| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > om2uzrani | Structured version Visualization version GIF version | ||
| Description: Range of 𝐺 (see om2uz0i 13888). (Contributed by NM, 3-Oct-2004.) (Revised by Mario Carneiro, 13-Sep-2013.) |
| Ref | Expression |
|---|---|
| om2uz.1 | ⊢ 𝐶 ∈ ℤ |
| om2uz.2 | ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) |
| Ref | Expression |
|---|---|
| om2uzrani | ⊢ ran 𝐺 = (ℤ≥‘𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frfnom 8380 | . . . . . 6 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) Fn ω | |
| 2 | om2uz.2 | . . . . . . 7 ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) | |
| 3 | 2 | fneq1i 6597 | . . . . . 6 ⊢ (𝐺 Fn ω ↔ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) Fn ω) |
| 4 | 1, 3 | mpbir 231 | . . . . 5 ⊢ 𝐺 Fn ω |
| 5 | fvelrnb 6903 | . . . . 5 ⊢ (𝐺 Fn ω → (𝑦 ∈ ran 𝐺 ↔ ∃𝑧 ∈ ω (𝐺‘𝑧) = 𝑦)) | |
| 6 | 4, 5 | ax-mp 5 | . . . 4 ⊢ (𝑦 ∈ ran 𝐺 ↔ ∃𝑧 ∈ ω (𝐺‘𝑧) = 𝑦) |
| 7 | om2uz.1 | . . . . . . 7 ⊢ 𝐶 ∈ ℤ | |
| 8 | 7, 2 | om2uzuzi 13890 | . . . . . 6 ⊢ (𝑧 ∈ ω → (𝐺‘𝑧) ∈ (ℤ≥‘𝐶)) |
| 9 | eleq1 2816 | . . . . . 6 ⊢ ((𝐺‘𝑧) = 𝑦 → ((𝐺‘𝑧) ∈ (ℤ≥‘𝐶) ↔ 𝑦 ∈ (ℤ≥‘𝐶))) | |
| 10 | 8, 9 | syl5ibcom 245 | . . . . 5 ⊢ (𝑧 ∈ ω → ((𝐺‘𝑧) = 𝑦 → 𝑦 ∈ (ℤ≥‘𝐶))) |
| 11 | 10 | rexlimiv 3127 | . . . 4 ⊢ (∃𝑧 ∈ ω (𝐺‘𝑧) = 𝑦 → 𝑦 ∈ (ℤ≥‘𝐶)) |
| 12 | 6, 11 | sylbi 217 | . . 3 ⊢ (𝑦 ∈ ran 𝐺 → 𝑦 ∈ (ℤ≥‘𝐶)) |
| 13 | eleq1 2816 | . . . 4 ⊢ (𝑧 = 𝐶 → (𝑧 ∈ ran 𝐺 ↔ 𝐶 ∈ ran 𝐺)) | |
| 14 | eleq1 2816 | . . . 4 ⊢ (𝑧 = 𝑦 → (𝑧 ∈ ran 𝐺 ↔ 𝑦 ∈ ran 𝐺)) | |
| 15 | eleq1 2816 | . . . 4 ⊢ (𝑧 = (𝑦 + 1) → (𝑧 ∈ ran 𝐺 ↔ (𝑦 + 1) ∈ ran 𝐺)) | |
| 16 | 7, 2 | om2uz0i 13888 | . . . . 5 ⊢ (𝐺‘∅) = 𝐶 |
| 17 | peano1 7845 | . . . . . 6 ⊢ ∅ ∈ ω | |
| 18 | fnfvelrn 7034 | . . . . . 6 ⊢ ((𝐺 Fn ω ∧ ∅ ∈ ω) → (𝐺‘∅) ∈ ran 𝐺) | |
| 19 | 4, 17, 18 | mp2an 692 | . . . . 5 ⊢ (𝐺‘∅) ∈ ran 𝐺 |
| 20 | 16, 19 | eqeltrri 2825 | . . . 4 ⊢ 𝐶 ∈ ran 𝐺 |
| 21 | 7, 2 | om2uzsuci 13889 | . . . . . . . . 9 ⊢ (𝑧 ∈ ω → (𝐺‘suc 𝑧) = ((𝐺‘𝑧) + 1)) |
| 22 | oveq1 7376 | . . . . . . . . 9 ⊢ ((𝐺‘𝑧) = 𝑦 → ((𝐺‘𝑧) + 1) = (𝑦 + 1)) | |
| 23 | 21, 22 | sylan9eq 2784 | . . . . . . . 8 ⊢ ((𝑧 ∈ ω ∧ (𝐺‘𝑧) = 𝑦) → (𝐺‘suc 𝑧) = (𝑦 + 1)) |
| 24 | peano2 7846 | . . . . . . . . . 10 ⊢ (𝑧 ∈ ω → suc 𝑧 ∈ ω) | |
| 25 | fnfvelrn 7034 | . . . . . . . . . 10 ⊢ ((𝐺 Fn ω ∧ suc 𝑧 ∈ ω) → (𝐺‘suc 𝑧) ∈ ran 𝐺) | |
| 26 | 4, 24, 25 | sylancr 587 | . . . . . . . . 9 ⊢ (𝑧 ∈ ω → (𝐺‘suc 𝑧) ∈ ran 𝐺) |
| 27 | 26 | adantr 480 | . . . . . . . 8 ⊢ ((𝑧 ∈ ω ∧ (𝐺‘𝑧) = 𝑦) → (𝐺‘suc 𝑧) ∈ ran 𝐺) |
| 28 | 23, 27 | eqeltrrd 2829 | . . . . . . 7 ⊢ ((𝑧 ∈ ω ∧ (𝐺‘𝑧) = 𝑦) → (𝑦 + 1) ∈ ran 𝐺) |
| 29 | 28 | rexlimiva 3126 | . . . . . 6 ⊢ (∃𝑧 ∈ ω (𝐺‘𝑧) = 𝑦 → (𝑦 + 1) ∈ ran 𝐺) |
| 30 | 6, 29 | sylbi 217 | . . . . 5 ⊢ (𝑦 ∈ ran 𝐺 → (𝑦 + 1) ∈ ran 𝐺) |
| 31 | 30 | a1i 11 | . . . 4 ⊢ (𝑦 ∈ (ℤ≥‘𝐶) → (𝑦 ∈ ran 𝐺 → (𝑦 + 1) ∈ ran 𝐺)) |
| 32 | 13, 14, 15, 14, 20, 31 | uzind4i 12845 | . . 3 ⊢ (𝑦 ∈ (ℤ≥‘𝐶) → 𝑦 ∈ ran 𝐺) |
| 33 | 12, 32 | impbii 209 | . 2 ⊢ (𝑦 ∈ ran 𝐺 ↔ 𝑦 ∈ (ℤ≥‘𝐶)) |
| 34 | 33 | eqriv 2726 | 1 ⊢ ran 𝐺 = (ℤ≥‘𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 Vcvv 3444 ∅c0 4292 ↦ cmpt 5183 ran crn 5632 ↾ cres 5633 suc csuc 6322 Fn wfn 6494 ‘cfv 6499 (class class class)co 7369 ωcom 7822 reccrdg 8354 1c1 11045 + caddc 11047 ℤcz 12505 ℤ≥cuz 12769 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-n0 12419 df-z 12506 df-uz 12770 |
| This theorem is referenced by: om2uzf1oi 13894 |
| Copyright terms: Public domain | W3C validator |