MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipval2lem3 Structured version   Visualization version   GIF version

Theorem ipval2lem3 30467
Description: Lemma for ipval3 30471. (Contributed by NM, 1-Feb-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
dipfval.1 𝑋 = (BaseSetβ€˜π‘ˆ)
dipfval.2 𝐺 = ( +𝑣 β€˜π‘ˆ)
dipfval.4 𝑆 = ( ·𝑠OLD β€˜π‘ˆ)
dipfval.6 𝑁 = (normCVβ€˜π‘ˆ)
dipfval.7 𝑃 = (·𝑖OLDβ€˜π‘ˆ)
Assertion
Ref Expression
ipval2lem3 ((π‘ˆ ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ ((π‘β€˜(𝐴𝐺𝐡))↑2) ∈ ℝ)

Proof of Theorem ipval2lem3
StepHypRef Expression
1 dipfval.1 . . . . . . 7 𝑋 = (BaseSetβ€˜π‘ˆ)
2 dipfval.4 . . . . . . 7 𝑆 = ( ·𝑠OLD β€˜π‘ˆ)
31, 2nvsid 30389 . . . . . 6 ((π‘ˆ ∈ NrmCVec ∧ 𝐡 ∈ 𝑋) β†’ (1𝑆𝐡) = 𝐡)
43oveq2d 7421 . . . . 5 ((π‘ˆ ∈ NrmCVec ∧ 𝐡 ∈ 𝑋) β†’ (𝐴𝐺(1𝑆𝐡)) = (𝐴𝐺𝐡))
54fveq2d 6889 . . . 4 ((π‘ˆ ∈ NrmCVec ∧ 𝐡 ∈ 𝑋) β†’ (π‘β€˜(𝐴𝐺(1𝑆𝐡))) = (π‘β€˜(𝐴𝐺𝐡)))
65oveq1d 7420 . . 3 ((π‘ˆ ∈ NrmCVec ∧ 𝐡 ∈ 𝑋) β†’ ((π‘β€˜(𝐴𝐺(1𝑆𝐡)))↑2) = ((π‘β€˜(𝐴𝐺𝐡))↑2))
763adant2 1128 . 2 ((π‘ˆ ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ ((π‘β€˜(𝐴𝐺(1𝑆𝐡)))↑2) = ((π‘β€˜(𝐴𝐺𝐡))↑2))
8 ax-1cn 11170 . . 3 1 ∈ β„‚
9 dipfval.2 . . . 4 𝐺 = ( +𝑣 β€˜π‘ˆ)
10 dipfval.6 . . . 4 𝑁 = (normCVβ€˜π‘ˆ)
11 dipfval.7 . . . 4 𝑃 = (·𝑖OLDβ€˜π‘ˆ)
121, 9, 2, 10, 11ipval2lem2 30466 . . 3 (((π‘ˆ ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) ∧ 1 ∈ β„‚) β†’ ((π‘β€˜(𝐴𝐺(1𝑆𝐡)))↑2) ∈ ℝ)
138, 12mpan2 688 . 2 ((π‘ˆ ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ ((π‘β€˜(𝐴𝐺(1𝑆𝐡)))↑2) ∈ ℝ)
147, 13eqeltrrd 2828 1 ((π‘ˆ ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ ((π‘β€˜(𝐴𝐺𝐡))↑2) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098  β€˜cfv 6537  (class class class)co 7405  β„‚cc 11110  β„cr 11111  1c1 11113  2c2 12271  β†‘cexp 14032  NrmCVeccnv 30346   +𝑣 cpv 30347  BaseSetcba 30348   ·𝑠OLD cns 30349  normCVcnmcv 30352  Β·π‘–OLDcdip 30462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7853  df-1st 7974  df-2nd 7975  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-2 12279  df-n0 12477  df-z 12563  df-uz 12827  df-seq 13973  df-exp 14033  df-grpo 30255  df-ablo 30307  df-vc 30321  df-nv 30354  df-va 30357  df-ba 30358  df-sm 30359  df-0v 30360  df-nmcv 30362
This theorem is referenced by:  ipval2  30469  dipcj  30476  dip0r  30479
  Copyright terms: Public domain W3C validator