![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > om2uzrani | Structured version Visualization version GIF version |
Description: Range of 𝐺 (see om2uz0i 13985). (Contributed by NM, 3-Oct-2004.) (Revised by Mario Carneiro, 13-Sep-2013.) |
Ref | Expression |
---|---|
om2uz.1 | ⊢ 𝐶 ∈ ℤ |
om2uz.2 | ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) |
Ref | Expression |
---|---|
om2uzrani | ⊢ ran 𝐺 = (ℤ≥‘𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frfnom 8474 | . . . . . 6 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) Fn ω | |
2 | om2uz.2 | . . . . . . 7 ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) | |
3 | 2 | fneq1i 6666 | . . . . . 6 ⊢ (𝐺 Fn ω ↔ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) Fn ω) |
4 | 1, 3 | mpbir 231 | . . . . 5 ⊢ 𝐺 Fn ω |
5 | fvelrnb 6969 | . . . . 5 ⊢ (𝐺 Fn ω → (𝑦 ∈ ran 𝐺 ↔ ∃𝑧 ∈ ω (𝐺‘𝑧) = 𝑦)) | |
6 | 4, 5 | ax-mp 5 | . . . 4 ⊢ (𝑦 ∈ ran 𝐺 ↔ ∃𝑧 ∈ ω (𝐺‘𝑧) = 𝑦) |
7 | om2uz.1 | . . . . . . 7 ⊢ 𝐶 ∈ ℤ | |
8 | 7, 2 | om2uzuzi 13987 | . . . . . 6 ⊢ (𝑧 ∈ ω → (𝐺‘𝑧) ∈ (ℤ≥‘𝐶)) |
9 | eleq1 2827 | . . . . . 6 ⊢ ((𝐺‘𝑧) = 𝑦 → ((𝐺‘𝑧) ∈ (ℤ≥‘𝐶) ↔ 𝑦 ∈ (ℤ≥‘𝐶))) | |
10 | 8, 9 | syl5ibcom 245 | . . . . 5 ⊢ (𝑧 ∈ ω → ((𝐺‘𝑧) = 𝑦 → 𝑦 ∈ (ℤ≥‘𝐶))) |
11 | 10 | rexlimiv 3146 | . . . 4 ⊢ (∃𝑧 ∈ ω (𝐺‘𝑧) = 𝑦 → 𝑦 ∈ (ℤ≥‘𝐶)) |
12 | 6, 11 | sylbi 217 | . . 3 ⊢ (𝑦 ∈ ran 𝐺 → 𝑦 ∈ (ℤ≥‘𝐶)) |
13 | eleq1 2827 | . . . 4 ⊢ (𝑧 = 𝐶 → (𝑧 ∈ ran 𝐺 ↔ 𝐶 ∈ ran 𝐺)) | |
14 | eleq1 2827 | . . . 4 ⊢ (𝑧 = 𝑦 → (𝑧 ∈ ran 𝐺 ↔ 𝑦 ∈ ran 𝐺)) | |
15 | eleq1 2827 | . . . 4 ⊢ (𝑧 = (𝑦 + 1) → (𝑧 ∈ ran 𝐺 ↔ (𝑦 + 1) ∈ ran 𝐺)) | |
16 | 7, 2 | om2uz0i 13985 | . . . . 5 ⊢ (𝐺‘∅) = 𝐶 |
17 | peano1 7911 | . . . . . 6 ⊢ ∅ ∈ ω | |
18 | fnfvelrn 7100 | . . . . . 6 ⊢ ((𝐺 Fn ω ∧ ∅ ∈ ω) → (𝐺‘∅) ∈ ran 𝐺) | |
19 | 4, 17, 18 | mp2an 692 | . . . . 5 ⊢ (𝐺‘∅) ∈ ran 𝐺 |
20 | 16, 19 | eqeltrri 2836 | . . . 4 ⊢ 𝐶 ∈ ran 𝐺 |
21 | 7, 2 | om2uzsuci 13986 | . . . . . . . . 9 ⊢ (𝑧 ∈ ω → (𝐺‘suc 𝑧) = ((𝐺‘𝑧) + 1)) |
22 | oveq1 7438 | . . . . . . . . 9 ⊢ ((𝐺‘𝑧) = 𝑦 → ((𝐺‘𝑧) + 1) = (𝑦 + 1)) | |
23 | 21, 22 | sylan9eq 2795 | . . . . . . . 8 ⊢ ((𝑧 ∈ ω ∧ (𝐺‘𝑧) = 𝑦) → (𝐺‘suc 𝑧) = (𝑦 + 1)) |
24 | peano2 7913 | . . . . . . . . . 10 ⊢ (𝑧 ∈ ω → suc 𝑧 ∈ ω) | |
25 | fnfvelrn 7100 | . . . . . . . . . 10 ⊢ ((𝐺 Fn ω ∧ suc 𝑧 ∈ ω) → (𝐺‘suc 𝑧) ∈ ran 𝐺) | |
26 | 4, 24, 25 | sylancr 587 | . . . . . . . . 9 ⊢ (𝑧 ∈ ω → (𝐺‘suc 𝑧) ∈ ran 𝐺) |
27 | 26 | adantr 480 | . . . . . . . 8 ⊢ ((𝑧 ∈ ω ∧ (𝐺‘𝑧) = 𝑦) → (𝐺‘suc 𝑧) ∈ ran 𝐺) |
28 | 23, 27 | eqeltrrd 2840 | . . . . . . 7 ⊢ ((𝑧 ∈ ω ∧ (𝐺‘𝑧) = 𝑦) → (𝑦 + 1) ∈ ran 𝐺) |
29 | 28 | rexlimiva 3145 | . . . . . 6 ⊢ (∃𝑧 ∈ ω (𝐺‘𝑧) = 𝑦 → (𝑦 + 1) ∈ ran 𝐺) |
30 | 6, 29 | sylbi 217 | . . . . 5 ⊢ (𝑦 ∈ ran 𝐺 → (𝑦 + 1) ∈ ran 𝐺) |
31 | 30 | a1i 11 | . . . 4 ⊢ (𝑦 ∈ (ℤ≥‘𝐶) → (𝑦 ∈ ran 𝐺 → (𝑦 + 1) ∈ ran 𝐺)) |
32 | 13, 14, 15, 14, 20, 31 | uzind4i 12950 | . . 3 ⊢ (𝑦 ∈ (ℤ≥‘𝐶) → 𝑦 ∈ ran 𝐺) |
33 | 12, 32 | impbii 209 | . 2 ⊢ (𝑦 ∈ ran 𝐺 ↔ 𝑦 ∈ (ℤ≥‘𝐶)) |
34 | 33 | eqriv 2732 | 1 ⊢ ran 𝐺 = (ℤ≥‘𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∃wrex 3068 Vcvv 3478 ∅c0 4339 ↦ cmpt 5231 ran crn 5690 ↾ cres 5691 suc csuc 6388 Fn wfn 6558 ‘cfv 6563 (class class class)co 7431 ωcom 7887 reccrdg 8448 1c1 11154 + caddc 11156 ℤcz 12611 ℤ≥cuz 12876 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-n0 12525 df-z 12612 df-uz 12877 |
This theorem is referenced by: om2uzf1oi 13991 |
Copyright terms: Public domain | W3C validator |