| Step | Hyp | Ref
| Expression |
| 1 | | nnaordex2 8656 |
. . 3
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 ↔ ∃𝑦 ∈ ω (𝐴 +o suc 𝑦) = 𝐵)) |
| 2 | 1 | adantl 481 |
. 2
⊢ ((𝜑 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐴 ∈ 𝐵 ↔ ∃𝑦 ∈ ω (𝐴 +o suc 𝑦) = 𝐵)) |
| 3 | | suceq 6424 |
. . . . . . . . . . 11
⊢ (𝑦 = ∅ → suc 𝑦 = suc ∅) |
| 4 | | df-1o 8485 |
. . . . . . . . . . 11
⊢
1o = suc ∅ |
| 5 | 3, 4 | eqtr4di 2789 |
. . . . . . . . . 10
⊢ (𝑦 = ∅ → suc 𝑦 =
1o) |
| 6 | 5 | oveq2d 7426 |
. . . . . . . . 9
⊢ (𝑦 = ∅ → (𝐴 +o suc 𝑦) = (𝐴 +o
1o)) |
| 7 | 6 | fveq2d 6885 |
. . . . . . . 8
⊢ (𝑦 = ∅ → (𝐺‘(𝐴 +o suc 𝑦)) = (𝐺‘(𝐴 +o
1o))) |
| 8 | 7 | breq2d 5136 |
. . . . . . 7
⊢ (𝑦 = ∅ → ((𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc 𝑦)) ↔ (𝐺‘𝐴) <s (𝐺‘(𝐴 +o
1o)))) |
| 9 | | suceq 6424 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑧 → suc 𝑦 = suc 𝑧) |
| 10 | 9 | oveq2d 7426 |
. . . . . . . . 9
⊢ (𝑦 = 𝑧 → (𝐴 +o suc 𝑦) = (𝐴 +o suc 𝑧)) |
| 11 | 10 | fveq2d 6885 |
. . . . . . . 8
⊢ (𝑦 = 𝑧 → (𝐺‘(𝐴 +o suc 𝑦)) = (𝐺‘(𝐴 +o suc 𝑧))) |
| 12 | 11 | breq2d 5136 |
. . . . . . 7
⊢ (𝑦 = 𝑧 → ((𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc 𝑦)) ↔ (𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) |
| 13 | | suceq 6424 |
. . . . . . . . . 10
⊢ (𝑦 = suc 𝑧 → suc 𝑦 = suc suc 𝑧) |
| 14 | 13 | oveq2d 7426 |
. . . . . . . . 9
⊢ (𝑦 = suc 𝑧 → (𝐴 +o suc 𝑦) = (𝐴 +o suc suc 𝑧)) |
| 15 | 14 | fveq2d 6885 |
. . . . . . . 8
⊢ (𝑦 = suc 𝑧 → (𝐺‘(𝐴 +o suc 𝑦)) = (𝐺‘(𝐴 +o suc suc 𝑧))) |
| 16 | 15 | breq2d 5136 |
. . . . . . 7
⊢ (𝑦 = suc 𝑧 → ((𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc 𝑦)) ↔ (𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc suc 𝑧)))) |
| 17 | | om2noseq.1 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐶 ∈ No
) |
| 18 | | om2noseq.2 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾
ω)) |
| 19 | | om2noseq.3 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “
ω)) |
| 20 | 17, 18, 19 | om2noseqfo 28249 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐺:ω–onto→𝑍) |
| 21 | | fof 6795 |
. . . . . . . . . . . 12
⊢ (𝐺:ω–onto→𝑍 → 𝐺:ω⟶𝑍) |
| 22 | 20, 21 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐺:ω⟶𝑍) |
| 23 | 19, 17 | noseqssno 28245 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑍 ⊆ No
) |
| 24 | 22, 23 | fssd 6728 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐺:ω⟶ No
) |
| 25 | 24 | ffvelcdmda 7079 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐴 ∈ ω) → (𝐺‘𝐴) ∈ No
) |
| 26 | 25 | sltp1d 27979 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐴 ∈ ω) → (𝐺‘𝐴) <s ((𝐺‘𝐴) +s 1s
)) |
| 27 | | nnon 7872 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ω → 𝐴 ∈ On) |
| 28 | | oa1suc 8548 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ On → (𝐴 +o 1o) =
suc 𝐴) |
| 29 | 27, 28 | syl 17 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ω → (𝐴 +o 1o) =
suc 𝐴) |
| 30 | 29 | fveq2d 6885 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ω → (𝐺‘(𝐴 +o 1o)) = (𝐺‘suc 𝐴)) |
| 31 | 30 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐴 ∈ ω) → (𝐺‘(𝐴 +o 1o)) = (𝐺‘suc 𝐴)) |
| 32 | 17 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐴 ∈ ω) → 𝐶 ∈ No
) |
| 33 | 18 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐴 ∈ ω) → 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾
ω)) |
| 34 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐴 ∈ ω) → 𝐴 ∈ ω) |
| 35 | 32, 33, 34 | om2noseqsuc 28248 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐴 ∈ ω) → (𝐺‘suc 𝐴) = ((𝐺‘𝐴) +s 1s
)) |
| 36 | 31, 35 | eqtrd 2771 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐴 ∈ ω) → (𝐺‘(𝐴 +o 1o)) = ((𝐺‘𝐴) +s 1s
)) |
| 37 | 26, 36 | breqtrrd 5152 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐴 ∈ ω) → (𝐺‘𝐴) <s (𝐺‘(𝐴 +o
1o))) |
| 38 | 25 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → (𝐺‘𝐴) ∈ No
) |
| 39 | 24 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → 𝐺:ω⟶ No
) |
| 40 | | peano2 7891 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ ω → suc 𝑧 ∈
ω) |
| 41 | 40 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ ω ∧ (𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc 𝑧))) → suc 𝑧 ∈ ω) |
| 42 | | nnacl 8628 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ω ∧ suc 𝑧 ∈ ω) → (𝐴 +o suc 𝑧) ∈
ω) |
| 43 | 34, 41, 42 | syl2an 596 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → (𝐴 +o suc 𝑧) ∈ ω) |
| 44 | 39, 43 | ffvelcdmd 7080 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → (𝐺‘(𝐴 +o suc 𝑧)) ∈ No
) |
| 45 | | peano2 7891 |
. . . . . . . . . . . . . 14
⊢ (suc
𝑧 ∈ ω → suc
suc 𝑧 ∈
ω) |
| 46 | 40, 45 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ ω → suc suc
𝑧 ∈
ω) |
| 47 | 46 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ ω ∧ (𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc 𝑧))) → suc suc 𝑧 ∈ ω) |
| 48 | | nnacl 8628 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ω ∧ suc suc
𝑧 ∈ ω) →
(𝐴 +o suc suc
𝑧) ∈
ω) |
| 49 | 34, 47, 48 | syl2an 596 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → (𝐴 +o suc suc 𝑧) ∈ ω) |
| 50 | 39, 49 | ffvelcdmd 7080 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → (𝐺‘(𝐴 +o suc suc 𝑧)) ∈ No
) |
| 51 | | simprr 772 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → (𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc 𝑧))) |
| 52 | 44 | sltp1d 27979 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → (𝐺‘(𝐴 +o suc 𝑧)) <s ((𝐺‘(𝐴 +o suc 𝑧)) +s 1s
)) |
| 53 | | nnasuc 8623 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ω ∧ suc 𝑧 ∈ ω) → (𝐴 +o suc suc 𝑧) = suc (𝐴 +o suc 𝑧)) |
| 54 | 53 | fveq2d 6885 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ω ∧ suc 𝑧 ∈ ω) → (𝐺‘(𝐴 +o suc suc 𝑧)) = (𝐺‘suc (𝐴 +o suc 𝑧))) |
| 55 | 34, 41, 54 | syl2an 596 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → (𝐺‘(𝐴 +o suc suc 𝑧)) = (𝐺‘suc (𝐴 +o suc 𝑧))) |
| 56 | 17 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → 𝐶 ∈ No
) |
| 57 | 18 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾
ω)) |
| 58 | 56, 57, 43 | om2noseqsuc 28248 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → (𝐺‘suc (𝐴 +o suc 𝑧)) = ((𝐺‘(𝐴 +o suc 𝑧)) +s 1s
)) |
| 59 | 55, 58 | eqtrd 2771 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → (𝐺‘(𝐴 +o suc suc 𝑧)) = ((𝐺‘(𝐴 +o suc 𝑧)) +s 1s
)) |
| 60 | 52, 59 | breqtrrd 5152 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → (𝐺‘(𝐴 +o suc 𝑧)) <s (𝐺‘(𝐴 +o suc suc 𝑧))) |
| 61 | 38, 44, 50, 51, 60 | slttrd 27728 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → (𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc suc 𝑧))) |
| 62 | 61 | expr 456 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐴 ∈ ω) ∧ 𝑧 ∈ ω) → ((𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)) → (𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc suc 𝑧)))) |
| 63 | 62 | expcom 413 |
. . . . . . 7
⊢ (𝑧 ∈ ω → ((𝜑 ∧ 𝐴 ∈ ω) → ((𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)) → (𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc suc 𝑧))))) |
| 64 | 8, 12, 16, 37, 63 | finds2 7899 |
. . . . . 6
⊢ (𝑦 ∈ ω → ((𝜑 ∧ 𝐴 ∈ ω) → (𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc 𝑦)))) |
| 65 | 64 | impcom 407 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 ∈ ω) ∧ 𝑦 ∈ ω) → (𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc 𝑦))) |
| 66 | | fveq2 6881 |
. . . . . 6
⊢ ((𝐴 +o suc 𝑦) = 𝐵 → (𝐺‘(𝐴 +o suc 𝑦)) = (𝐺‘𝐵)) |
| 67 | 66 | breq2d 5136 |
. . . . 5
⊢ ((𝐴 +o suc 𝑦) = 𝐵 → ((𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc 𝑦)) ↔ (𝐺‘𝐴) <s (𝐺‘𝐵))) |
| 68 | 65, 67 | syl5ibcom 245 |
. . . 4
⊢ (((𝜑 ∧ 𝐴 ∈ ω) ∧ 𝑦 ∈ ω) → ((𝐴 +o suc 𝑦) = 𝐵 → (𝐺‘𝐴) <s (𝐺‘𝐵))) |
| 69 | 68 | rexlimdva 3142 |
. . 3
⊢ ((𝜑 ∧ 𝐴 ∈ ω) → (∃𝑦 ∈ ω (𝐴 +o suc 𝑦) = 𝐵 → (𝐺‘𝐴) <s (𝐺‘𝐵))) |
| 70 | 69 | adantrr 717 |
. 2
⊢ ((𝜑 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (∃𝑦 ∈ ω (𝐴 +o suc 𝑦) = 𝐵 → (𝐺‘𝐴) <s (𝐺‘𝐵))) |
| 71 | 2, 70 | sylbid 240 |
1
⊢ ((𝜑 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐴 ∈ 𝐵 → (𝐺‘𝐴) <s (𝐺‘𝐵))) |