Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > odzcllem | Structured version Visualization version GIF version |
Description: - Lemma for odzcl 16475, showing existence of a recurrent point for the exponential. (Contributed by Mario Carneiro, 28-Feb-2014.) (Proof shortened by AV, 26-Sep-2020.) |
Ref | Expression |
---|---|
odzcllem | ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → (((odℤ‘𝑁)‘𝐴) ∈ ℕ ∧ 𝑁 ∥ ((𝐴↑((odℤ‘𝑁)‘𝐴)) − 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | odzval 16473 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → ((odℤ‘𝑁)‘𝐴) = inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴↑𝑛) − 1)}, ℝ, < )) | |
2 | ssrab2 4017 | . . . . 5 ⊢ {𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴↑𝑛) − 1)} ⊆ ℕ | |
3 | nnuz 12603 | . . . . 5 ⊢ ℕ = (ℤ≥‘1) | |
4 | 2, 3 | sseqtri 3961 | . . . 4 ⊢ {𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴↑𝑛) − 1)} ⊆ (ℤ≥‘1) |
5 | phicl 16451 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → (ϕ‘𝑁) ∈ ℕ) | |
6 | 5 | 3ad2ant1 1131 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → (ϕ‘𝑁) ∈ ℕ) |
7 | eulerth 16465 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → ((𝐴↑(ϕ‘𝑁)) mod 𝑁) = (1 mod 𝑁)) | |
8 | simp1 1134 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → 𝑁 ∈ ℕ) | |
9 | simp2 1135 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → 𝐴 ∈ ℤ) | |
10 | 6 | nnnn0d 12276 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → (ϕ‘𝑁) ∈ ℕ0) |
11 | zexpcl 13778 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℤ ∧ (ϕ‘𝑁) ∈ ℕ0) → (𝐴↑(ϕ‘𝑁)) ∈ ℤ) | |
12 | 9, 10, 11 | syl2anc 583 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → (𝐴↑(ϕ‘𝑁)) ∈ ℤ) |
13 | 1z 12333 | . . . . . . . . 9 ⊢ 1 ∈ ℤ | |
14 | moddvds 15955 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴↑(ϕ‘𝑁)) ∈ ℤ ∧ 1 ∈ ℤ) → (((𝐴↑(ϕ‘𝑁)) mod 𝑁) = (1 mod 𝑁) ↔ 𝑁 ∥ ((𝐴↑(ϕ‘𝑁)) − 1))) | |
15 | 13, 14 | mp3an3 1448 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴↑(ϕ‘𝑁)) ∈ ℤ) → (((𝐴↑(ϕ‘𝑁)) mod 𝑁) = (1 mod 𝑁) ↔ 𝑁 ∥ ((𝐴↑(ϕ‘𝑁)) − 1))) |
16 | 8, 12, 15 | syl2anc 583 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → (((𝐴↑(ϕ‘𝑁)) mod 𝑁) = (1 mod 𝑁) ↔ 𝑁 ∥ ((𝐴↑(ϕ‘𝑁)) − 1))) |
17 | 7, 16 | mpbid 231 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → 𝑁 ∥ ((𝐴↑(ϕ‘𝑁)) − 1)) |
18 | oveq2 7276 | . . . . . . . . 9 ⊢ (𝑛 = (ϕ‘𝑁) → (𝐴↑𝑛) = (𝐴↑(ϕ‘𝑁))) | |
19 | 18 | oveq1d 7283 | . . . . . . . 8 ⊢ (𝑛 = (ϕ‘𝑁) → ((𝐴↑𝑛) − 1) = ((𝐴↑(ϕ‘𝑁)) − 1)) |
20 | 19 | breq2d 5090 | . . . . . . 7 ⊢ (𝑛 = (ϕ‘𝑁) → (𝑁 ∥ ((𝐴↑𝑛) − 1) ↔ 𝑁 ∥ ((𝐴↑(ϕ‘𝑁)) − 1))) |
21 | 20 | rspcev 3560 | . . . . . 6 ⊢ (((ϕ‘𝑁) ∈ ℕ ∧ 𝑁 ∥ ((𝐴↑(ϕ‘𝑁)) − 1)) → ∃𝑛 ∈ ℕ 𝑁 ∥ ((𝐴↑𝑛) − 1)) |
22 | 6, 17, 21 | syl2anc 583 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → ∃𝑛 ∈ ℕ 𝑁 ∥ ((𝐴↑𝑛) − 1)) |
23 | rabn0 4324 | . . . . 5 ⊢ ({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴↑𝑛) − 1)} ≠ ∅ ↔ ∃𝑛 ∈ ℕ 𝑁 ∥ ((𝐴↑𝑛) − 1)) | |
24 | 22, 23 | sylibr 233 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → {𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴↑𝑛) − 1)} ≠ ∅) |
25 | infssuzcl 12654 | . . . 4 ⊢ (({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴↑𝑛) − 1)} ⊆ (ℤ≥‘1) ∧ {𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴↑𝑛) − 1)} ≠ ∅) → inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴↑𝑛) − 1)}, ℝ, < ) ∈ {𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴↑𝑛) − 1)}) | |
26 | 4, 24, 25 | sylancr 586 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴↑𝑛) − 1)}, ℝ, < ) ∈ {𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴↑𝑛) − 1)}) |
27 | 1, 26 | eqeltrd 2840 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → ((odℤ‘𝑁)‘𝐴) ∈ {𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴↑𝑛) − 1)}) |
28 | oveq2 7276 | . . . . 5 ⊢ (𝑛 = ((odℤ‘𝑁)‘𝐴) → (𝐴↑𝑛) = (𝐴↑((odℤ‘𝑁)‘𝐴))) | |
29 | 28 | oveq1d 7283 | . . . 4 ⊢ (𝑛 = ((odℤ‘𝑁)‘𝐴) → ((𝐴↑𝑛) − 1) = ((𝐴↑((odℤ‘𝑁)‘𝐴)) − 1)) |
30 | 29 | breq2d 5090 | . . 3 ⊢ (𝑛 = ((odℤ‘𝑁)‘𝐴) → (𝑁 ∥ ((𝐴↑𝑛) − 1) ↔ 𝑁 ∥ ((𝐴↑((odℤ‘𝑁)‘𝐴)) − 1))) |
31 | 30 | elrab 3625 | . 2 ⊢ (((odℤ‘𝑁)‘𝐴) ∈ {𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴↑𝑛) − 1)} ↔ (((odℤ‘𝑁)‘𝐴) ∈ ℕ ∧ 𝑁 ∥ ((𝐴↑((odℤ‘𝑁)‘𝐴)) − 1))) |
32 | 27, 31 | sylib 217 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → (((odℤ‘𝑁)‘𝐴) ∈ ℕ ∧ 𝑁 ∥ ((𝐴↑((odℤ‘𝑁)‘𝐴)) − 1))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1541 ∈ wcel 2109 ≠ wne 2944 ∃wrex 3066 {crab 3069 ⊆ wss 3891 ∅c0 4261 class class class wbr 5078 ‘cfv 6430 (class class class)co 7268 infcinf 9161 ℝcr 10854 1c1 10856 < clt 10993 − cmin 11188 ℕcn 11956 ℕ0cn0 12216 ℤcz 12302 ℤ≥cuz 12564 mod cmo 13570 ↑cexp 13763 ∥ cdvds 15944 gcd cgcd 16182 odℤcodz 16445 ϕcphi 16446 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 ax-pre-sup 10933 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-int 4885 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1st 7817 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-oadd 8285 df-er 8472 df-map 8591 df-en 8708 df-dom 8709 df-sdom 8710 df-fin 8711 df-sup 9162 df-inf 9163 df-card 9681 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-div 11616 df-nn 11957 df-2 12019 df-3 12020 df-n0 12217 df-xnn0 12289 df-z 12303 df-uz 12565 df-rp 12713 df-fz 13222 df-fzo 13365 df-fl 13493 df-mod 13571 df-seq 13703 df-exp 13764 df-hash 14026 df-cj 14791 df-re 14792 df-im 14793 df-sqrt 14927 df-abs 14928 df-dvds 15945 df-gcd 16183 df-odz 16447 df-phi 16448 |
This theorem is referenced by: odzcl 16475 odzid 16476 |
Copyright terms: Public domain | W3C validator |