| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > om2uzrani | Structured version Visualization version GIF version | ||
| Description: Range of 𝐺 (see om2uz0i 13970). (Contributed by NM, 3-Oct-2004.) (Revised by Mario Carneiro, 13-Sep-2013.) |
| Ref | Expression |
|---|---|
| om2uz.1 | ⊢ 𝐶 ∈ ℤ |
| om2uz.2 | ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) |
| Ref | Expression |
|---|---|
| om2uzrani | ⊢ ran 𝐺 = (ℤ≥‘𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frfnom 8454 | . . . . . 6 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) Fn ω | |
| 2 | om2uz.2 | . . . . . . 7 ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) | |
| 3 | 2 | fneq1i 6640 | . . . . . 6 ⊢ (𝐺 Fn ω ↔ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) Fn ω) |
| 4 | 1, 3 | mpbir 231 | . . . . 5 ⊢ 𝐺 Fn ω |
| 5 | fvelrnb 6944 | . . . . 5 ⊢ (𝐺 Fn ω → (𝑦 ∈ ran 𝐺 ↔ ∃𝑧 ∈ ω (𝐺‘𝑧) = 𝑦)) | |
| 6 | 4, 5 | ax-mp 5 | . . . 4 ⊢ (𝑦 ∈ ran 𝐺 ↔ ∃𝑧 ∈ ω (𝐺‘𝑧) = 𝑦) |
| 7 | om2uz.1 | . . . . . . 7 ⊢ 𝐶 ∈ ℤ | |
| 8 | 7, 2 | om2uzuzi 13972 | . . . . . 6 ⊢ (𝑧 ∈ ω → (𝐺‘𝑧) ∈ (ℤ≥‘𝐶)) |
| 9 | eleq1 2823 | . . . . . 6 ⊢ ((𝐺‘𝑧) = 𝑦 → ((𝐺‘𝑧) ∈ (ℤ≥‘𝐶) ↔ 𝑦 ∈ (ℤ≥‘𝐶))) | |
| 10 | 8, 9 | syl5ibcom 245 | . . . . 5 ⊢ (𝑧 ∈ ω → ((𝐺‘𝑧) = 𝑦 → 𝑦 ∈ (ℤ≥‘𝐶))) |
| 11 | 10 | rexlimiv 3135 | . . . 4 ⊢ (∃𝑧 ∈ ω (𝐺‘𝑧) = 𝑦 → 𝑦 ∈ (ℤ≥‘𝐶)) |
| 12 | 6, 11 | sylbi 217 | . . 3 ⊢ (𝑦 ∈ ran 𝐺 → 𝑦 ∈ (ℤ≥‘𝐶)) |
| 13 | eleq1 2823 | . . . 4 ⊢ (𝑧 = 𝐶 → (𝑧 ∈ ran 𝐺 ↔ 𝐶 ∈ ran 𝐺)) | |
| 14 | eleq1 2823 | . . . 4 ⊢ (𝑧 = 𝑦 → (𝑧 ∈ ran 𝐺 ↔ 𝑦 ∈ ran 𝐺)) | |
| 15 | eleq1 2823 | . . . 4 ⊢ (𝑧 = (𝑦 + 1) → (𝑧 ∈ ran 𝐺 ↔ (𝑦 + 1) ∈ ran 𝐺)) | |
| 16 | 7, 2 | om2uz0i 13970 | . . . . 5 ⊢ (𝐺‘∅) = 𝐶 |
| 17 | peano1 7889 | . . . . . 6 ⊢ ∅ ∈ ω | |
| 18 | fnfvelrn 7075 | . . . . . 6 ⊢ ((𝐺 Fn ω ∧ ∅ ∈ ω) → (𝐺‘∅) ∈ ran 𝐺) | |
| 19 | 4, 17, 18 | mp2an 692 | . . . . 5 ⊢ (𝐺‘∅) ∈ ran 𝐺 |
| 20 | 16, 19 | eqeltrri 2832 | . . . 4 ⊢ 𝐶 ∈ ran 𝐺 |
| 21 | 7, 2 | om2uzsuci 13971 | . . . . . . . . 9 ⊢ (𝑧 ∈ ω → (𝐺‘suc 𝑧) = ((𝐺‘𝑧) + 1)) |
| 22 | oveq1 7417 | . . . . . . . . 9 ⊢ ((𝐺‘𝑧) = 𝑦 → ((𝐺‘𝑧) + 1) = (𝑦 + 1)) | |
| 23 | 21, 22 | sylan9eq 2791 | . . . . . . . 8 ⊢ ((𝑧 ∈ ω ∧ (𝐺‘𝑧) = 𝑦) → (𝐺‘suc 𝑧) = (𝑦 + 1)) |
| 24 | peano2 7891 | . . . . . . . . . 10 ⊢ (𝑧 ∈ ω → suc 𝑧 ∈ ω) | |
| 25 | fnfvelrn 7075 | . . . . . . . . . 10 ⊢ ((𝐺 Fn ω ∧ suc 𝑧 ∈ ω) → (𝐺‘suc 𝑧) ∈ ran 𝐺) | |
| 26 | 4, 24, 25 | sylancr 587 | . . . . . . . . 9 ⊢ (𝑧 ∈ ω → (𝐺‘suc 𝑧) ∈ ran 𝐺) |
| 27 | 26 | adantr 480 | . . . . . . . 8 ⊢ ((𝑧 ∈ ω ∧ (𝐺‘𝑧) = 𝑦) → (𝐺‘suc 𝑧) ∈ ran 𝐺) |
| 28 | 23, 27 | eqeltrrd 2836 | . . . . . . 7 ⊢ ((𝑧 ∈ ω ∧ (𝐺‘𝑧) = 𝑦) → (𝑦 + 1) ∈ ran 𝐺) |
| 29 | 28 | rexlimiva 3134 | . . . . . 6 ⊢ (∃𝑧 ∈ ω (𝐺‘𝑧) = 𝑦 → (𝑦 + 1) ∈ ran 𝐺) |
| 30 | 6, 29 | sylbi 217 | . . . . 5 ⊢ (𝑦 ∈ ran 𝐺 → (𝑦 + 1) ∈ ran 𝐺) |
| 31 | 30 | a1i 11 | . . . 4 ⊢ (𝑦 ∈ (ℤ≥‘𝐶) → (𝑦 ∈ ran 𝐺 → (𝑦 + 1) ∈ ran 𝐺)) |
| 32 | 13, 14, 15, 14, 20, 31 | uzind4i 12931 | . . 3 ⊢ (𝑦 ∈ (ℤ≥‘𝐶) → 𝑦 ∈ ran 𝐺) |
| 33 | 12, 32 | impbii 209 | . 2 ⊢ (𝑦 ∈ ran 𝐺 ↔ 𝑦 ∈ (ℤ≥‘𝐶)) |
| 34 | 33 | eqriv 2733 | 1 ⊢ ran 𝐺 = (ℤ≥‘𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3061 Vcvv 3464 ∅c0 4313 ↦ cmpt 5206 ran crn 5660 ↾ cres 5661 suc csuc 6359 Fn wfn 6531 ‘cfv 6536 (class class class)co 7410 ωcom 7866 reccrdg 8428 1c1 11135 + caddc 11137 ℤcz 12593 ℤ≥cuz 12857 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-n0 12507 df-z 12594 df-uz 12858 |
| This theorem is referenced by: om2uzf1oi 13976 |
| Copyright terms: Public domain | W3C validator |