
32a1i 11 . . 3 (⊤ → ℕs = (rec((𝑛 ∈ V ↦ (𝑛 +s 1s )), 1s ) “ ω))
4 1sno 27746 . . . 4 1s No
54a1i 11 . . 3 (⊤ → 1s No )
6 nnsind.1 . . 3 (𝑥 = 1s → (𝜑𝜓))
7 nnsind.2 . . 3 (𝑥 = 𝑦 → (𝜑𝜒))
8 nnsind.3 . . 3 (𝑥 = (𝑦 +s 1s ) → (𝜑𝜃))
9 nnsind.4 . . 3 (𝑥 = 𝐴 → (𝜑𝜏))
10 nnsind.5 . . . 4 𝜓
1110a1i 11 . . 3 (⊤ → 𝜓)
12 nnsind.6 . . . 4 (𝑦 ∈ ℕs → (𝜒𝜃))
1312adantl 481 . . 3 ((⊤ ∧ 𝑦 ∈ ℕs) → (𝜒𝜃))
143, 5, 6, 7, 8, 9, 11, 13noseqinds 28194 . 2 ((⊤ ∧ 𝐴 ∈ ℕs) → 𝜏)
151, 14mpan 690 1 (𝐴 ∈ ℕs𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wtru 1541  wcel 2109  Vcvv 3450  cmpt 5191  cima 5644  (class class class)co 7390  ωcom 7845  reccrdg 8380   No csur 27558   1s c1s 27742   +s cadds 27873  scnns 28214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-ot 4601  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-nadd 8633  df-no 27561  df-slt 27562  df-bday 27563  df-sle 27664  df-sslt 27700  df-scut 27702  df-0s 27743  df-1s 27744  df-made 27762  df-old 27763  df-left 27765  df-right 27766  df-norec2 27863  df-adds 27874  df-n0s 28215  df-nns 28216
This theorem is referenced by:  nn1m1nns  28270
  Copyright terms: Public domain W3C validator