| Step | Hyp | Ref
| Expression |
| 1 | | nnaordex2 8660 |
. . 3
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 ↔ ∃𝑦 ∈ ω (𝐴 +o suc 𝑦) = 𝐵)) |
| 2 | 1 | adantl 481 |
. 2
⊢ ((𝜑 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐴 ∈ 𝐵 ↔ ∃𝑦 ∈ ω (𝐴 +o suc 𝑦) = 𝐵)) |
| 3 | | suceq 6431 |
. . . . . . . . . . 11
⊢ (𝑦 = ∅ → suc 𝑦 = suc ∅) |
| 4 | | df-1o 8489 |
. . . . . . . . . . 11
⊢
1o = suc ∅ |
| 5 | 3, 4 | eqtr4di 2787 |
. . . . . . . . . 10
⊢ (𝑦 = ∅ → suc 𝑦 =
1o) |
| 6 | 5 | oveq2d 7430 |
. . . . . . . . 9
⊢ (𝑦 = ∅ → (𝐴 +o suc 𝑦) = (𝐴 +o
1o)) |
| 7 | 6 | fveq2d 6891 |
. . . . . . . 8
⊢ (𝑦 = ∅ → (𝐺‘(𝐴 +o suc 𝑦)) = (𝐺‘(𝐴 +o
1o))) |
| 8 | 7 | breq2d 5137 |
. . . . . . 7
⊢ (𝑦 = ∅ → ((𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc 𝑦)) ↔ (𝐺‘𝐴) <s (𝐺‘(𝐴 +o
1o)))) |
| 9 | | suceq 6431 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑧 → suc 𝑦 = suc 𝑧) |
| 10 | 9 | oveq2d 7430 |
. . . . . . . . 9
⊢ (𝑦 = 𝑧 → (𝐴 +o suc 𝑦) = (𝐴 +o suc 𝑧)) |
| 11 | 10 | fveq2d 6891 |
. . . . . . . 8
⊢ (𝑦 = 𝑧 → (𝐺‘(𝐴 +o suc 𝑦)) = (𝐺‘(𝐴 +o suc 𝑧))) |
| 12 | 11 | breq2d 5137 |
. . . . . . 7
⊢ (𝑦 = 𝑧 → ((𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc 𝑦)) ↔ (𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) |
| 13 | | suceq 6431 |
. . . . . . . . . 10
⊢ (𝑦 = suc 𝑧 → suc 𝑦 = suc suc 𝑧) |
| 14 | 13 | oveq2d 7430 |
. . . . . . . . 9
⊢ (𝑦 = suc 𝑧 → (𝐴 +o suc 𝑦) = (𝐴 +o suc suc 𝑧)) |
| 15 | 14 | fveq2d 6891 |
. . . . . . . 8
⊢ (𝑦 = suc 𝑧 → (𝐺‘(𝐴 +o suc 𝑦)) = (𝐺‘(𝐴 +o suc suc 𝑧))) |
| 16 | 15 | breq2d 5137 |
. . . . . . 7
⊢ (𝑦 = suc 𝑧 → ((𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc 𝑦)) ↔ (𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc suc 𝑧)))) |
| 17 | | om2noseq.1 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐶 ∈ No
) |
| 18 | | om2noseq.2 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾
ω)) |
| 19 | | om2noseq.3 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “
ω)) |
| 20 | 17, 18, 19 | om2noseqfo 28259 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐺:ω–onto→𝑍) |
| 21 | | fof 6801 |
. . . . . . . . . . . . 13
⊢ (𝐺:ω–onto→𝑍 → 𝐺:ω⟶𝑍) |
| 22 | 20, 21 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐺:ω⟶𝑍) |
| 23 | 19, 17 | noseqssno 28255 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑍 ⊆ No
) |
| 24 | 22, 23 | fssd 6734 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐺:ω⟶ No
) |
| 25 | 24 | ffvelcdmda 7085 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐴 ∈ ω) → (𝐺‘𝐴) ∈ No
) |
| 26 | 25 | addsridd 27953 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐴 ∈ ω) → ((𝐺‘𝐴) +s 0s ) = (𝐺‘𝐴)) |
| 27 | | 0slt1s 27829 |
. . . . . . . . . 10
⊢
0s <s 1s |
| 28 | | 0sno 27826 |
. . . . . . . . . . . 12
⊢
0s ∈ No |
| 29 | 28 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐴 ∈ ω) → 0s ∈
No ) |
| 30 | | 1sno 27827 |
. . . . . . . . . . . 12
⊢
1s ∈ No |
| 31 | 30 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐴 ∈ ω) → 1s ∈
No ) |
| 32 | 29, 31, 25 | sltadd2d 27985 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐴 ∈ ω) → ( 0s
<s 1s ↔ ((𝐺‘𝐴) +s 0s ) <s
((𝐺‘𝐴) +s 1s
))) |
| 33 | 27, 32 | mpbii 233 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐴 ∈ ω) → ((𝐺‘𝐴) +s 0s ) <s
((𝐺‘𝐴) +s 1s
)) |
| 34 | 26, 33 | eqbrtrrd 5149 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐴 ∈ ω) → (𝐺‘𝐴) <s ((𝐺‘𝐴) +s 1s
)) |
| 35 | | nnon 7876 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ω → 𝐴 ∈ On) |
| 36 | | oa1suc 8552 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ On → (𝐴 +o 1o) =
suc 𝐴) |
| 37 | 35, 36 | syl 17 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ω → (𝐴 +o 1o) =
suc 𝐴) |
| 38 | 37 | fveq2d 6891 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ω → (𝐺‘(𝐴 +o 1o)) = (𝐺‘suc 𝐴)) |
| 39 | 38 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐴 ∈ ω) → (𝐺‘(𝐴 +o 1o)) = (𝐺‘suc 𝐴)) |
| 40 | 17 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐴 ∈ ω) → 𝐶 ∈ No
) |
| 41 | 18 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐴 ∈ ω) → 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾
ω)) |
| 42 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐴 ∈ ω) → 𝐴 ∈ ω) |
| 43 | 40, 41, 42 | om2noseqsuc 28258 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐴 ∈ ω) → (𝐺‘suc 𝐴) = ((𝐺‘𝐴) +s 1s
)) |
| 44 | 39, 43 | eqtrd 2769 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐴 ∈ ω) → (𝐺‘(𝐴 +o 1o)) = ((𝐺‘𝐴) +s 1s
)) |
| 45 | 34, 44 | breqtrrd 5153 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐴 ∈ ω) → (𝐺‘𝐴) <s (𝐺‘(𝐴 +o
1o))) |
| 46 | 25 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → (𝐺‘𝐴) ∈ No
) |
| 47 | 24 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → 𝐺:ω⟶ No
) |
| 48 | | peano2 7895 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ ω → suc 𝑧 ∈
ω) |
| 49 | 48 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ ω ∧ (𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc 𝑧))) → suc 𝑧 ∈ ω) |
| 50 | | nnacl 8632 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ω ∧ suc 𝑧 ∈ ω) → (𝐴 +o suc 𝑧) ∈
ω) |
| 51 | 42, 49, 50 | syl2an 596 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → (𝐴 +o suc 𝑧) ∈ ω) |
| 52 | 47, 51 | ffvelcdmd 7086 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → (𝐺‘(𝐴 +o suc 𝑧)) ∈ No
) |
| 53 | | peano2 7895 |
. . . . . . . . . . . . . 14
⊢ (suc
𝑧 ∈ ω → suc
suc 𝑧 ∈
ω) |
| 54 | 48, 53 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ ω → suc suc
𝑧 ∈
ω) |
| 55 | 54 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ ω ∧ (𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc 𝑧))) → suc suc 𝑧 ∈ ω) |
| 56 | | nnacl 8632 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ω ∧ suc suc
𝑧 ∈ ω) →
(𝐴 +o suc suc
𝑧) ∈
ω) |
| 57 | 42, 55, 56 | syl2an 596 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → (𝐴 +o suc suc 𝑧) ∈ ω) |
| 58 | 47, 57 | ffvelcdmd 7086 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → (𝐺‘(𝐴 +o suc suc 𝑧)) ∈ No
) |
| 59 | | simprr 772 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → (𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc 𝑧))) |
| 60 | 52 | addsridd 27953 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → ((𝐺‘(𝐴 +o suc 𝑧)) +s 0s ) = (𝐺‘(𝐴 +o suc 𝑧))) |
| 61 | 28 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → 0s ∈ No ) |
| 62 | 30 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → 1s ∈ No ) |
| 63 | 61, 62, 52 | sltadd2d 27985 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → ( 0s <s
1s ↔ ((𝐺‘(𝐴 +o suc 𝑧)) +s 0s ) <s
((𝐺‘(𝐴 +o suc 𝑧)) +s 1s
))) |
| 64 | 27, 63 | mpbii 233 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → ((𝐺‘(𝐴 +o suc 𝑧)) +s 0s ) <s
((𝐺‘(𝐴 +o suc 𝑧)) +s 1s
)) |
| 65 | 60, 64 | eqbrtrrd 5149 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → (𝐺‘(𝐴 +o suc 𝑧)) <s ((𝐺‘(𝐴 +o suc 𝑧)) +s 1s
)) |
| 66 | | nnasuc 8627 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ω ∧ suc 𝑧 ∈ ω) → (𝐴 +o suc suc 𝑧) = suc (𝐴 +o suc 𝑧)) |
| 67 | 66 | fveq2d 6891 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ω ∧ suc 𝑧 ∈ ω) → (𝐺‘(𝐴 +o suc suc 𝑧)) = (𝐺‘suc (𝐴 +o suc 𝑧))) |
| 68 | 42, 49, 67 | syl2an 596 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → (𝐺‘(𝐴 +o suc suc 𝑧)) = (𝐺‘suc (𝐴 +o suc 𝑧))) |
| 69 | 17 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → 𝐶 ∈ No
) |
| 70 | 18 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾
ω)) |
| 71 | 69, 70, 51 | om2noseqsuc 28258 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → (𝐺‘suc (𝐴 +o suc 𝑧)) = ((𝐺‘(𝐴 +o suc 𝑧)) +s 1s
)) |
| 72 | 68, 71 | eqtrd 2769 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → (𝐺‘(𝐴 +o suc suc 𝑧)) = ((𝐺‘(𝐴 +o suc 𝑧)) +s 1s
)) |
| 73 | 65, 72 | breqtrrd 5153 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → (𝐺‘(𝐴 +o suc 𝑧)) <s (𝐺‘(𝐴 +o suc suc 𝑧))) |
| 74 | 46, 52, 58, 59, 73 | slttrd 27759 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → (𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc suc 𝑧))) |
| 75 | 74 | expr 456 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐴 ∈ ω) ∧ 𝑧 ∈ ω) → ((𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)) → (𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc suc 𝑧)))) |
| 76 | 75 | expcom 413 |
. . . . . . 7
⊢ (𝑧 ∈ ω → ((𝜑 ∧ 𝐴 ∈ ω) → ((𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)) → (𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc suc 𝑧))))) |
| 77 | 8, 12, 16, 45, 76 | finds2 7903 |
. . . . . 6
⊢ (𝑦 ∈ ω → ((𝜑 ∧ 𝐴 ∈ ω) → (𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc 𝑦)))) |
| 78 | 77 | impcom 407 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 ∈ ω) ∧ 𝑦 ∈ ω) → (𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc 𝑦))) |
| 79 | | fveq2 6887 |
. . . . . 6
⊢ ((𝐴 +o suc 𝑦) = 𝐵 → (𝐺‘(𝐴 +o suc 𝑦)) = (𝐺‘𝐵)) |
| 80 | 79 | breq2d 5137 |
. . . . 5
⊢ ((𝐴 +o suc 𝑦) = 𝐵 → ((𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc 𝑦)) ↔ (𝐺‘𝐴) <s (𝐺‘𝐵))) |
| 81 | 78, 80 | syl5ibcom 245 |
. . . 4
⊢ (((𝜑 ∧ 𝐴 ∈ ω) ∧ 𝑦 ∈ ω) → ((𝐴 +o suc 𝑦) = 𝐵 → (𝐺‘𝐴) <s (𝐺‘𝐵))) |
| 82 | 81 | rexlimdva 3142 |
. . 3
⊢ ((𝜑 ∧ 𝐴 ∈ ω) → (∃𝑦 ∈ ω (𝐴 +o suc 𝑦) = 𝐵 → (𝐺‘𝐴) <s (𝐺‘𝐵))) |
| 83 | 82 | adantrr 717 |
. 2
⊢ ((𝜑 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (∃𝑦 ∈ ω (𝐴 +o suc 𝑦) = 𝐵 → (𝐺‘𝐴) <s (𝐺‘𝐵))) |
| 84 | 2, 83 | sylbid 240 |
1
⊢ ((𝜑 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐴 ∈ 𝐵 → (𝐺‘𝐴) <s (𝐺‘𝐵))) |