MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  om2noseqlt Structured version   Visualization version   GIF version

Theorem om2noseqlt 28222
Description: Surreal less-than relation for 𝐺. (Contributed by Scott Fenton, 18-Apr-2025.)
Hypotheses
Ref Expression
om2noseq.1 (𝜑𝐶 No )
om2noseq.2 (𝜑𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω))
om2noseq.3 (𝜑𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω))
Assertion
Ref Expression
om2noseqlt ((𝜑 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐴𝐵 → (𝐺𝐴) <s (𝐺𝐵)))
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐵(𝑥)   𝐺(𝑥)   𝑍(𝑥)

Proof of Theorem om2noseqlt
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnaordex2 8660 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ ∃𝑦 ∈ ω (𝐴 +o suc 𝑦) = 𝐵))
21adantl 480 . 2 ((𝜑 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐴𝐵 ↔ ∃𝑦 ∈ ω (𝐴 +o suc 𝑦) = 𝐵))
3 suceq 6437 . . . . . . . . . . 11 (𝑦 = ∅ → suc 𝑦 = suc ∅)
4 df-1o 8487 . . . . . . . . . . 11 1o = suc ∅
53, 4eqtr4di 2783 . . . . . . . . . 10 (𝑦 = ∅ → suc 𝑦 = 1o)
65oveq2d 7435 . . . . . . . . 9 (𝑦 = ∅ → (𝐴 +o suc 𝑦) = (𝐴 +o 1o))
76fveq2d 6900 . . . . . . . 8 (𝑦 = ∅ → (𝐺‘(𝐴 +o suc 𝑦)) = (𝐺‘(𝐴 +o 1o)))
87breq2d 5161 . . . . . . 7 (𝑦 = ∅ → ((𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑦)) ↔ (𝐺𝐴) <s (𝐺‘(𝐴 +o 1o))))
9 suceq 6437 . . . . . . . . . 10 (𝑦 = 𝑧 → suc 𝑦 = suc 𝑧)
109oveq2d 7435 . . . . . . . . 9 (𝑦 = 𝑧 → (𝐴 +o suc 𝑦) = (𝐴 +o suc 𝑧))
1110fveq2d 6900 . . . . . . . 8 (𝑦 = 𝑧 → (𝐺‘(𝐴 +o suc 𝑦)) = (𝐺‘(𝐴 +o suc 𝑧)))
1211breq2d 5161 . . . . . . 7 (𝑦 = 𝑧 → ((𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑦)) ↔ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧))))
13 suceq 6437 . . . . . . . . . 10 (𝑦 = suc 𝑧 → suc 𝑦 = suc suc 𝑧)
1413oveq2d 7435 . . . . . . . . 9 (𝑦 = suc 𝑧 → (𝐴 +o suc 𝑦) = (𝐴 +o suc suc 𝑧))
1514fveq2d 6900 . . . . . . . 8 (𝑦 = suc 𝑧 → (𝐺‘(𝐴 +o suc 𝑦)) = (𝐺‘(𝐴 +o suc suc 𝑧)))
1615breq2d 5161 . . . . . . 7 (𝑦 = suc 𝑧 → ((𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑦)) ↔ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc suc 𝑧))))
17 om2noseq.1 . . . . . . . . . . . . . 14 (𝜑𝐶 No )
18 om2noseq.2 . . . . . . . . . . . . . 14 (𝜑𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω))
19 om2noseq.3 . . . . . . . . . . . . . 14 (𝜑𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω))
2017, 18, 19om2noseqfo 28221 . . . . . . . . . . . . 13 (𝜑𝐺:ω–onto𝑍)
21 fof 6810 . . . . . . . . . . . . 13 (𝐺:ω–onto𝑍𝐺:ω⟶𝑍)
2220, 21syl 17 . . . . . . . . . . . 12 (𝜑𝐺:ω⟶𝑍)
2319, 17noseqssno 28217 . . . . . . . . . . . 12 (𝜑𝑍 No )
2422, 23fssd 6740 . . . . . . . . . . 11 (𝜑𝐺:ω⟶ No )
2524ffvelcdmda 7093 . . . . . . . . . 10 ((𝜑𝐴 ∈ ω) → (𝐺𝐴) ∈ No )
2625addsridd 27928 . . . . . . . . 9 ((𝜑𝐴 ∈ ω) → ((𝐺𝐴) +s 0s ) = (𝐺𝐴))
27 0slt1s 27808 . . . . . . . . . 10 0s <s 1s
28 0sno 27805 . . . . . . . . . . . 12 0s No
2928a1i 11 . . . . . . . . . . 11 ((𝜑𝐴 ∈ ω) → 0s No )
30 1sno 27806 . . . . . . . . . . . 12 1s No
3130a1i 11 . . . . . . . . . . 11 ((𝜑𝐴 ∈ ω) → 1s No )
3229, 31, 25sltadd2d 27960 . . . . . . . . . 10 ((𝜑𝐴 ∈ ω) → ( 0s <s 1s ↔ ((𝐺𝐴) +s 0s ) <s ((𝐺𝐴) +s 1s )))
3327, 32mpbii 232 . . . . . . . . 9 ((𝜑𝐴 ∈ ω) → ((𝐺𝐴) +s 0s ) <s ((𝐺𝐴) +s 1s ))
3426, 33eqbrtrrd 5173 . . . . . . . 8 ((𝜑𝐴 ∈ ω) → (𝐺𝐴) <s ((𝐺𝐴) +s 1s ))
35 nnon 7877 . . . . . . . . . . . 12 (𝐴 ∈ ω → 𝐴 ∈ On)
36 oa1suc 8552 . . . . . . . . . . . 12 (𝐴 ∈ On → (𝐴 +o 1o) = suc 𝐴)
3735, 36syl 17 . . . . . . . . . . 11 (𝐴 ∈ ω → (𝐴 +o 1o) = suc 𝐴)
3837fveq2d 6900 . . . . . . . . . 10 (𝐴 ∈ ω → (𝐺‘(𝐴 +o 1o)) = (𝐺‘suc 𝐴))
3938adantl 480 . . . . . . . . 9 ((𝜑𝐴 ∈ ω) → (𝐺‘(𝐴 +o 1o)) = (𝐺‘suc 𝐴))
4017adantr 479 . . . . . . . . . 10 ((𝜑𝐴 ∈ ω) → 𝐶 No )
4118adantr 479 . . . . . . . . . 10 ((𝜑𝐴 ∈ ω) → 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω))
42 simpr 483 . . . . . . . . . 10 ((𝜑𝐴 ∈ ω) → 𝐴 ∈ ω)
4340, 41, 42om2noseqsuc 28220 . . . . . . . . 9 ((𝜑𝐴 ∈ ω) → (𝐺‘suc 𝐴) = ((𝐺𝐴) +s 1s ))
4439, 43eqtrd 2765 . . . . . . . 8 ((𝜑𝐴 ∈ ω) → (𝐺‘(𝐴 +o 1o)) = ((𝐺𝐴) +s 1s ))
4534, 44breqtrrd 5177 . . . . . . 7 ((𝜑𝐴 ∈ ω) → (𝐺𝐴) <s (𝐺‘(𝐴 +o 1o)))
4625adantr 479 . . . . . . . . . 10 (((𝜑𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → (𝐺𝐴) ∈ No )
4724ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → 𝐺:ω⟶ No )
48 peano2 7897 . . . . . . . . . . . . 13 (𝑧 ∈ ω → suc 𝑧 ∈ ω)
4948adantr 479 . . . . . . . . . . . 12 ((𝑧 ∈ ω ∧ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧))) → suc 𝑧 ∈ ω)
50 nnacl 8632 . . . . . . . . . . . 12 ((𝐴 ∈ ω ∧ suc 𝑧 ∈ ω) → (𝐴 +o suc 𝑧) ∈ ω)
5142, 49, 50syl2an 594 . . . . . . . . . . 11 (((𝜑𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → (𝐴 +o suc 𝑧) ∈ ω)
5247, 51ffvelcdmd 7094 . . . . . . . . . 10 (((𝜑𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → (𝐺‘(𝐴 +o suc 𝑧)) ∈ No )
53 peano2 7897 . . . . . . . . . . . . . 14 (suc 𝑧 ∈ ω → suc suc 𝑧 ∈ ω)
5448, 53syl 17 . . . . . . . . . . . . 13 (𝑧 ∈ ω → suc suc 𝑧 ∈ ω)
5554adantr 479 . . . . . . . . . . . 12 ((𝑧 ∈ ω ∧ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧))) → suc suc 𝑧 ∈ ω)
56 nnacl 8632 . . . . . . . . . . . 12 ((𝐴 ∈ ω ∧ suc suc 𝑧 ∈ ω) → (𝐴 +o suc suc 𝑧) ∈ ω)
5742, 55, 56syl2an 594 . . . . . . . . . . 11 (((𝜑𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → (𝐴 +o suc suc 𝑧) ∈ ω)
5847, 57ffvelcdmd 7094 . . . . . . . . . 10 (((𝜑𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → (𝐺‘(𝐴 +o suc suc 𝑧)) ∈ No )
59 simprr 771 . . . . . . . . . 10 (((𝜑𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))
6052addsridd 27928 . . . . . . . . . . . 12 (((𝜑𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → ((𝐺‘(𝐴 +o suc 𝑧)) +s 0s ) = (𝐺‘(𝐴 +o suc 𝑧)))
6128a1i 11 . . . . . . . . . . . . . 14 (((𝜑𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → 0s No )
6230a1i 11 . . . . . . . . . . . . . 14 (((𝜑𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → 1s No )
6361, 62, 52sltadd2d 27960 . . . . . . . . . . . . 13 (((𝜑𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → ( 0s <s 1s ↔ ((𝐺‘(𝐴 +o suc 𝑧)) +s 0s ) <s ((𝐺‘(𝐴 +o suc 𝑧)) +s 1s )))
6427, 63mpbii 232 . . . . . . . . . . . 12 (((𝜑𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → ((𝐺‘(𝐴 +o suc 𝑧)) +s 0s ) <s ((𝐺‘(𝐴 +o suc 𝑧)) +s 1s ))
6560, 64eqbrtrrd 5173 . . . . . . . . . . 11 (((𝜑𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → (𝐺‘(𝐴 +o suc 𝑧)) <s ((𝐺‘(𝐴 +o suc 𝑧)) +s 1s ))
66 nnasuc 8627 . . . . . . . . . . . . . 14 ((𝐴 ∈ ω ∧ suc 𝑧 ∈ ω) → (𝐴 +o suc suc 𝑧) = suc (𝐴 +o suc 𝑧))
6766fveq2d 6900 . . . . . . . . . . . . 13 ((𝐴 ∈ ω ∧ suc 𝑧 ∈ ω) → (𝐺‘(𝐴 +o suc suc 𝑧)) = (𝐺‘suc (𝐴 +o suc 𝑧)))
6842, 49, 67syl2an 594 . . . . . . . . . . . 12 (((𝜑𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → (𝐺‘(𝐴 +o suc suc 𝑧)) = (𝐺‘suc (𝐴 +o suc 𝑧)))
6917ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → 𝐶 No )
7018ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω))
7169, 70, 51om2noseqsuc 28220 . . . . . . . . . . . 12 (((𝜑𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → (𝐺‘suc (𝐴 +o suc 𝑧)) = ((𝐺‘(𝐴 +o suc 𝑧)) +s 1s ))
7268, 71eqtrd 2765 . . . . . . . . . . 11 (((𝜑𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → (𝐺‘(𝐴 +o suc suc 𝑧)) = ((𝐺‘(𝐴 +o suc 𝑧)) +s 1s ))
7365, 72breqtrrd 5177 . . . . . . . . . 10 (((𝜑𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → (𝐺‘(𝐴 +o suc 𝑧)) <s (𝐺‘(𝐴 +o suc suc 𝑧)))
7446, 52, 58, 59, 73slttrd 27738 . . . . . . . . 9 (((𝜑𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → (𝐺𝐴) <s (𝐺‘(𝐴 +o suc suc 𝑧)))
7574expr 455 . . . . . . . 8 (((𝜑𝐴 ∈ ω) ∧ 𝑧 ∈ ω) → ((𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)) → (𝐺𝐴) <s (𝐺‘(𝐴 +o suc suc 𝑧))))
7675expcom 412 . . . . . . 7 (𝑧 ∈ ω → ((𝜑𝐴 ∈ ω) → ((𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)) → (𝐺𝐴) <s (𝐺‘(𝐴 +o suc suc 𝑧)))))
778, 12, 16, 45, 76finds2 7906 . . . . . 6 (𝑦 ∈ ω → ((𝜑𝐴 ∈ ω) → (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑦))))
7877impcom 406 . . . . 5 (((𝜑𝐴 ∈ ω) ∧ 𝑦 ∈ ω) → (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑦)))
79 fveq2 6896 . . . . . 6 ((𝐴 +o suc 𝑦) = 𝐵 → (𝐺‘(𝐴 +o suc 𝑦)) = (𝐺𝐵))
8079breq2d 5161 . . . . 5 ((𝐴 +o suc 𝑦) = 𝐵 → ((𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑦)) ↔ (𝐺𝐴) <s (𝐺𝐵)))
8178, 80syl5ibcom 244 . . . 4 (((𝜑𝐴 ∈ ω) ∧ 𝑦 ∈ ω) → ((𝐴 +o suc 𝑦) = 𝐵 → (𝐺𝐴) <s (𝐺𝐵)))
8281rexlimdva 3144 . . 3 ((𝜑𝐴 ∈ ω) → (∃𝑦 ∈ ω (𝐴 +o suc 𝑦) = 𝐵 → (𝐺𝐴) <s (𝐺𝐵)))
8382adantrr 715 . 2 ((𝜑 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (∃𝑦 ∈ ω (𝐴 +o suc 𝑦) = 𝐵 → (𝐺𝐴) <s (𝐺𝐵)))
842, 83sylbid 239 1 ((𝜑 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐴𝐵 → (𝐺𝐴) <s (𝐺𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  wrex 3059  Vcvv 3461  c0 4322   class class class wbr 5149  cmpt 5232  cres 5680  cima 5681  Oncon0 6371  suc csuc 6373  wf 6545  ontowfo 6547  cfv 6549  (class class class)co 7419  ωcom 7871  reccrdg 8430  1oc1o 8480   +o coa 8484   No csur 27618   <s cslt 27619   0s c0s 27801   1s c1s 27802   +s cadds 27922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-ot 4639  df-uni 4910  df-int 4951  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-oadd 8491  df-nadd 8687  df-no 27621  df-slt 27622  df-bday 27623  df-sle 27724  df-sslt 27760  df-scut 27762  df-0s 27803  df-1s 27804  df-made 27820  df-old 27821  df-left 27823  df-right 27824  df-norec2 27912  df-adds 27923
This theorem is referenced by:  om2noseqlt2  28223  om2noseqf1o  28224
  Copyright terms: Public domain W3C validator