MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  om2noseqlt Structured version   Visualization version   GIF version

Theorem om2noseqlt 28233
Description: Surreal less-than relation for 𝐺. (Contributed by Scott Fenton, 18-Apr-2025.)
Hypotheses
Ref Expression
om2noseq.1 (𝜑𝐶 No )
om2noseq.2 (𝜑𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω))
om2noseq.3 (𝜑𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω))
Assertion
Ref Expression
om2noseqlt ((𝜑 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐴𝐵 → (𝐺𝐴) <s (𝐺𝐵)))
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐵(𝑥)   𝐺(𝑥)   𝑍(𝑥)

Proof of Theorem om2noseqlt
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnaordex2 8580 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ ∃𝑦 ∈ ω (𝐴 +o suc 𝑦) = 𝐵))
21adantl 481 . 2 ((𝜑 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐴𝐵 ↔ ∃𝑦 ∈ ω (𝐴 +o suc 𝑦) = 𝐵))
3 suceq 6388 . . . . . . . . . . 11 (𝑦 = ∅ → suc 𝑦 = suc ∅)
4 df-1o 8411 . . . . . . . . . . 11 1o = suc ∅
53, 4eqtr4di 2782 . . . . . . . . . 10 (𝑦 = ∅ → suc 𝑦 = 1o)
65oveq2d 7385 . . . . . . . . 9 (𝑦 = ∅ → (𝐴 +o suc 𝑦) = (𝐴 +o 1o))
76fveq2d 6844 . . . . . . . 8 (𝑦 = ∅ → (𝐺‘(𝐴 +o suc 𝑦)) = (𝐺‘(𝐴 +o 1o)))
87breq2d 5114 . . . . . . 7 (𝑦 = ∅ → ((𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑦)) ↔ (𝐺𝐴) <s (𝐺‘(𝐴 +o 1o))))
9 suceq 6388 . . . . . . . . . 10 (𝑦 = 𝑧 → suc 𝑦 = suc 𝑧)
109oveq2d 7385 . . . . . . . . 9 (𝑦 = 𝑧 → (𝐴 +o suc 𝑦) = (𝐴 +o suc 𝑧))
1110fveq2d 6844 . . . . . . . 8 (𝑦 = 𝑧 → (𝐺‘(𝐴 +o suc 𝑦)) = (𝐺‘(𝐴 +o suc 𝑧)))
1211breq2d 5114 . . . . . . 7 (𝑦 = 𝑧 → ((𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑦)) ↔ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧))))
13 suceq 6388 . . . . . . . . . 10 (𝑦 = suc 𝑧 → suc 𝑦 = suc suc 𝑧)
1413oveq2d 7385 . . . . . . . . 9 (𝑦 = suc 𝑧 → (𝐴 +o suc 𝑦) = (𝐴 +o suc suc 𝑧))
1514fveq2d 6844 . . . . . . . 8 (𝑦 = suc 𝑧 → (𝐺‘(𝐴 +o suc 𝑦)) = (𝐺‘(𝐴 +o suc suc 𝑧)))
1615breq2d 5114 . . . . . . 7 (𝑦 = suc 𝑧 → ((𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑦)) ↔ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc suc 𝑧))))
17 om2noseq.1 . . . . . . . . . . . . 13 (𝜑𝐶 No )
18 om2noseq.2 . . . . . . . . . . . . 13 (𝜑𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω))
19 om2noseq.3 . . . . . . . . . . . . 13 (𝜑𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω))
2017, 18, 19om2noseqfo 28232 . . . . . . . . . . . 12 (𝜑𝐺:ω–onto𝑍)
21 fof 6754 . . . . . . . . . . . 12 (𝐺:ω–onto𝑍𝐺:ω⟶𝑍)
2220, 21syl 17 . . . . . . . . . . 11 (𝜑𝐺:ω⟶𝑍)
2319, 17noseqssno 28228 . . . . . . . . . . 11 (𝜑𝑍 No )
2422, 23fssd 6687 . . . . . . . . . 10 (𝜑𝐺:ω⟶ No )
2524ffvelcdmda 7038 . . . . . . . . 9 ((𝜑𝐴 ∈ ω) → (𝐺𝐴) ∈ No )
2625sltp1d 27962 . . . . . . . 8 ((𝜑𝐴 ∈ ω) → (𝐺𝐴) <s ((𝐺𝐴) +s 1s ))
27 nnon 7828 . . . . . . . . . . . 12 (𝐴 ∈ ω → 𝐴 ∈ On)
28 oa1suc 8472 . . . . . . . . . . . 12 (𝐴 ∈ On → (𝐴 +o 1o) = suc 𝐴)
2927, 28syl 17 . . . . . . . . . . 11 (𝐴 ∈ ω → (𝐴 +o 1o) = suc 𝐴)
3029fveq2d 6844 . . . . . . . . . 10 (𝐴 ∈ ω → (𝐺‘(𝐴 +o 1o)) = (𝐺‘suc 𝐴))
3130adantl 481 . . . . . . . . 9 ((𝜑𝐴 ∈ ω) → (𝐺‘(𝐴 +o 1o)) = (𝐺‘suc 𝐴))
3217adantr 480 . . . . . . . . . 10 ((𝜑𝐴 ∈ ω) → 𝐶 No )
3318adantr 480 . . . . . . . . . 10 ((𝜑𝐴 ∈ ω) → 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω))
34 simpr 484 . . . . . . . . . 10 ((𝜑𝐴 ∈ ω) → 𝐴 ∈ ω)
3532, 33, 34om2noseqsuc 28231 . . . . . . . . 9 ((𝜑𝐴 ∈ ω) → (𝐺‘suc 𝐴) = ((𝐺𝐴) +s 1s ))
3631, 35eqtrd 2764 . . . . . . . 8 ((𝜑𝐴 ∈ ω) → (𝐺‘(𝐴 +o 1o)) = ((𝐺𝐴) +s 1s ))
3726, 36breqtrrd 5130 . . . . . . 7 ((𝜑𝐴 ∈ ω) → (𝐺𝐴) <s (𝐺‘(𝐴 +o 1o)))
3825adantr 480 . . . . . . . . . 10 (((𝜑𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → (𝐺𝐴) ∈ No )
3924ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → 𝐺:ω⟶ No )
40 peano2 7846 . . . . . . . . . . . . 13 (𝑧 ∈ ω → suc 𝑧 ∈ ω)
4140adantr 480 . . . . . . . . . . . 12 ((𝑧 ∈ ω ∧ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧))) → suc 𝑧 ∈ ω)
42 nnacl 8552 . . . . . . . . . . . 12 ((𝐴 ∈ ω ∧ suc 𝑧 ∈ ω) → (𝐴 +o suc 𝑧) ∈ ω)
4334, 41, 42syl2an 596 . . . . . . . . . . 11 (((𝜑𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → (𝐴 +o suc 𝑧) ∈ ω)
4439, 43ffvelcdmd 7039 . . . . . . . . . 10 (((𝜑𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → (𝐺‘(𝐴 +o suc 𝑧)) ∈ No )
45 peano2 7846 . . . . . . . . . . . . . 14 (suc 𝑧 ∈ ω → suc suc 𝑧 ∈ ω)
4640, 45syl 17 . . . . . . . . . . . . 13 (𝑧 ∈ ω → suc suc 𝑧 ∈ ω)
4746adantr 480 . . . . . . . . . . . 12 ((𝑧 ∈ ω ∧ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧))) → suc suc 𝑧 ∈ ω)
48 nnacl 8552 . . . . . . . . . . . 12 ((𝐴 ∈ ω ∧ suc suc 𝑧 ∈ ω) → (𝐴 +o suc suc 𝑧) ∈ ω)
4934, 47, 48syl2an 596 . . . . . . . . . . 11 (((𝜑𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → (𝐴 +o suc suc 𝑧) ∈ ω)
5039, 49ffvelcdmd 7039 . . . . . . . . . 10 (((𝜑𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → (𝐺‘(𝐴 +o suc suc 𝑧)) ∈ No )
51 simprr 772 . . . . . . . . . 10 (((𝜑𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))
5244sltp1d 27962 . . . . . . . . . . 11 (((𝜑𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → (𝐺‘(𝐴 +o suc 𝑧)) <s ((𝐺‘(𝐴 +o suc 𝑧)) +s 1s ))
53 nnasuc 8547 . . . . . . . . . . . . . 14 ((𝐴 ∈ ω ∧ suc 𝑧 ∈ ω) → (𝐴 +o suc suc 𝑧) = suc (𝐴 +o suc 𝑧))
5453fveq2d 6844 . . . . . . . . . . . . 13 ((𝐴 ∈ ω ∧ suc 𝑧 ∈ ω) → (𝐺‘(𝐴 +o suc suc 𝑧)) = (𝐺‘suc (𝐴 +o suc 𝑧)))
5534, 41, 54syl2an 596 . . . . . . . . . . . 12 (((𝜑𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → (𝐺‘(𝐴 +o suc suc 𝑧)) = (𝐺‘suc (𝐴 +o suc 𝑧)))
5617ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → 𝐶 No )
5718ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω))
5856, 57, 43om2noseqsuc 28231 . . . . . . . . . . . 12 (((𝜑𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → (𝐺‘suc (𝐴 +o suc 𝑧)) = ((𝐺‘(𝐴 +o suc 𝑧)) +s 1s ))
5955, 58eqtrd 2764 . . . . . . . . . . 11 (((𝜑𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → (𝐺‘(𝐴 +o suc suc 𝑧)) = ((𝐺‘(𝐴 +o suc 𝑧)) +s 1s ))
6052, 59breqtrrd 5130 . . . . . . . . . 10 (((𝜑𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → (𝐺‘(𝐴 +o suc 𝑧)) <s (𝐺‘(𝐴 +o suc suc 𝑧)))
6138, 44, 50, 51, 60slttrd 27704 . . . . . . . . 9 (((𝜑𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → (𝐺𝐴) <s (𝐺‘(𝐴 +o suc suc 𝑧)))
6261expr 456 . . . . . . . 8 (((𝜑𝐴 ∈ ω) ∧ 𝑧 ∈ ω) → ((𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)) → (𝐺𝐴) <s (𝐺‘(𝐴 +o suc suc 𝑧))))
6362expcom 413 . . . . . . 7 (𝑧 ∈ ω → ((𝜑𝐴 ∈ ω) → ((𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)) → (𝐺𝐴) <s (𝐺‘(𝐴 +o suc suc 𝑧)))))
648, 12, 16, 37, 63finds2 7854 . . . . . 6 (𝑦 ∈ ω → ((𝜑𝐴 ∈ ω) → (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑦))))
6564impcom 407 . . . . 5 (((𝜑𝐴 ∈ ω) ∧ 𝑦 ∈ ω) → (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑦)))
66 fveq2 6840 . . . . . 6 ((𝐴 +o suc 𝑦) = 𝐵 → (𝐺‘(𝐴 +o suc 𝑦)) = (𝐺𝐵))
6766breq2d 5114 . . . . 5 ((𝐴 +o suc 𝑦) = 𝐵 → ((𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑦)) ↔ (𝐺𝐴) <s (𝐺𝐵)))
6865, 67syl5ibcom 245 . . . 4 (((𝜑𝐴 ∈ ω) ∧ 𝑦 ∈ ω) → ((𝐴 +o suc 𝑦) = 𝐵 → (𝐺𝐴) <s (𝐺𝐵)))
6968rexlimdva 3134 . . 3 ((𝜑𝐴 ∈ ω) → (∃𝑦 ∈ ω (𝐴 +o suc 𝑦) = 𝐵 → (𝐺𝐴) <s (𝐺𝐵)))
7069adantrr 717 . 2 ((𝜑 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (∃𝑦 ∈ ω (𝐴 +o suc 𝑦) = 𝐵 → (𝐺𝐴) <s (𝐺𝐵)))
712, 70sylbid 240 1 ((𝜑 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐴𝐵 → (𝐺𝐴) <s (𝐺𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3053  Vcvv 3444  c0 4292   class class class wbr 5102  cmpt 5183  cres 5633  cima 5634  Oncon0 6320  suc csuc 6322  wf 6495  ontowfo 6497  cfv 6499  (class class class)co 7369  ωcom 7822  reccrdg 8354  1oc1o 8404   +o coa 8408   No csur 27584   <s cslt 27585   1s c1s 27772   +s cadds 27906
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-ot 4594  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-nadd 8607  df-no 27587  df-slt 27588  df-bday 27589  df-sle 27690  df-sslt 27727  df-scut 27729  df-0s 27773  df-1s 27774  df-made 27792  df-old 27793  df-left 27795  df-right 27796  df-norec2 27896  df-adds 27907
This theorem is referenced by:  om2noseqlt2  28234  om2noseqf1o  28235
  Copyright terms: Public domain W3C validator