MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  om2noseqlt Structured version   Visualization version   GIF version

Theorem om2noseqlt 28229
Description: Surreal less-than relation for 𝐺. (Contributed by Scott Fenton, 18-Apr-2025.)
Hypotheses
Ref Expression
om2noseq.1 (𝜑𝐶 No )
om2noseq.2 (𝜑𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω))
om2noseq.3 (𝜑𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω))
Assertion
Ref Expression
om2noseqlt ((𝜑 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐴𝐵 → (𝐺𝐴) <s (𝐺𝐵)))
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐵(𝑥)   𝐺(𝑥)   𝑍(𝑥)

Proof of Theorem om2noseqlt
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnaordex2 8554 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ ∃𝑦 ∈ ω (𝐴 +o suc 𝑦) = 𝐵))
21adantl 481 . 2 ((𝜑 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐴𝐵 ↔ ∃𝑦 ∈ ω (𝐴 +o suc 𝑦) = 𝐵))
3 suceq 6374 . . . . . . . . . . 11 (𝑦 = ∅ → suc 𝑦 = suc ∅)
4 df-1o 8385 . . . . . . . . . . 11 1o = suc ∅
53, 4eqtr4di 2784 . . . . . . . . . 10 (𝑦 = ∅ → suc 𝑦 = 1o)
65oveq2d 7362 . . . . . . . . 9 (𝑦 = ∅ → (𝐴 +o suc 𝑦) = (𝐴 +o 1o))
76fveq2d 6826 . . . . . . . 8 (𝑦 = ∅ → (𝐺‘(𝐴 +o suc 𝑦)) = (𝐺‘(𝐴 +o 1o)))
87breq2d 5101 . . . . . . 7 (𝑦 = ∅ → ((𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑦)) ↔ (𝐺𝐴) <s (𝐺‘(𝐴 +o 1o))))
9 suceq 6374 . . . . . . . . . 10 (𝑦 = 𝑧 → suc 𝑦 = suc 𝑧)
109oveq2d 7362 . . . . . . . . 9 (𝑦 = 𝑧 → (𝐴 +o suc 𝑦) = (𝐴 +o suc 𝑧))
1110fveq2d 6826 . . . . . . . 8 (𝑦 = 𝑧 → (𝐺‘(𝐴 +o suc 𝑦)) = (𝐺‘(𝐴 +o suc 𝑧)))
1211breq2d 5101 . . . . . . 7 (𝑦 = 𝑧 → ((𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑦)) ↔ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧))))
13 suceq 6374 . . . . . . . . . 10 (𝑦 = suc 𝑧 → suc 𝑦 = suc suc 𝑧)
1413oveq2d 7362 . . . . . . . . 9 (𝑦 = suc 𝑧 → (𝐴 +o suc 𝑦) = (𝐴 +o suc suc 𝑧))
1514fveq2d 6826 . . . . . . . 8 (𝑦 = suc 𝑧 → (𝐺‘(𝐴 +o suc 𝑦)) = (𝐺‘(𝐴 +o suc suc 𝑧)))
1615breq2d 5101 . . . . . . 7 (𝑦 = suc 𝑧 → ((𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑦)) ↔ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc suc 𝑧))))
17 om2noseq.1 . . . . . . . . . . . . 13 (𝜑𝐶 No )
18 om2noseq.2 . . . . . . . . . . . . 13 (𝜑𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω))
19 om2noseq.3 . . . . . . . . . . . . 13 (𝜑𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω))
2017, 18, 19om2noseqfo 28228 . . . . . . . . . . . 12 (𝜑𝐺:ω–onto𝑍)
21 fof 6735 . . . . . . . . . . . 12 (𝐺:ω–onto𝑍𝐺:ω⟶𝑍)
2220, 21syl 17 . . . . . . . . . . 11 (𝜑𝐺:ω⟶𝑍)
2319, 17noseqssno 28224 . . . . . . . . . . 11 (𝜑𝑍 No )
2422, 23fssd 6668 . . . . . . . . . 10 (𝜑𝐺:ω⟶ No )
2524ffvelcdmda 7017 . . . . . . . . 9 ((𝜑𝐴 ∈ ω) → (𝐺𝐴) ∈ No )
2625sltp1d 27958 . . . . . . . 8 ((𝜑𝐴 ∈ ω) → (𝐺𝐴) <s ((𝐺𝐴) +s 1s ))
27 nnon 7802 . . . . . . . . . . . 12 (𝐴 ∈ ω → 𝐴 ∈ On)
28 oa1suc 8446 . . . . . . . . . . . 12 (𝐴 ∈ On → (𝐴 +o 1o) = suc 𝐴)
2927, 28syl 17 . . . . . . . . . . 11 (𝐴 ∈ ω → (𝐴 +o 1o) = suc 𝐴)
3029fveq2d 6826 . . . . . . . . . 10 (𝐴 ∈ ω → (𝐺‘(𝐴 +o 1o)) = (𝐺‘suc 𝐴))
3130adantl 481 . . . . . . . . 9 ((𝜑𝐴 ∈ ω) → (𝐺‘(𝐴 +o 1o)) = (𝐺‘suc 𝐴))
3217adantr 480 . . . . . . . . . 10 ((𝜑𝐴 ∈ ω) → 𝐶 No )
3318adantr 480 . . . . . . . . . 10 ((𝜑𝐴 ∈ ω) → 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω))
34 simpr 484 . . . . . . . . . 10 ((𝜑𝐴 ∈ ω) → 𝐴 ∈ ω)
3532, 33, 34om2noseqsuc 28227 . . . . . . . . 9 ((𝜑𝐴 ∈ ω) → (𝐺‘suc 𝐴) = ((𝐺𝐴) +s 1s ))
3631, 35eqtrd 2766 . . . . . . . 8 ((𝜑𝐴 ∈ ω) → (𝐺‘(𝐴 +o 1o)) = ((𝐺𝐴) +s 1s ))
3726, 36breqtrrd 5117 . . . . . . 7 ((𝜑𝐴 ∈ ω) → (𝐺𝐴) <s (𝐺‘(𝐴 +o 1o)))
3825adantr 480 . . . . . . . . . 10 (((𝜑𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → (𝐺𝐴) ∈ No )
3924ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → 𝐺:ω⟶ No )
40 peano2 7820 . . . . . . . . . . . . 13 (𝑧 ∈ ω → suc 𝑧 ∈ ω)
4140adantr 480 . . . . . . . . . . . 12 ((𝑧 ∈ ω ∧ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧))) → suc 𝑧 ∈ ω)
42 nnacl 8526 . . . . . . . . . . . 12 ((𝐴 ∈ ω ∧ suc 𝑧 ∈ ω) → (𝐴 +o suc 𝑧) ∈ ω)
4334, 41, 42syl2an 596 . . . . . . . . . . 11 (((𝜑𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → (𝐴 +o suc 𝑧) ∈ ω)
4439, 43ffvelcdmd 7018 . . . . . . . . . 10 (((𝜑𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → (𝐺‘(𝐴 +o suc 𝑧)) ∈ No )
45 peano2 7820 . . . . . . . . . . . . . 14 (suc 𝑧 ∈ ω → suc suc 𝑧 ∈ ω)
4640, 45syl 17 . . . . . . . . . . . . 13 (𝑧 ∈ ω → suc suc 𝑧 ∈ ω)
4746adantr 480 . . . . . . . . . . . 12 ((𝑧 ∈ ω ∧ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧))) → suc suc 𝑧 ∈ ω)
48 nnacl 8526 . . . . . . . . . . . 12 ((𝐴 ∈ ω ∧ suc suc 𝑧 ∈ ω) → (𝐴 +o suc suc 𝑧) ∈ ω)
4934, 47, 48syl2an 596 . . . . . . . . . . 11 (((𝜑𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → (𝐴 +o suc suc 𝑧) ∈ ω)
5039, 49ffvelcdmd 7018 . . . . . . . . . 10 (((𝜑𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → (𝐺‘(𝐴 +o suc suc 𝑧)) ∈ No )
51 simprr 772 . . . . . . . . . 10 (((𝜑𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))
5244sltp1d 27958 . . . . . . . . . . 11 (((𝜑𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → (𝐺‘(𝐴 +o suc 𝑧)) <s ((𝐺‘(𝐴 +o suc 𝑧)) +s 1s ))
53 nnasuc 8521 . . . . . . . . . . . . . 14 ((𝐴 ∈ ω ∧ suc 𝑧 ∈ ω) → (𝐴 +o suc suc 𝑧) = suc (𝐴 +o suc 𝑧))
5453fveq2d 6826 . . . . . . . . . . . . 13 ((𝐴 ∈ ω ∧ suc 𝑧 ∈ ω) → (𝐺‘(𝐴 +o suc suc 𝑧)) = (𝐺‘suc (𝐴 +o suc 𝑧)))
5534, 41, 54syl2an 596 . . . . . . . . . . . 12 (((𝜑𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → (𝐺‘(𝐴 +o suc suc 𝑧)) = (𝐺‘suc (𝐴 +o suc 𝑧)))
5617ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → 𝐶 No )
5718ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω))
5856, 57, 43om2noseqsuc 28227 . . . . . . . . . . . 12 (((𝜑𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → (𝐺‘suc (𝐴 +o suc 𝑧)) = ((𝐺‘(𝐴 +o suc 𝑧)) +s 1s ))
5955, 58eqtrd 2766 . . . . . . . . . . 11 (((𝜑𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → (𝐺‘(𝐴 +o suc suc 𝑧)) = ((𝐺‘(𝐴 +o suc 𝑧)) +s 1s ))
6052, 59breqtrrd 5117 . . . . . . . . . 10 (((𝜑𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → (𝐺‘(𝐴 +o suc 𝑧)) <s (𝐺‘(𝐴 +o suc suc 𝑧)))
6138, 44, 50, 51, 60slttrd 27698 . . . . . . . . 9 (((𝜑𝐴 ∈ ω) ∧ (𝑧 ∈ ω ∧ (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)))) → (𝐺𝐴) <s (𝐺‘(𝐴 +o suc suc 𝑧)))
6261expr 456 . . . . . . . 8 (((𝜑𝐴 ∈ ω) ∧ 𝑧 ∈ ω) → ((𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)) → (𝐺𝐴) <s (𝐺‘(𝐴 +o suc suc 𝑧))))
6362expcom 413 . . . . . . 7 (𝑧 ∈ ω → ((𝜑𝐴 ∈ ω) → ((𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑧)) → (𝐺𝐴) <s (𝐺‘(𝐴 +o suc suc 𝑧)))))
648, 12, 16, 37, 63finds2 7828 . . . . . 6 (𝑦 ∈ ω → ((𝜑𝐴 ∈ ω) → (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑦))))
6564impcom 407 . . . . 5 (((𝜑𝐴 ∈ ω) ∧ 𝑦 ∈ ω) → (𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑦)))
66 fveq2 6822 . . . . . 6 ((𝐴 +o suc 𝑦) = 𝐵 → (𝐺‘(𝐴 +o suc 𝑦)) = (𝐺𝐵))
6766breq2d 5101 . . . . 5 ((𝐴 +o suc 𝑦) = 𝐵 → ((𝐺𝐴) <s (𝐺‘(𝐴 +o suc 𝑦)) ↔ (𝐺𝐴) <s (𝐺𝐵)))
6865, 67syl5ibcom 245 . . . 4 (((𝜑𝐴 ∈ ω) ∧ 𝑦 ∈ ω) → ((𝐴 +o suc 𝑦) = 𝐵 → (𝐺𝐴) <s (𝐺𝐵)))
6968rexlimdva 3133 . . 3 ((𝜑𝐴 ∈ ω) → (∃𝑦 ∈ ω (𝐴 +o suc 𝑦) = 𝐵 → (𝐺𝐴) <s (𝐺𝐵)))
7069adantrr 717 . 2 ((𝜑 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (∃𝑦 ∈ ω (𝐴 +o suc 𝑦) = 𝐵 → (𝐺𝐴) <s (𝐺𝐵)))
712, 70sylbid 240 1 ((𝜑 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐴𝐵 → (𝐺𝐴) <s (𝐺𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wrex 3056  Vcvv 3436  c0 4280   class class class wbr 5089  cmpt 5170  cres 5616  cima 5617  Oncon0 6306  suc csuc 6308  wf 6477  ontowfo 6479  cfv 6481  (class class class)co 7346  ωcom 7796  reccrdg 8328  1oc1o 8378   +o coa 8382   No csur 27578   <s cslt 27579   1s c1s 27767   +s cadds 27902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-ot 4582  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-nadd 8581  df-no 27581  df-slt 27582  df-bday 27583  df-sle 27684  df-sslt 27721  df-scut 27723  df-0s 27768  df-1s 27769  df-made 27788  df-old 27789  df-left 27791  df-right 27792  df-norec2 27892  df-adds 27903
This theorem is referenced by:  om2noseqlt2  28230  om2noseqf1o  28231
  Copyright terms: Public domain W3C validator