| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > om2uzrani | Structured version Visualization version GIF version | ||
| Description: Range of 𝐺 (see om2uz0i 13919). (Contributed by NM, 3-Oct-2004.) (Revised by Mario Carneiro, 13-Sep-2013.) |
| Ref | Expression |
|---|---|
| om2uz.1 | ⊢ 𝐶 ∈ ℤ |
| om2uz.2 | ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) |
| Ref | Expression |
|---|---|
| om2uzrani | ⊢ ran 𝐺 = (ℤ≥‘𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frfnom 8406 | . . . . . 6 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) Fn ω | |
| 2 | om2uz.2 | . . . . . . 7 ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) | |
| 3 | 2 | fneq1i 6618 | . . . . . 6 ⊢ (𝐺 Fn ω ↔ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) Fn ω) |
| 4 | 1, 3 | mpbir 231 | . . . . 5 ⊢ 𝐺 Fn ω |
| 5 | fvelrnb 6924 | . . . . 5 ⊢ (𝐺 Fn ω → (𝑦 ∈ ran 𝐺 ↔ ∃𝑧 ∈ ω (𝐺‘𝑧) = 𝑦)) | |
| 6 | 4, 5 | ax-mp 5 | . . . 4 ⊢ (𝑦 ∈ ran 𝐺 ↔ ∃𝑧 ∈ ω (𝐺‘𝑧) = 𝑦) |
| 7 | om2uz.1 | . . . . . . 7 ⊢ 𝐶 ∈ ℤ | |
| 8 | 7, 2 | om2uzuzi 13921 | . . . . . 6 ⊢ (𝑧 ∈ ω → (𝐺‘𝑧) ∈ (ℤ≥‘𝐶)) |
| 9 | eleq1 2817 | . . . . . 6 ⊢ ((𝐺‘𝑧) = 𝑦 → ((𝐺‘𝑧) ∈ (ℤ≥‘𝐶) ↔ 𝑦 ∈ (ℤ≥‘𝐶))) | |
| 10 | 8, 9 | syl5ibcom 245 | . . . . 5 ⊢ (𝑧 ∈ ω → ((𝐺‘𝑧) = 𝑦 → 𝑦 ∈ (ℤ≥‘𝐶))) |
| 11 | 10 | rexlimiv 3128 | . . . 4 ⊢ (∃𝑧 ∈ ω (𝐺‘𝑧) = 𝑦 → 𝑦 ∈ (ℤ≥‘𝐶)) |
| 12 | 6, 11 | sylbi 217 | . . 3 ⊢ (𝑦 ∈ ran 𝐺 → 𝑦 ∈ (ℤ≥‘𝐶)) |
| 13 | eleq1 2817 | . . . 4 ⊢ (𝑧 = 𝐶 → (𝑧 ∈ ran 𝐺 ↔ 𝐶 ∈ ran 𝐺)) | |
| 14 | eleq1 2817 | . . . 4 ⊢ (𝑧 = 𝑦 → (𝑧 ∈ ran 𝐺 ↔ 𝑦 ∈ ran 𝐺)) | |
| 15 | eleq1 2817 | . . . 4 ⊢ (𝑧 = (𝑦 + 1) → (𝑧 ∈ ran 𝐺 ↔ (𝑦 + 1) ∈ ran 𝐺)) | |
| 16 | 7, 2 | om2uz0i 13919 | . . . . 5 ⊢ (𝐺‘∅) = 𝐶 |
| 17 | peano1 7868 | . . . . . 6 ⊢ ∅ ∈ ω | |
| 18 | fnfvelrn 7055 | . . . . . 6 ⊢ ((𝐺 Fn ω ∧ ∅ ∈ ω) → (𝐺‘∅) ∈ ran 𝐺) | |
| 19 | 4, 17, 18 | mp2an 692 | . . . . 5 ⊢ (𝐺‘∅) ∈ ran 𝐺 |
| 20 | 16, 19 | eqeltrri 2826 | . . . 4 ⊢ 𝐶 ∈ ran 𝐺 |
| 21 | 7, 2 | om2uzsuci 13920 | . . . . . . . . 9 ⊢ (𝑧 ∈ ω → (𝐺‘suc 𝑧) = ((𝐺‘𝑧) + 1)) |
| 22 | oveq1 7397 | . . . . . . . . 9 ⊢ ((𝐺‘𝑧) = 𝑦 → ((𝐺‘𝑧) + 1) = (𝑦 + 1)) | |
| 23 | 21, 22 | sylan9eq 2785 | . . . . . . . 8 ⊢ ((𝑧 ∈ ω ∧ (𝐺‘𝑧) = 𝑦) → (𝐺‘suc 𝑧) = (𝑦 + 1)) |
| 24 | peano2 7869 | . . . . . . . . . 10 ⊢ (𝑧 ∈ ω → suc 𝑧 ∈ ω) | |
| 25 | fnfvelrn 7055 | . . . . . . . . . 10 ⊢ ((𝐺 Fn ω ∧ suc 𝑧 ∈ ω) → (𝐺‘suc 𝑧) ∈ ran 𝐺) | |
| 26 | 4, 24, 25 | sylancr 587 | . . . . . . . . 9 ⊢ (𝑧 ∈ ω → (𝐺‘suc 𝑧) ∈ ran 𝐺) |
| 27 | 26 | adantr 480 | . . . . . . . 8 ⊢ ((𝑧 ∈ ω ∧ (𝐺‘𝑧) = 𝑦) → (𝐺‘suc 𝑧) ∈ ran 𝐺) |
| 28 | 23, 27 | eqeltrrd 2830 | . . . . . . 7 ⊢ ((𝑧 ∈ ω ∧ (𝐺‘𝑧) = 𝑦) → (𝑦 + 1) ∈ ran 𝐺) |
| 29 | 28 | rexlimiva 3127 | . . . . . 6 ⊢ (∃𝑧 ∈ ω (𝐺‘𝑧) = 𝑦 → (𝑦 + 1) ∈ ran 𝐺) |
| 30 | 6, 29 | sylbi 217 | . . . . 5 ⊢ (𝑦 ∈ ran 𝐺 → (𝑦 + 1) ∈ ran 𝐺) |
| 31 | 30 | a1i 11 | . . . 4 ⊢ (𝑦 ∈ (ℤ≥‘𝐶) → (𝑦 ∈ ran 𝐺 → (𝑦 + 1) ∈ ran 𝐺)) |
| 32 | 13, 14, 15, 14, 20, 31 | uzind4i 12876 | . . 3 ⊢ (𝑦 ∈ (ℤ≥‘𝐶) → 𝑦 ∈ ran 𝐺) |
| 33 | 12, 32 | impbii 209 | . 2 ⊢ (𝑦 ∈ ran 𝐺 ↔ 𝑦 ∈ (ℤ≥‘𝐶)) |
| 34 | 33 | eqriv 2727 | 1 ⊢ ran 𝐺 = (ℤ≥‘𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3054 Vcvv 3450 ∅c0 4299 ↦ cmpt 5191 ran crn 5642 ↾ cres 5643 suc csuc 6337 Fn wfn 6509 ‘cfv 6514 (class class class)co 7390 ωcom 7845 reccrdg 8380 1c1 11076 + caddc 11078 ℤcz 12536 ℤ≥cuz 12800 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-n0 12450 df-z 12537 df-uz 12801 |
| This theorem is referenced by: om2uzf1oi 13925 |
| Copyright terms: Public domain | W3C validator |