![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > om2noseqfo | Structured version Visualization version GIF version |
Description: Function statement for 𝐺. (Contributed by Scott Fenton, 18-Apr-2025.) |
Ref | Expression |
---|---|
om2noseq.1 | ⊢ (𝜑 → 𝐶 ∈ No ) |
om2noseq.2 | ⊢ (𝜑 → 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)) |
om2noseq.3 | ⊢ (𝜑 → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω)) |
Ref | Expression |
---|---|
om2noseqfo | ⊢ (𝜑 → 𝐺:ω–onto→𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frfnom 8474 | . . 3 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω) Fn ω | |
2 | om2noseq.2 | . . . 4 ⊢ (𝜑 → 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)) | |
3 | 2 | fneq1d 6662 | . . 3 ⊢ (𝜑 → (𝐺 Fn ω ↔ (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω) Fn ω)) |
4 | 1, 3 | mpbiri 258 | . 2 ⊢ (𝜑 → 𝐺 Fn ω) |
5 | df-ima 5702 | . . . 4 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω) = ran (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω) | |
6 | 5 | eqcomi 2744 | . . 3 ⊢ ran (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω) |
7 | 2 | rneqd 5952 | . . 3 ⊢ (𝜑 → ran 𝐺 = ran (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)) |
8 | om2noseq.3 | . . 3 ⊢ (𝜑 → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω)) | |
9 | 6, 7, 8 | 3eqtr4a 2801 | . 2 ⊢ (𝜑 → ran 𝐺 = 𝑍) |
10 | df-fo 6569 | . 2 ⊢ (𝐺:ω–onto→𝑍 ↔ (𝐺 Fn ω ∧ ran 𝐺 = 𝑍)) | |
11 | 4, 9, 10 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝐺:ω–onto→𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 Vcvv 3478 ↦ cmpt 5231 ran crn 5690 ↾ cres 5691 “ cima 5692 Fn wfn 6558 –onto→wfo 6561 (class class class)co 7431 ωcom 7887 reccrdg 8448 No csur 27699 1s c1s 27883 +s cadds 28007 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 |
This theorem is referenced by: om2noseqlt 28320 om2noseqlt2 28321 om2noseqf1o 28322 noseqrdgfn 28327 |
Copyright terms: Public domain | W3C validator |