Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > odzcllem | Structured version Visualization version GIF version |
Description: - Lemma for odzcl 16539, showing existence of a recurrent point for the exponential. (Contributed by Mario Carneiro, 28-Feb-2014.) (Proof shortened by AV, 26-Sep-2020.) |
Ref | Expression |
---|---|
odzcllem | ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → (((odℤ‘𝑁)‘𝐴) ∈ ℕ ∧ 𝑁 ∥ ((𝐴↑((odℤ‘𝑁)‘𝐴)) − 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | odzval 16537 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → ((odℤ‘𝑁)‘𝐴) = inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴↑𝑛) − 1)}, ℝ, < )) | |
2 | ssrab2 4019 | . . . . 5 ⊢ {𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴↑𝑛) − 1)} ⊆ ℕ | |
3 | nnuz 12667 | . . . . 5 ⊢ ℕ = (ℤ≥‘1) | |
4 | 2, 3 | sseqtri 3962 | . . . 4 ⊢ {𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴↑𝑛) − 1)} ⊆ (ℤ≥‘1) |
5 | phicl 16515 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → (ϕ‘𝑁) ∈ ℕ) | |
6 | 5 | 3ad2ant1 1133 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → (ϕ‘𝑁) ∈ ℕ) |
7 | eulerth 16529 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → ((𝐴↑(ϕ‘𝑁)) mod 𝑁) = (1 mod 𝑁)) | |
8 | simp1 1136 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → 𝑁 ∈ ℕ) | |
9 | simp2 1137 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → 𝐴 ∈ ℤ) | |
10 | 6 | nnnn0d 12339 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → (ϕ‘𝑁) ∈ ℕ0) |
11 | zexpcl 13843 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℤ ∧ (ϕ‘𝑁) ∈ ℕ0) → (𝐴↑(ϕ‘𝑁)) ∈ ℤ) | |
12 | 9, 10, 11 | syl2anc 585 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → (𝐴↑(ϕ‘𝑁)) ∈ ℤ) |
13 | 1z 12396 | . . . . . . . . 9 ⊢ 1 ∈ ℤ | |
14 | moddvds 16019 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴↑(ϕ‘𝑁)) ∈ ℤ ∧ 1 ∈ ℤ) → (((𝐴↑(ϕ‘𝑁)) mod 𝑁) = (1 mod 𝑁) ↔ 𝑁 ∥ ((𝐴↑(ϕ‘𝑁)) − 1))) | |
15 | 13, 14 | mp3an3 1450 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴↑(ϕ‘𝑁)) ∈ ℤ) → (((𝐴↑(ϕ‘𝑁)) mod 𝑁) = (1 mod 𝑁) ↔ 𝑁 ∥ ((𝐴↑(ϕ‘𝑁)) − 1))) |
16 | 8, 12, 15 | syl2anc 585 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → (((𝐴↑(ϕ‘𝑁)) mod 𝑁) = (1 mod 𝑁) ↔ 𝑁 ∥ ((𝐴↑(ϕ‘𝑁)) − 1))) |
17 | 7, 16 | mpbid 231 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → 𝑁 ∥ ((𝐴↑(ϕ‘𝑁)) − 1)) |
18 | oveq2 7315 | . . . . . . . . 9 ⊢ (𝑛 = (ϕ‘𝑁) → (𝐴↑𝑛) = (𝐴↑(ϕ‘𝑁))) | |
19 | 18 | oveq1d 7322 | . . . . . . . 8 ⊢ (𝑛 = (ϕ‘𝑁) → ((𝐴↑𝑛) − 1) = ((𝐴↑(ϕ‘𝑁)) − 1)) |
20 | 19 | breq2d 5093 | . . . . . . 7 ⊢ (𝑛 = (ϕ‘𝑁) → (𝑁 ∥ ((𝐴↑𝑛) − 1) ↔ 𝑁 ∥ ((𝐴↑(ϕ‘𝑁)) − 1))) |
21 | 20 | rspcev 3566 | . . . . . 6 ⊢ (((ϕ‘𝑁) ∈ ℕ ∧ 𝑁 ∥ ((𝐴↑(ϕ‘𝑁)) − 1)) → ∃𝑛 ∈ ℕ 𝑁 ∥ ((𝐴↑𝑛) − 1)) |
22 | 6, 17, 21 | syl2anc 585 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → ∃𝑛 ∈ ℕ 𝑁 ∥ ((𝐴↑𝑛) − 1)) |
23 | rabn0 4325 | . . . . 5 ⊢ ({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴↑𝑛) − 1)} ≠ ∅ ↔ ∃𝑛 ∈ ℕ 𝑁 ∥ ((𝐴↑𝑛) − 1)) | |
24 | 22, 23 | sylibr 233 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → {𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴↑𝑛) − 1)} ≠ ∅) |
25 | infssuzcl 12718 | . . . 4 ⊢ (({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴↑𝑛) − 1)} ⊆ (ℤ≥‘1) ∧ {𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴↑𝑛) − 1)} ≠ ∅) → inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴↑𝑛) − 1)}, ℝ, < ) ∈ {𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴↑𝑛) − 1)}) | |
26 | 4, 24, 25 | sylancr 588 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴↑𝑛) − 1)}, ℝ, < ) ∈ {𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴↑𝑛) − 1)}) |
27 | 1, 26 | eqeltrd 2837 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → ((odℤ‘𝑁)‘𝐴) ∈ {𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴↑𝑛) − 1)}) |
28 | oveq2 7315 | . . . . 5 ⊢ (𝑛 = ((odℤ‘𝑁)‘𝐴) → (𝐴↑𝑛) = (𝐴↑((odℤ‘𝑁)‘𝐴))) | |
29 | 28 | oveq1d 7322 | . . . 4 ⊢ (𝑛 = ((odℤ‘𝑁)‘𝐴) → ((𝐴↑𝑛) − 1) = ((𝐴↑((odℤ‘𝑁)‘𝐴)) − 1)) |
30 | 29 | breq2d 5093 | . . 3 ⊢ (𝑛 = ((odℤ‘𝑁)‘𝐴) → (𝑁 ∥ ((𝐴↑𝑛) − 1) ↔ 𝑁 ∥ ((𝐴↑((odℤ‘𝑁)‘𝐴)) − 1))) |
31 | 30 | elrab 3629 | . 2 ⊢ (((odℤ‘𝑁)‘𝐴) ∈ {𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴↑𝑛) − 1)} ↔ (((odℤ‘𝑁)‘𝐴) ∈ ℕ ∧ 𝑁 ∥ ((𝐴↑((odℤ‘𝑁)‘𝐴)) − 1))) |
32 | 27, 31 | sylib 217 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → (((odℤ‘𝑁)‘𝐴) ∈ ℕ ∧ 𝑁 ∥ ((𝐴↑((odℤ‘𝑁)‘𝐴)) − 1))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∧ w3a 1087 = wceq 1539 ∈ wcel 2104 ≠ wne 2941 ∃wrex 3071 {crab 3284 ⊆ wss 3892 ∅c0 4262 class class class wbr 5081 ‘cfv 6458 (class class class)co 7307 infcinf 9244 ℝcr 10916 1c1 10918 < clt 11055 − cmin 11251 ℕcn 12019 ℕ0cn0 12279 ℤcz 12365 ℤ≥cuz 12628 mod cmo 13635 ↑cexp 13828 ∥ cdvds 16008 gcd cgcd 16246 odℤcodz 16509 ϕcphi 16510 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 ax-pre-sup 10995 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3285 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-int 4887 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-1st 7863 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-oadd 8332 df-er 8529 df-map 8648 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-sup 9245 df-inf 9246 df-card 9741 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-div 11679 df-nn 12020 df-2 12082 df-3 12083 df-n0 12280 df-xnn0 12352 df-z 12366 df-uz 12629 df-rp 12777 df-fz 13286 df-fzo 13429 df-fl 13558 df-mod 13636 df-seq 13768 df-exp 13829 df-hash 14091 df-cj 14855 df-re 14856 df-im 14857 df-sqrt 14991 df-abs 14992 df-dvds 16009 df-gcd 16247 df-odz 16511 df-phi 16512 |
This theorem is referenced by: odzcl 16539 odzid 16540 |
Copyright terms: Public domain | W3C validator |