MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  om2noseqlt Structured version   Visualization version   GIF version

Theorem om2noseqlt 28198
Description: Surreal less-than relation for 𝐺. (Contributed by Scott Fenton, 18-Apr-2025.)
Hypotheses
Ref Expression
om2noseq.1 (𝜑𝐶 No )
om2noseq.2 (𝜑𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω))
om2noseq.3 (𝜑𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω))
Assertion
Ref Expression
om2noseqlt ((𝜑 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐴𝐵 → (𝐺𝐴) <s (𝐺𝐵)))
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐵(𝑥)   𝐺(𝑥)   𝑍(𝑥)

Proof of Theorem om2noseqlt
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnaordex2 8557 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ ∃𝑦 ∈ ω (𝐴 +o suc 𝑦) = 𝐵))
21adantl 481 . 2 ((𝜑 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐴𝐵 ↔ ∃𝑦 ∈ ω (𝐴 +o suc 𝑦) = 𝐵))
3 suceq 6375 . . . . . . . . . . 11 (𝑦 = ∅ → suc 𝑦 = suc ∅)
4 df-1o 8388 . . . . . . . . . . 11 1o = suc ∅
53, 4eqtr4di 2782 . . . . . . . . . 10 (𝑦 = ∅ → suc 𝑦 = 1o)
65oveq2d 7365 . . . . . . . . 9 (𝑦 = ∅ → (𝐴 +o suc 𝑦) = (𝐴 +o 1o))
76fveq2d 6826 . . . . . . . 8 (𝑦 = ∅ → (𝐺‘(𝐴 +o suc 𝑦)) = (𝐺‘(𝐴 +o 1o)))
87breq2d 5104 . . . . . . 7 (𝑦 = ∅ → ((𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑦)) ↔ (𝐺𝐴) <s (𝐺‘(𝐴 +o 1o))))
9 suceq 6375 . . . . . . . . . 10 (𝑦 = 𝑧 → suc 𝑦 = suc 𝑧)
109oveq2d 7365 . . . . . . . . 9 (𝑦 = 𝑧 → (𝐴 +o suc 𝑦) = (𝐴 +o suc 𝑧))
1110fveq2d 6826 . . . . . . . 8 (𝑦 = 𝑧 → (𝐺‘(𝐴 +o suc 𝑦)) = (𝐺‘(𝐴 +o suc 𝑧)))
1211breq2d 5104 . . . . . . 7 (𝑦 = 𝑧 → ((𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑦)) ↔ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧))))
13 suceq 6375 . . . . . . . . . 10 (𝑦 = suc 𝑧 → suc 𝑦 = suc suc 𝑧)
1413oveq2d 7365 . . . . . . . . 9 (𝑦 = suc 𝑧 → (𝐴 +o suc 𝑦) = (𝐴 +o suc suc 𝑧))
1514fveq2d 6826 . . . . . . . 8 (𝑦 = suc 𝑧 → (𝐺‘(𝐴 +o suc 𝑦)) = (𝐺‘(𝐴 +o suc suc 𝑧)))
1615breq2d 5104 . . . . . . 7 (𝑦 = suc 𝑧 → ((𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑦)) ↔ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc suc 𝑧))))
17 om2noseq.1 . . . . . . . . . . . . 13 (𝜑𝐶 No )
18 om2noseq.2 . . . . . . . . . . . . 13 (𝜑𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω))
19 om2noseq.3 . . . . . . . . . . . . 13 (𝜑𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω))
2017, 18, 19om2noseqfo 28197 . . . . . . . . . . . 12 (𝜑𝐺:ω–onto𝑍)
21 fof 6736 . . . . . . . . . . . 12 (𝐺:ω–onto𝑍𝐺:ω⟶𝑍)
2220, 21syl 17 . . . . . . . . . . 11 (𝜑𝐺:ω⟶𝑍)
2319, 17noseqssno 28193 . . . . . . . . . . 11 (𝜑𝑍 No )
2422, 23fssd 6669 . . . . . . . . . 10 (𝜑𝐺:ω⟶ No )
2524ffvelcdmda 7018 . . . . . . . . 9 ((𝜑𝐴 ∈ ω) → (𝐺𝐴) ∈ No )
2625sltp1d 27927 . . . . . . . 8 ((𝜑𝐴 ∈ ω) → (𝐺𝐴) <s ((𝐺𝐴) +s 1s ))
27 nnon 7805 . . . . . . . . . . . 12 (𝐴 ∈ ω → 𝐴 ∈ On)
28 oa1suc 8449 . . . . . . . . . . . 12 (𝐴 ∈ On → (𝐴 +o 1o) = suc 𝐴)
2927, 28syl 17 . . . . . . . . . . 11 (𝐴 ∈ ω → (𝐴 +o 1o) = suc 𝐴)
3029fveq2d 6826 . . . . . . . . . 10 (𝐴 ∈ ω → (𝐺‘(𝐴 +o 1o)) = (𝐺‘suc 𝐴))
3130adantl 481 . . . . . . . . 9 ((𝜑𝐴 ∈ ω) → (𝐺‘(𝐴 +o 1o)) = (𝐺‘suc 𝐴))
3217adantr 480 . . . . . . . . . 10 ((𝜑𝐴 ∈ ω) → 𝐶 No )
3318adantr 480 . . . . . . . . . 10 ((𝜑𝐴 ∈ ω) → 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω))
34 simpr 484 . . . . . . . . . 10 ((𝜑𝐴 ∈ ω) → 𝐴 ∈ ω)
3532, 33, 34om2noseqsuc 28196 . . . . . . . . 9 ((𝜑𝐴 ∈ ω) → (𝐺‘suc 𝐴) = ((𝐺𝐴) +s 1s ))
3631, 35eqtrd 2764 . . . . . . . 8 ((𝜑𝐴 ∈ ω) → (𝐺‘(𝐴 +o 1o)) = ((𝐺𝐴) +s 1s ))
3726, 36breqtrrd 5120 . . . . . . 7 ((𝜑𝐴 ∈ ω) → (𝐺𝐴) <s (𝐺‘(𝐴 +o 1o)))
3825adantr 480 . . . . . . . . . 10 (((𝜑𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → (𝐺𝐴) ∈ No )
3924ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → 𝐺:ω⟶ No )
40 peano2 7823 . . . . . . . . . . . . 13 (𝑧 ∈ ω → suc 𝑧 ∈ ω)
4140adantr 480 . . . . . . . . . . . 12 ((𝑧 ∈ ω ∧ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧))) → suc 𝑧 ∈ ω)
42 nnacl 8529 . . . . . . . . . . . 12 ((𝐴 ∈ ω ∧ suc 𝑧 ∈ ω) → (𝐴 +o suc 𝑧) ∈ ω)
4334, 41, 42syl2an 596 . . . . . . . . . . 11 (((𝜑𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → (𝐴 +o suc 𝑧) ∈ ω)
4439, 43ffvelcdmd 7019 . . . . . . . . . 10 (((𝜑𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → (𝐺‘(𝐴 +o suc 𝑧)) ∈ No )
45 peano2 7823 . . . . . . . . . . . . . 14 (suc 𝑧 ∈ ω → suc suc 𝑧 ∈ ω)
4640, 45syl 17 . . . . . . . . . . . . 13 (𝑧 ∈ ω → suc suc 𝑧 ∈ ω)
4746adantr 480 . . . . . . . . . . . 12 ((𝑧 ∈ ω ∧ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧))) → suc suc 𝑧 ∈ ω)
48 nnacl 8529 . . . . . . . . . . . 12 ((𝐴 ∈ ω ∧ suc suc 𝑧 ∈ ω) → (𝐴 +o suc suc 𝑧) ∈ ω)
4934, 47, 48syl2an 596 . . . . . . . . . . 11 (((𝜑𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → (𝐴 +o suc suc 𝑧) ∈ ω)
5039, 49ffvelcdmd 7019 . . . . . . . . . 10 (((𝜑𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → (𝐺‘(𝐴 +o suc suc 𝑧)) ∈ No )
51 simprr 772 . . . . . . . . . 10 (((𝜑𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))
5244sltp1d 27927 . . . . . . . . . . 11 (((𝜑𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → (𝐺‘(𝐴 +o suc 𝑧)) <s ((𝐺‘(𝐴 +o suc 𝑧)) +s 1s ))
53 nnasuc 8524 . . . . . . . . . . . . . 14 ((𝐴 ∈ ω ∧ suc 𝑧 ∈ ω) → (𝐴 +o suc suc 𝑧) = suc (𝐴 +o suc 𝑧))
5453fveq2d 6826 . . . . . . . . . . . . 13 ((𝐴 ∈ ω ∧ suc 𝑧 ∈ ω) → (𝐺‘(𝐴 +o suc suc 𝑧)) = (𝐺‘suc (𝐴 +o suc 𝑧)))
5534, 41, 54syl2an 596 . . . . . . . . . . . 12 (((𝜑𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → (𝐺‘(𝐴 +o suc suc 𝑧)) = (𝐺‘suc (𝐴 +o suc 𝑧)))
5617ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → 𝐶 No )
5718ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω))
5856, 57, 43om2noseqsuc 28196 . . . . . . . . . . . 12 (((𝜑𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → (𝐺‘suc (𝐴 +o suc 𝑧)) = ((𝐺‘(𝐴 +o suc 𝑧)) +s 1s ))
5955, 58eqtrd 2764 . . . . . . . . . . 11 (((𝜑𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → (𝐺‘(𝐴 +o suc suc 𝑧)) = ((𝐺‘(𝐴 +o suc 𝑧)) +s 1s ))
6052, 59breqtrrd 5120 . . . . . . . . . 10 (((𝜑𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → (𝐺‘(𝐴 +o suc 𝑧)) <s (𝐺‘(𝐴 +o suc suc 𝑧)))
6138, 44, 50, 51, 60slttrd 27669 . . . . . . . . 9 (((𝜑𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → (𝐺𝐴) <s (𝐺‘(𝐴 +o suc suc 𝑧)))
6261expr 456 . . . . . . . 8 (((𝜑𝐴 ∈ ω) ∧ 𝑧 ∈ ω) → ((𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)) → (𝐺𝐴) <s (𝐺‘(𝐴 +o suc suc 𝑧))))
6362expcom 413 . . . . . . 7 (𝑧 ∈ ω → ((𝜑𝐴 ∈ ω) → ((𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)) → (𝐺𝐴) <s (𝐺‘(𝐴 +o suc suc 𝑧)))))
648, 12, 16, 37, 63finds2 7831 . . . . . 6 (𝑦 ∈ ω → ((𝜑𝐴 ∈ ω) → (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑦))))
6564impcom 407 . . . . 5 (((𝜑𝐴 ∈ ω) ∧ 𝑦 ∈ ω) → (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑦)))
66 fveq2 6822 . . . . . 6 ((𝐴 +o suc 𝑦) = 𝐵 → (𝐺‘(𝐴 +o suc 𝑦)) = (𝐺𝐵))
6766breq2d 5104 . . . . 5 ((𝐴 +o suc 𝑦) = 𝐵 → ((𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑦)) ↔ (𝐺𝐴) <s (𝐺𝐵)))
6865, 67syl5ibcom 245 . . . 4 (((𝜑𝐴 ∈ ω) ∧ 𝑦 ∈ ω) → ((𝐴 +o suc 𝑦) = 𝐵 → (𝐺𝐴) <s (𝐺𝐵)))
6968rexlimdva 3130 . . 3 ((𝜑𝐴 ∈ ω) → (∃𝑦 ∈ ω (𝐴 +o suc 𝑦) = 𝐵 → (𝐺𝐴) <s (𝐺𝐵)))
7069adantrr 717 . 2 ((𝜑 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (∃𝑦 ∈ ω (𝐴 +o suc 𝑦) = 𝐵 → (𝐺𝐴) <s (𝐺𝐵)))
712, 70sylbid 240 1 ((𝜑 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐴𝐵 → (𝐺𝐴) <s (𝐺𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3053  Vcvv 3436  c0 4284   class class class wbr 5092  cmpt 5173  cres 5621  cima 5622  Oncon0 6307  suc csuc 6309  wf 6478  ontowfo 6480  cfv 6482  (class class class)co 7349  ωcom 7799  reccrdg 8331  1oc1o 8381   +o coa 8385   No csur 27549   <s cslt 27550   1s c1s 27737   +s cadds 27871
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-ot 4586  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-oadd 8392  df-nadd 8584  df-no 27552  df-slt 27553  df-bday 27554  df-sle 27655  df-sslt 27692  df-scut 27694  df-0s 27738  df-1s 27739  df-made 27757  df-old 27758  df-left 27760  df-right 27761  df-norec2 27861  df-adds 27872
This theorem is referenced by:  om2noseqlt2  28199  om2noseqf1o  28200
  Copyright terms: Public domain W3C validator