Step | Hyp | Ref
| Expression |
1 | | nnaordex2 8695 |
. . 3
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 ↔ ∃𝑦 ∈ ω (𝐴 +o suc 𝑦) = 𝐵)) |
2 | 1 | adantl 481 |
. 2
⊢ ((𝜑 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐴 ∈ 𝐵 ↔ ∃𝑦 ∈ ω (𝐴 +o suc 𝑦) = 𝐵)) |
3 | | suceq 6461 |
. . . . . . . . . . 11
⊢ (𝑦 = ∅ → suc 𝑦 = suc ∅) |
4 | | df-1o 8522 |
. . . . . . . . . . 11
⊢
1o = suc ∅ |
5 | 3, 4 | eqtr4di 2798 |
. . . . . . . . . 10
⊢ (𝑦 = ∅ → suc 𝑦 =
1o) |
6 | 5 | oveq2d 7464 |
. . . . . . . . 9
⊢ (𝑦 = ∅ → (𝐴 +o suc 𝑦) = (𝐴 +o
1o)) |
7 | 6 | fveq2d 6924 |
. . . . . . . 8
⊢ (𝑦 = ∅ → (𝐺‘(𝐴 +o suc 𝑦)) = (𝐺‘(𝐴 +o
1o))) |
8 | 7 | breq2d 5178 |
. . . . . . 7
⊢ (𝑦 = ∅ → ((𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc 𝑦)) ↔ (𝐺‘𝐴) <s (𝐺‘(𝐴 +o
1o)))) |
9 | | suceq 6461 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑧 → suc 𝑦 = suc 𝑧) |
10 | 9 | oveq2d 7464 |
. . . . . . . . 9
⊢ (𝑦 = 𝑧 → (𝐴 +o suc 𝑦) = (𝐴 +o suc 𝑧)) |
11 | 10 | fveq2d 6924 |
. . . . . . . 8
⊢ (𝑦 = 𝑧 → (𝐺‘(𝐴 +o suc 𝑦)) = (𝐺‘(𝐴 +o suc 𝑧))) |
12 | 11 | breq2d 5178 |
. . . . . . 7
⊢ (𝑦 = 𝑧 → ((𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc 𝑦)) ↔ (𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) |
13 | | suceq 6461 |
. . . . . . . . . 10
⊢ (𝑦 = suc 𝑧 → suc 𝑦 = suc suc 𝑧) |
14 | 13 | oveq2d 7464 |
. . . . . . . . 9
⊢ (𝑦 = suc 𝑧 → (𝐴 +o suc 𝑦) = (𝐴 +o suc suc 𝑧)) |
15 | 14 | fveq2d 6924 |
. . . . . . . 8
⊢ (𝑦 = suc 𝑧 → (𝐺‘(𝐴 +o suc 𝑦)) = (𝐺‘(𝐴 +o suc suc 𝑧))) |
16 | 15 | breq2d 5178 |
. . . . . . 7
⊢ (𝑦 = suc 𝑧 → ((𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc 𝑦)) ↔ (𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc suc 𝑧)))) |
17 | | om2noseq.1 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐶 ∈ No
) |
18 | | om2noseq.2 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾
ω)) |
19 | | om2noseq.3 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “
ω)) |
20 | 17, 18, 19 | om2noseqfo 28322 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐺:ω–onto→𝑍) |
21 | | fof 6834 |
. . . . . . . . . . . . 13
⊢ (𝐺:ω–onto→𝑍 → 𝐺:ω⟶𝑍) |
22 | 20, 21 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐺:ω⟶𝑍) |
23 | 19, 17 | noseqssno 28318 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑍 ⊆ No
) |
24 | 22, 23 | fssd 6764 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐺:ω⟶ No
) |
25 | 24 | ffvelcdmda 7118 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐴 ∈ ω) → (𝐺‘𝐴) ∈ No
) |
26 | 25 | addsridd 28016 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐴 ∈ ω) → ((𝐺‘𝐴) +s 0s ) = (𝐺‘𝐴)) |
27 | | 0slt1s 27892 |
. . . . . . . . . 10
⊢
0s <s 1s |
28 | | 0sno 27889 |
. . . . . . . . . . . 12
⊢
0s ∈ No |
29 | 28 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐴 ∈ ω) → 0s ∈
No ) |
30 | | 1sno 27890 |
. . . . . . . . . . . 12
⊢
1s ∈ No |
31 | 30 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐴 ∈ ω) → 1s ∈
No ) |
32 | 29, 31, 25 | sltadd2d 28048 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐴 ∈ ω) → ( 0s
<s 1s ↔ ((𝐺‘𝐴) +s 0s ) <s
((𝐺‘𝐴) +s 1s
))) |
33 | 27, 32 | mpbii 233 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐴 ∈ ω) → ((𝐺‘𝐴) +s 0s ) <s
((𝐺‘𝐴) +s 1s
)) |
34 | 26, 33 | eqbrtrrd 5190 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐴 ∈ ω) → (𝐺‘𝐴) <s ((𝐺‘𝐴) +s 1s
)) |
35 | | nnon 7909 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ω → 𝐴 ∈ On) |
36 | | oa1suc 8587 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ On → (𝐴 +o 1o) =
suc 𝐴) |
37 | 35, 36 | syl 17 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ω → (𝐴 +o 1o) =
suc 𝐴) |
38 | 37 | fveq2d 6924 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ω → (𝐺‘(𝐴 +o 1o)) = (𝐺‘suc 𝐴)) |
39 | 38 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐴 ∈ ω) → (𝐺‘(𝐴 +o 1o)) = (𝐺‘suc 𝐴)) |
40 | 17 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐴 ∈ ω) → 𝐶 ∈ No
) |
41 | 18 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐴 ∈ ω) → 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾
ω)) |
42 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐴 ∈ ω) → 𝐴 ∈ ω) |
43 | 40, 41, 42 | om2noseqsuc 28321 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐴 ∈ ω) → (𝐺‘suc 𝐴) = ((𝐺‘𝐴) +s 1s
)) |
44 | 39, 43 | eqtrd 2780 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐴 ∈ ω) → (𝐺‘(𝐴 +o 1o)) = ((𝐺‘𝐴) +s 1s
)) |
45 | 34, 44 | breqtrrd 5194 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐴 ∈ ω) → (𝐺‘𝐴) <s (𝐺‘(𝐴 +o
1o))) |
46 | 25 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → (𝐺‘𝐴) ∈ No
) |
47 | 24 | ad2antrr 725 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → 𝐺:ω⟶ No
) |
48 | | peano2 7929 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ ω → suc 𝑧 ∈
ω) |
49 | 48 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ ω ∧ (𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc 𝑧))) → suc 𝑧 ∈ ω) |
50 | | nnacl 8667 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ω ∧ suc 𝑧 ∈ ω) → (𝐴 +o suc 𝑧) ∈
ω) |
51 | 42, 49, 50 | syl2an 595 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → (𝐴 +o suc 𝑧) ∈ ω) |
52 | 47, 51 | ffvelcdmd 7119 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → (𝐺‘(𝐴 +o suc 𝑧)) ∈ No
) |
53 | | peano2 7929 |
. . . . . . . . . . . . . 14
⊢ (suc
𝑧 ∈ ω → suc
suc 𝑧 ∈
ω) |
54 | 48, 53 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ ω → suc suc
𝑧 ∈
ω) |
55 | 54 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ ω ∧ (𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc 𝑧))) → suc suc 𝑧 ∈ ω) |
56 | | nnacl 8667 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ω ∧ suc suc
𝑧 ∈ ω) →
(𝐴 +o suc suc
𝑧) ∈
ω) |
57 | 42, 55, 56 | syl2an 595 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → (𝐴 +o suc suc 𝑧) ∈ ω) |
58 | 47, 57 | ffvelcdmd 7119 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → (𝐺‘(𝐴 +o suc suc 𝑧)) ∈ No
) |
59 | | simprr 772 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → (𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc 𝑧))) |
60 | 52 | addsridd 28016 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → ((𝐺‘(𝐴 +o suc 𝑧)) +s 0s ) = (𝐺‘(𝐴 +o suc 𝑧))) |
61 | 28 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → 0s ∈ No ) |
62 | 30 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → 1s ∈ No ) |
63 | 61, 62, 52 | sltadd2d 28048 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → ( 0s <s
1s ↔ ((𝐺‘(𝐴 +o suc 𝑧)) +s 0s ) <s
((𝐺‘(𝐴 +o suc 𝑧)) +s 1s
))) |
64 | 27, 63 | mpbii 233 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → ((𝐺‘(𝐴 +o suc 𝑧)) +s 0s ) <s
((𝐺‘(𝐴 +o suc 𝑧)) +s 1s
)) |
65 | 60, 64 | eqbrtrrd 5190 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → (𝐺‘(𝐴 +o suc 𝑧)) <s ((𝐺‘(𝐴 +o suc 𝑧)) +s 1s
)) |
66 | | nnasuc 8662 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ω ∧ suc 𝑧 ∈ ω) → (𝐴 +o suc suc 𝑧) = suc (𝐴 +o suc 𝑧)) |
67 | 66 | fveq2d 6924 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ω ∧ suc 𝑧 ∈ ω) → (𝐺‘(𝐴 +o suc suc 𝑧)) = (𝐺‘suc (𝐴 +o suc 𝑧))) |
68 | 42, 49, 67 | syl2an 595 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → (𝐺‘(𝐴 +o suc suc 𝑧)) = (𝐺‘suc (𝐴 +o suc 𝑧))) |
69 | 17 | ad2antrr 725 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → 𝐶 ∈ No
) |
70 | 18 | ad2antrr 725 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾
ω)) |
71 | 69, 70, 51 | om2noseqsuc 28321 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → (𝐺‘suc (𝐴 +o suc 𝑧)) = ((𝐺‘(𝐴 +o suc 𝑧)) +s 1s
)) |
72 | 68, 71 | eqtrd 2780 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → (𝐺‘(𝐴 +o suc suc 𝑧)) = ((𝐺‘(𝐴 +o suc 𝑧)) +s 1s
)) |
73 | 65, 72 | breqtrrd 5194 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → (𝐺‘(𝐴 +o suc 𝑧)) <s (𝐺‘(𝐴 +o suc suc 𝑧))) |
74 | 46, 52, 58, 59, 73 | slttrd 27822 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → (𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc suc 𝑧))) |
75 | 74 | expr 456 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐴 ∈ ω) ∧ 𝑧 ∈ ω) → ((𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)) → (𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc suc 𝑧)))) |
76 | 75 | expcom 413 |
. . . . . . 7
⊢ (𝑧 ∈ ω → ((𝜑 ∧ 𝐴 ∈ ω) → ((𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)) → (𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc suc 𝑧))))) |
77 | 8, 12, 16, 45, 76 | finds2 7938 |
. . . . . 6
⊢ (𝑦 ∈ ω → ((𝜑 ∧ 𝐴 ∈ ω) → (𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc 𝑦)))) |
78 | 77 | impcom 407 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 ∈ ω) ∧ 𝑦 ∈ ω) → (𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc 𝑦))) |
79 | | fveq2 6920 |
. . . . . 6
⊢ ((𝐴 +o suc 𝑦) = 𝐵 → (𝐺‘(𝐴 +o suc 𝑦)) = (𝐺‘𝐵)) |
80 | 79 | breq2d 5178 |
. . . . 5
⊢ ((𝐴 +o suc 𝑦) = 𝐵 → ((𝐺‘𝐴) <s (𝐺‘(𝐴 +o suc 𝑦)) ↔ (𝐺‘𝐴) <s (𝐺‘𝐵))) |
81 | 78, 80 | syl5ibcom 245 |
. . . 4
⊢ (((𝜑 ∧ 𝐴 ∈ ω) ∧ 𝑦 ∈ ω) → ((𝐴 +o suc 𝑦) = 𝐵 → (𝐺‘𝐴) <s (𝐺‘𝐵))) |
82 | 81 | rexlimdva 3161 |
. . 3
⊢ ((𝜑 ∧ 𝐴 ∈ ω) → (∃𝑦 ∈ ω (𝐴 +o suc 𝑦) = 𝐵 → (𝐺‘𝐴) <s (𝐺‘𝐵))) |
83 | 82 | adantrr 716 |
. 2
⊢ ((𝜑 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (∃𝑦 ∈ ω (𝐴 +o suc 𝑦) = 𝐵 → (𝐺‘𝐴) <s (𝐺‘𝐵))) |
84 | 2, 83 | sylbid 240 |
1
⊢ ((𝜑 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐴 ∈ 𝐵 → (𝐺‘𝐴) <s (𝐺‘𝐵))) |