MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  om2noseqlt Structured version   Visualization version   GIF version

Theorem om2noseqlt 28323
Description: Surreal less-than relation for 𝐺. (Contributed by Scott Fenton, 18-Apr-2025.)
Hypotheses
Ref Expression
om2noseq.1 (𝜑𝐶 No )
om2noseq.2 (𝜑𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω))
om2noseq.3 (𝜑𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω))
Assertion
Ref Expression
om2noseqlt ((𝜑 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐴𝐵 → (𝐺𝐴) <s (𝐺𝐵)))
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐵(𝑥)   𝐺(𝑥)   𝑍(𝑥)

Proof of Theorem om2noseqlt
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnaordex2 8695 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ ∃𝑦 ∈ ω (𝐴 +o suc 𝑦) = 𝐵))
21adantl 481 . 2 ((𝜑 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐴𝐵 ↔ ∃𝑦 ∈ ω (𝐴 +o suc 𝑦) = 𝐵))
3 suceq 6461 . . . . . . . . . . 11 (𝑦 = ∅ → suc 𝑦 = suc ∅)
4 df-1o 8522 . . . . . . . . . . 11 1o = suc ∅
53, 4eqtr4di 2798 . . . . . . . . . 10 (𝑦 = ∅ → suc 𝑦 = 1o)
65oveq2d 7464 . . . . . . . . 9 (𝑦 = ∅ → (𝐴 +o suc 𝑦) = (𝐴 +o 1o))
76fveq2d 6924 . . . . . . . 8 (𝑦 = ∅ → (𝐺‘(𝐴 +o suc 𝑦)) = (𝐺‘(𝐴 +o 1o)))
87breq2d 5178 . . . . . . 7 (𝑦 = ∅ → ((𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑦)) ↔ (𝐺𝐴) <s (𝐺‘(𝐴 +o 1o))))
9 suceq 6461 . . . . . . . . . 10 (𝑦 = 𝑧 → suc 𝑦 = suc 𝑧)
109oveq2d 7464 . . . . . . . . 9 (𝑦 = 𝑧 → (𝐴 +o suc 𝑦) = (𝐴 +o suc 𝑧))
1110fveq2d 6924 . . . . . . . 8 (𝑦 = 𝑧 → (𝐺‘(𝐴 +o suc 𝑦)) = (𝐺‘(𝐴 +o suc 𝑧)))
1211breq2d 5178 . . . . . . 7 (𝑦 = 𝑧 → ((𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑦)) ↔ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧))))
13 suceq 6461 . . . . . . . . . 10 (𝑦 = suc 𝑧 → suc 𝑦 = suc suc 𝑧)
1413oveq2d 7464 . . . . . . . . 9 (𝑦 = suc 𝑧 → (𝐴 +o suc 𝑦) = (𝐴 +o suc suc 𝑧))
1514fveq2d 6924 . . . . . . . 8 (𝑦 = suc 𝑧 → (𝐺‘(𝐴 +o suc 𝑦)) = (𝐺‘(𝐴 +o suc suc 𝑧)))
1615breq2d 5178 . . . . . . 7 (𝑦 = suc 𝑧 → ((𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑦)) ↔ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc suc 𝑧))))
17 om2noseq.1 . . . . . . . . . . . . . 14 (𝜑𝐶 No )
18 om2noseq.2 . . . . . . . . . . . . . 14 (𝜑𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω))
19 om2noseq.3 . . . . . . . . . . . . . 14 (𝜑𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω))
2017, 18, 19om2noseqfo 28322 . . . . . . . . . . . . 13 (𝜑𝐺:ω–onto𝑍)
21 fof 6834 . . . . . . . . . . . . 13 (𝐺:ω–onto𝑍𝐺:ω⟶𝑍)
2220, 21syl 17 . . . . . . . . . . . 12 (𝜑𝐺:ω⟶𝑍)
2319, 17noseqssno 28318 . . . . . . . . . . . 12 (𝜑𝑍 No )
2422, 23fssd 6764 . . . . . . . . . . 11 (𝜑𝐺:ω⟶ No )
2524ffvelcdmda 7118 . . . . . . . . . 10 ((𝜑𝐴 ∈ ω) → (𝐺𝐴) ∈ No )
2625addsridd 28016 . . . . . . . . 9 ((𝜑𝐴 ∈ ω) → ((𝐺𝐴) +s 0s ) = (𝐺𝐴))
27 0slt1s 27892 . . . . . . . . . 10 0s <s 1s
28 0sno 27889 . . . . . . . . . . . 12 0s No
2928a1i 11 . . . . . . . . . . 11 ((𝜑𝐴 ∈ ω) → 0s No )
30 1sno 27890 . . . . . . . . . . . 12 1s No
3130a1i 11 . . . . . . . . . . 11 ((𝜑𝐴 ∈ ω) → 1s No )
3229, 31, 25sltadd2d 28048 . . . . . . . . . 10 ((𝜑𝐴 ∈ ω) → ( 0s <s 1s ↔ ((𝐺𝐴) +s 0s ) <s ((𝐺𝐴) +s 1s )))
3327, 32mpbii 233 . . . . . . . . 9 ((𝜑𝐴 ∈ ω) → ((𝐺𝐴) +s 0s ) <s ((𝐺𝐴) +s 1s ))
3426, 33eqbrtrrd 5190 . . . . . . . 8 ((𝜑𝐴 ∈ ω) → (𝐺𝐴) <s ((𝐺𝐴) +s 1s ))
35 nnon 7909 . . . . . . . . . . . 12 (𝐴 ∈ ω → 𝐴 ∈ On)
36 oa1suc 8587 . . . . . . . . . . . 12 (𝐴 ∈ On → (𝐴 +o 1o) = suc 𝐴)
3735, 36syl 17 . . . . . . . . . . 11 (𝐴 ∈ ω → (𝐴 +o 1o) = suc 𝐴)
3837fveq2d 6924 . . . . . . . . . 10 (𝐴 ∈ ω → (𝐺‘(𝐴 +o 1o)) = (𝐺‘suc 𝐴))
3938adantl 481 . . . . . . . . 9 ((𝜑𝐴 ∈ ω) → (𝐺‘(𝐴 +o 1o)) = (𝐺‘suc 𝐴))
4017adantr 480 . . . . . . . . . 10 ((𝜑𝐴 ∈ ω) → 𝐶 No )
4118adantr 480 . . . . . . . . . 10 ((𝜑𝐴 ∈ ω) → 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω))
42 simpr 484 . . . . . . . . . 10 ((𝜑𝐴 ∈ ω) → 𝐴 ∈ ω)
4340, 41, 42om2noseqsuc 28321 . . . . . . . . 9 ((𝜑𝐴 ∈ ω) → (𝐺‘suc 𝐴) = ((𝐺𝐴) +s 1s ))
4439, 43eqtrd 2780 . . . . . . . 8 ((𝜑𝐴 ∈ ω) → (𝐺‘(𝐴 +o 1o)) = ((𝐺𝐴) +s 1s ))
4534, 44breqtrrd 5194 . . . . . . 7 ((𝜑𝐴 ∈ ω) → (𝐺𝐴) <s (𝐺‘(𝐴 +o 1o)))
4625adantr 480 . . . . . . . . . 10 (((𝜑𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → (𝐺𝐴) ∈ No )
4724ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → 𝐺:ω⟶ No )
48 peano2 7929 . . . . . . . . . . . . 13 (𝑧 ∈ ω → suc 𝑧 ∈ ω)
4948adantr 480 . . . . . . . . . . . 12 ((𝑧 ∈ ω ∧ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧))) → suc 𝑧 ∈ ω)
50 nnacl 8667 . . . . . . . . . . . 12 ((𝐴 ∈ ω ∧ suc 𝑧 ∈ ω) → (𝐴 +o suc 𝑧) ∈ ω)
5142, 49, 50syl2an 595 . . . . . . . . . . 11 (((𝜑𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → (𝐴 +o suc 𝑧) ∈ ω)
5247, 51ffvelcdmd 7119 . . . . . . . . . 10 (((𝜑𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → (𝐺‘(𝐴 +o suc 𝑧)) ∈ No )
53 peano2 7929 . . . . . . . . . . . . . 14 (suc 𝑧 ∈ ω → suc suc 𝑧 ∈ ω)
5448, 53syl 17 . . . . . . . . . . . . 13 (𝑧 ∈ ω → suc suc 𝑧 ∈ ω)
5554adantr 480 . . . . . . . . . . . 12 ((𝑧 ∈ ω ∧ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧))) → suc suc 𝑧 ∈ ω)
56 nnacl 8667 . . . . . . . . . . . 12 ((𝐴 ∈ ω ∧ suc suc 𝑧 ∈ ω) → (𝐴 +o suc suc 𝑧) ∈ ω)
5742, 55, 56syl2an 595 . . . . . . . . . . 11 (((𝜑𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → (𝐴 +o suc suc 𝑧) ∈ ω)
5847, 57ffvelcdmd 7119 . . . . . . . . . 10 (((𝜑𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → (𝐺‘(𝐴 +o suc suc 𝑧)) ∈ No )
59 simprr 772 . . . . . . . . . 10 (((𝜑𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))
6052addsridd 28016 . . . . . . . . . . . 12 (((𝜑𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → ((𝐺‘(𝐴 +o suc 𝑧)) +s 0s ) = (𝐺‘(𝐴 +o suc 𝑧)))
6128a1i 11 . . . . . . . . . . . . . 14 (((𝜑𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → 0s No )
6230a1i 11 . . . . . . . . . . . . . 14 (((𝜑𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → 1s No )
6361, 62, 52sltadd2d 28048 . . . . . . . . . . . . 13 (((𝜑𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → ( 0s <s 1s ↔ ((𝐺‘(𝐴 +o suc 𝑧)) +s 0s ) <s ((𝐺‘(𝐴 +o suc 𝑧)) +s 1s )))
6427, 63mpbii 233 . . . . . . . . . . . 12 (((𝜑𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → ((𝐺‘(𝐴 +o suc 𝑧)) +s 0s ) <s ((𝐺‘(𝐴 +o suc 𝑧)) +s 1s ))
6560, 64eqbrtrrd 5190 . . . . . . . . . . 11 (((𝜑𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → (𝐺‘(𝐴 +o suc 𝑧)) <s ((𝐺‘(𝐴 +o suc 𝑧)) +s 1s ))
66 nnasuc 8662 . . . . . . . . . . . . . 14 ((𝐴 ∈ ω ∧ suc 𝑧 ∈ ω) → (𝐴 +o suc suc 𝑧) = suc (𝐴 +o suc 𝑧))
6766fveq2d 6924 . . . . . . . . . . . . 13 ((𝐴 ∈ ω ∧ suc 𝑧 ∈ ω) → (𝐺‘(𝐴 +o suc suc 𝑧)) = (𝐺‘suc (𝐴 +o suc 𝑧)))
6842, 49, 67syl2an 595 . . . . . . . . . . . 12 (((𝜑𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → (𝐺‘(𝐴 +o suc suc 𝑧)) = (𝐺‘suc (𝐴 +o suc 𝑧)))
6917ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → 𝐶 No )
7018ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω))
7169, 70, 51om2noseqsuc 28321 . . . . . . . . . . . 12 (((𝜑𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → (𝐺‘suc (𝐴 +o suc 𝑧)) = ((𝐺‘(𝐴 +o suc 𝑧)) +s 1s ))
7268, 71eqtrd 2780 . . . . . . . . . . 11 (((𝜑𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → (𝐺‘(𝐴 +o suc suc 𝑧)) = ((𝐺‘(𝐴 +o suc 𝑧)) +s 1s ))
7365, 72breqtrrd 5194 . . . . . . . . . 10 (((𝜑𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → (𝐺‘(𝐴 +o suc 𝑧)) <s (𝐺‘(𝐴 +o suc suc 𝑧)))
7446, 52, 58, 59, 73slttrd 27822 . . . . . . . . 9 (((𝜑𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → (𝐺𝐴) <s (𝐺‘(𝐴 +o suc suc 𝑧)))
7574expr 456 . . . . . . . 8 (((𝜑𝐴 ∈ ω) ∧ 𝑧 ∈ ω) → ((𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)) → (𝐺𝐴) <s (𝐺‘(𝐴 +o suc suc 𝑧))))
7675expcom 413 . . . . . . 7 (𝑧 ∈ ω → ((𝜑𝐴 ∈ ω) → ((𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)) → (𝐺𝐴) <s (𝐺‘(𝐴 +o suc suc 𝑧)))))
778, 12, 16, 45, 76finds2 7938 . . . . . 6 (𝑦 ∈ ω → ((𝜑𝐴 ∈ ω) → (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑦))))
7877impcom 407 . . . . 5 (((𝜑𝐴 ∈ ω) ∧ 𝑦 ∈ ω) → (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑦)))
79 fveq2 6920 . . . . . 6 ((𝐴 +o suc 𝑦) = 𝐵 → (𝐺‘(𝐴 +o suc 𝑦)) = (𝐺𝐵))
8079breq2d 5178 . . . . 5 ((𝐴 +o suc 𝑦) = 𝐵 → ((𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑦)) ↔ (𝐺𝐴) <s (𝐺𝐵)))
8178, 80syl5ibcom 245 . . . 4 (((𝜑𝐴 ∈ ω) ∧ 𝑦 ∈ ω) → ((𝐴 +o suc 𝑦) = 𝐵 → (𝐺𝐴) <s (𝐺𝐵)))
8281rexlimdva 3161 . . 3 ((𝜑𝐴 ∈ ω) → (∃𝑦 ∈ ω (𝐴 +o suc 𝑦) = 𝐵 → (𝐺𝐴) <s (𝐺𝐵)))
8382adantrr 716 . 2 ((𝜑 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (∃𝑦 ∈ ω (𝐴 +o suc 𝑦) = 𝐵 → (𝐺𝐴) <s (𝐺𝐵)))
842, 83sylbid 240 1 ((𝜑 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐴𝐵 → (𝐺𝐴) <s (𝐺𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wrex 3076  Vcvv 3488  c0 4352   class class class wbr 5166  cmpt 5249  cres 5702  cima 5703  Oncon0 6395  suc csuc 6397  wf 6569  ontowfo 6571  cfv 6573  (class class class)co 7448  ωcom 7903  reccrdg 8465  1oc1o 8515   +o coa 8519   No csur 27702   <s cslt 27703   0s c0s 27885   1s c1s 27886   +s cadds 28010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-ot 4657  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-nadd 8722  df-no 27705  df-slt 27706  df-bday 27707  df-sle 27808  df-sslt 27844  df-scut 27846  df-0s 27887  df-1s 27888  df-made 27904  df-old 27905  df-left 27907  df-right 27908  df-norec2 28000  df-adds 28011
This theorem is referenced by:  om2noseqlt2  28324  om2noseqf1o  28325
  Copyright terms: Public domain W3C validator