Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ipval2lem3 | Structured version Visualization version GIF version |
Description: Lemma for ipval3 29425. (Contributed by NM, 1-Feb-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dipfval.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
dipfval.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
dipfval.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
dipfval.6 | ⊢ 𝑁 = (normCV‘𝑈) |
dipfval.7 | ⊢ 𝑃 = (·𝑖OLD‘𝑈) |
Ref | Expression |
---|---|
ipval2lem3 | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝑁‘(𝐴𝐺𝐵))↑2) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dipfval.1 | . . . . . . 7 ⊢ 𝑋 = (BaseSet‘𝑈) | |
2 | dipfval.4 | . . . . . . 7 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
3 | 1, 2 | nvsid 29343 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋) → (1𝑆𝐵) = 𝐵) |
4 | 3 | oveq2d 7362 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺(1𝑆𝐵)) = (𝐴𝐺𝐵)) |
5 | 4 | fveq2d 6838 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴𝐺(1𝑆𝐵))) = (𝑁‘(𝐴𝐺𝐵))) |
6 | 5 | oveq1d 7361 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋) → ((𝑁‘(𝐴𝐺(1𝑆𝐵)))↑2) = ((𝑁‘(𝐴𝐺𝐵))↑2)) |
7 | 6 | 3adant2 1131 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝑁‘(𝐴𝐺(1𝑆𝐵)))↑2) = ((𝑁‘(𝐴𝐺𝐵))↑2)) |
8 | ax-1cn 11039 | . . 3 ⊢ 1 ∈ ℂ | |
9 | dipfval.2 | . . . 4 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
10 | dipfval.6 | . . . 4 ⊢ 𝑁 = (normCV‘𝑈) | |
11 | dipfval.7 | . . . 4 ⊢ 𝑃 = (·𝑖OLD‘𝑈) | |
12 | 1, 9, 2, 10, 11 | ipval2lem2 29420 | . . 3 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ 1 ∈ ℂ) → ((𝑁‘(𝐴𝐺(1𝑆𝐵)))↑2) ∈ ℝ) |
13 | 8, 12 | mpan2 689 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝑁‘(𝐴𝐺(1𝑆𝐵)))↑2) ∈ ℝ) |
14 | 7, 13 | eqeltrrd 2839 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝑁‘(𝐴𝐺𝐵))↑2) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ‘cfv 6488 (class class class)co 7346 ℂcc 10979 ℝcr 10980 1c1 10982 2c2 12138 ↑cexp 13892 NrmCVeccnv 29300 +𝑣 cpv 29301 BaseSetcba 29302 ·𝑠OLD cns 29303 normCVcnmcv 29306 ·𝑖OLDcdip 29416 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5237 ax-sep 5251 ax-nul 5258 ax-pow 5315 ax-pr 5379 ax-un 7659 ax-cnex 11037 ax-resscn 11038 ax-1cn 11039 ax-icn 11040 ax-addcl 11041 ax-addrcl 11042 ax-mulcl 11043 ax-mulrcl 11044 ax-mulcom 11045 ax-addass 11046 ax-mulass 11047 ax-distr 11048 ax-i2m1 11049 ax-1ne0 11050 ax-1rid 11051 ax-rnegex 11052 ax-rrecex 11053 ax-cnre 11054 ax-pre-lttri 11055 ax-pre-lttrn 11056 ax-pre-ltadd 11057 ax-pre-mulgt0 11058 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3352 df-rab 3406 df-v 3445 df-sbc 3735 df-csb 3851 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3924 df-nul 4278 df-if 4482 df-pw 4557 df-sn 4582 df-pr 4584 df-op 4588 df-uni 4861 df-iun 4951 df-br 5101 df-opab 5163 df-mpt 5184 df-tr 5218 df-id 5525 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5582 df-we 5584 df-xp 5633 df-rel 5634 df-cnv 5635 df-co 5636 df-dm 5637 df-rn 5638 df-res 5639 df-ima 5640 df-pred 6246 df-ord 6313 df-on 6314 df-lim 6315 df-suc 6316 df-iota 6440 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7302 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7790 df-1st 7908 df-2nd 7909 df-frecs 8176 df-wrecs 8207 df-recs 8281 df-rdg 8320 df-er 8578 df-en 8814 df-dom 8815 df-sdom 8816 df-pnf 11121 df-mnf 11122 df-xr 11123 df-ltxr 11124 df-le 11125 df-sub 11317 df-neg 11318 df-nn 12084 df-2 12146 df-n0 12344 df-z 12430 df-uz 12693 df-seq 13832 df-exp 13893 df-grpo 29209 df-ablo 29261 df-vc 29275 df-nv 29308 df-va 29311 df-ba 29312 df-sm 29313 df-0v 29314 df-nmcv 29316 |
This theorem is referenced by: ipval2 29423 dipcj 29430 dip0r 29433 |
Copyright terms: Public domain | W3C validator |