MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odzcllem Structured version   Visualization version   GIF version

Theorem odzcllem 16725
Description: - Lemma for odzcl 16726, showing existence of a recurrent point for the exponential. (Contributed by Mario Carneiro, 28-Feb-2014.) (Proof shortened by AV, 26-Sep-2020.)
Assertion
Ref Expression
odzcllem ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → (((od𝑁)‘𝐴) ∈ ℕ ∧ 𝑁 ∥ ((𝐴↑((od𝑁)‘𝐴)) − 1)))

Proof of Theorem odzcllem
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 odzval 16724 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → ((od𝑁)‘𝐴) = inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴𝑛) − 1)}, ℝ, < ))
2 ssrab2 4078 . . . . 5 {𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴𝑛) − 1)} ⊆ ℕ
3 nnuz 12865 . . . . 5 ℕ = (ℤ‘1)
42, 3sseqtri 4019 . . . 4 {𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴𝑛) − 1)} ⊆ (ℤ‘1)
5 phicl 16702 . . . . . . 7 (𝑁 ∈ ℕ → (ϕ‘𝑁) ∈ ℕ)
653ad2ant1 1134 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → (ϕ‘𝑁) ∈ ℕ)
7 eulerth 16716 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → ((𝐴↑(ϕ‘𝑁)) mod 𝑁) = (1 mod 𝑁))
8 simp1 1137 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → 𝑁 ∈ ℕ)
9 simp2 1138 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → 𝐴 ∈ ℤ)
106nnnn0d 12532 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → (ϕ‘𝑁) ∈ ℕ0)
11 zexpcl 14042 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ (ϕ‘𝑁) ∈ ℕ0) → (𝐴↑(ϕ‘𝑁)) ∈ ℤ)
129, 10, 11syl2anc 585 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → (𝐴↑(ϕ‘𝑁)) ∈ ℤ)
13 1z 12592 . . . . . . . . 9 1 ∈ ℤ
14 moddvds 16208 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝐴↑(ϕ‘𝑁)) ∈ ℤ ∧ 1 ∈ ℤ) → (((𝐴↑(ϕ‘𝑁)) mod 𝑁) = (1 mod 𝑁) ↔ 𝑁 ∥ ((𝐴↑(ϕ‘𝑁)) − 1)))
1513, 14mp3an3 1451 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝐴↑(ϕ‘𝑁)) ∈ ℤ) → (((𝐴↑(ϕ‘𝑁)) mod 𝑁) = (1 mod 𝑁) ↔ 𝑁 ∥ ((𝐴↑(ϕ‘𝑁)) − 1)))
168, 12, 15syl2anc 585 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → (((𝐴↑(ϕ‘𝑁)) mod 𝑁) = (1 mod 𝑁) ↔ 𝑁 ∥ ((𝐴↑(ϕ‘𝑁)) − 1)))
177, 16mpbid 231 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → 𝑁 ∥ ((𝐴↑(ϕ‘𝑁)) − 1))
18 oveq2 7417 . . . . . . . . 9 (𝑛 = (ϕ‘𝑁) → (𝐴𝑛) = (𝐴↑(ϕ‘𝑁)))
1918oveq1d 7424 . . . . . . . 8 (𝑛 = (ϕ‘𝑁) → ((𝐴𝑛) − 1) = ((𝐴↑(ϕ‘𝑁)) − 1))
2019breq2d 5161 . . . . . . 7 (𝑛 = (ϕ‘𝑁) → (𝑁 ∥ ((𝐴𝑛) − 1) ↔ 𝑁 ∥ ((𝐴↑(ϕ‘𝑁)) − 1)))
2120rspcev 3613 . . . . . 6 (((ϕ‘𝑁) ∈ ℕ ∧ 𝑁 ∥ ((𝐴↑(ϕ‘𝑁)) − 1)) → ∃𝑛 ∈ ℕ 𝑁 ∥ ((𝐴𝑛) − 1))
226, 17, 21syl2anc 585 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → ∃𝑛 ∈ ℕ 𝑁 ∥ ((𝐴𝑛) − 1))
23 rabn0 4386 . . . . 5 ({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴𝑛) − 1)} ≠ ∅ ↔ ∃𝑛 ∈ ℕ 𝑁 ∥ ((𝐴𝑛) − 1))
2422, 23sylibr 233 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → {𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴𝑛) − 1)} ≠ ∅)
25 infssuzcl 12916 . . . 4 (({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴𝑛) − 1)} ⊆ (ℤ‘1) ∧ {𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴𝑛) − 1)} ≠ ∅) → inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴𝑛) − 1)}, ℝ, < ) ∈ {𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴𝑛) − 1)})
264, 24, 25sylancr 588 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴𝑛) − 1)}, ℝ, < ) ∈ {𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴𝑛) − 1)})
271, 26eqeltrd 2834 . 2 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → ((od𝑁)‘𝐴) ∈ {𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴𝑛) − 1)})
28 oveq2 7417 . . . . 5 (𝑛 = ((od𝑁)‘𝐴) → (𝐴𝑛) = (𝐴↑((od𝑁)‘𝐴)))
2928oveq1d 7424 . . . 4 (𝑛 = ((od𝑁)‘𝐴) → ((𝐴𝑛) − 1) = ((𝐴↑((od𝑁)‘𝐴)) − 1))
3029breq2d 5161 . . 3 (𝑛 = ((od𝑁)‘𝐴) → (𝑁 ∥ ((𝐴𝑛) − 1) ↔ 𝑁 ∥ ((𝐴↑((od𝑁)‘𝐴)) − 1)))
3130elrab 3684 . 2 (((od𝑁)‘𝐴) ∈ {𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴𝑛) − 1)} ↔ (((od𝑁)‘𝐴) ∈ ℕ ∧ 𝑁 ∥ ((𝐴↑((od𝑁)‘𝐴)) − 1)))
3227, 31sylib 217 1 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → (((od𝑁)‘𝐴) ∈ ℕ ∧ 𝑁 ∥ ((𝐴↑((od𝑁)‘𝐴)) − 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  wne 2941  wrex 3071  {crab 3433  wss 3949  c0 4323   class class class wbr 5149  cfv 6544  (class class class)co 7409  infcinf 9436  cr 11109  1c1 11111   < clt 11248  cmin 11444  cn 12212  0cn0 12472  cz 12558  cuz 12822   mod cmo 13834  cexp 14027  cdvds 16197   gcd cgcd 16435  odcodz 16696  ϕcphi 16697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187  ax-pre-sup 11188
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-oadd 8470  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-sup 9437  df-inf 9438  df-card 9934  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-div 11872  df-nn 12213  df-2 12275  df-3 12276  df-n0 12473  df-xnn0 12545  df-z 12559  df-uz 12823  df-rp 12975  df-fz 13485  df-fzo 13628  df-fl 13757  df-mod 13835  df-seq 13967  df-exp 14028  df-hash 14291  df-cj 15046  df-re 15047  df-im 15048  df-sqrt 15182  df-abs 15183  df-dvds 16198  df-gcd 16436  df-odz 16698  df-phi 16699
This theorem is referenced by:  odzcl  16726  odzid  16727
  Copyright terms: Public domain W3C validator