MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  om2uzrani Structured version   Visualization version   GIF version

Theorem om2uzrani 13303
Description: Range of 𝐺 (see om2uz0i 13298). (Contributed by NM, 3-Oct-2004.) (Revised by Mario Carneiro, 13-Sep-2013.)
Hypotheses
Ref Expression
om2uz.1 𝐶 ∈ ℤ
om2uz.2 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω)
Assertion
Ref Expression
om2uzrani ran 𝐺 = (ℤ𝐶)
Distinct variable group:   𝑥,𝐶
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem om2uzrani
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frfnom 8045 . . . . . 6 (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) Fn ω
2 om2uz.2 . . . . . . 7 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω)
32fneq1i 6423 . . . . . 6 (𝐺 Fn ω ↔ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) Fn ω)
41, 3mpbir 234 . . . . 5 𝐺 Fn ω
5 fvelrnb 6699 . . . . 5 (𝐺 Fn ω → (𝑦 ∈ ran 𝐺 ↔ ∃𝑧 ∈ ω (𝐺𝑧) = 𝑦))
64, 5ax-mp 5 . . . 4 (𝑦 ∈ ran 𝐺 ↔ ∃𝑧 ∈ ω (𝐺𝑧) = 𝑦)
7 om2uz.1 . . . . . . 7 𝐶 ∈ ℤ
87, 2om2uzuzi 13300 . . . . . 6 (𝑧 ∈ ω → (𝐺𝑧) ∈ (ℤ𝐶))
9 eleq1 2899 . . . . . 6 ((𝐺𝑧) = 𝑦 → ((𝐺𝑧) ∈ (ℤ𝐶) ↔ 𝑦 ∈ (ℤ𝐶)))
108, 9syl5ibcom 248 . . . . 5 (𝑧 ∈ ω → ((𝐺𝑧) = 𝑦𝑦 ∈ (ℤ𝐶)))
1110rexlimiv 3266 . . . 4 (∃𝑧 ∈ ω (𝐺𝑧) = 𝑦𝑦 ∈ (ℤ𝐶))
126, 11sylbi 220 . . 3 (𝑦 ∈ ran 𝐺𝑦 ∈ (ℤ𝐶))
13 eleq1 2899 . . . 4 (𝑧 = 𝐶 → (𝑧 ∈ ran 𝐺𝐶 ∈ ran 𝐺))
14 eleq1 2899 . . . 4 (𝑧 = 𝑦 → (𝑧 ∈ ran 𝐺𝑦 ∈ ran 𝐺))
15 eleq1 2899 . . . 4 (𝑧 = (𝑦 + 1) → (𝑧 ∈ ran 𝐺 ↔ (𝑦 + 1) ∈ ran 𝐺))
167, 2om2uz0i 13298 . . . . 5 (𝐺‘∅) = 𝐶
17 peano1 7576 . . . . . 6 ∅ ∈ ω
18 fnfvelrn 6821 . . . . . 6 ((𝐺 Fn ω ∧ ∅ ∈ ω) → (𝐺‘∅) ∈ ran 𝐺)
194, 17, 18mp2an 691 . . . . 5 (𝐺‘∅) ∈ ran 𝐺
2016, 19eqeltrri 2909 . . . 4 𝐶 ∈ ran 𝐺
217, 2om2uzsuci 13299 . . . . . . . . 9 (𝑧 ∈ ω → (𝐺‘suc 𝑧) = ((𝐺𝑧) + 1))
22 oveq1 7137 . . . . . . . . 9 ((𝐺𝑧) = 𝑦 → ((𝐺𝑧) + 1) = (𝑦 + 1))
2321, 22sylan9eq 2876 . . . . . . . 8 ((𝑧 ∈ ω ∧ (𝐺𝑧) = 𝑦) → (𝐺‘suc 𝑧) = (𝑦 + 1))
24 peano2 7577 . . . . . . . . . 10 (𝑧 ∈ ω → suc 𝑧 ∈ ω)
25 fnfvelrn 6821 . . . . . . . . . 10 ((𝐺 Fn ω ∧ suc 𝑧 ∈ ω) → (𝐺‘suc 𝑧) ∈ ran 𝐺)
264, 24, 25sylancr 590 . . . . . . . . 9 (𝑧 ∈ ω → (𝐺‘suc 𝑧) ∈ ran 𝐺)
2726adantr 484 . . . . . . . 8 ((𝑧 ∈ ω ∧ (𝐺𝑧) = 𝑦) → (𝐺‘suc 𝑧) ∈ ran 𝐺)
2823, 27eqeltrrd 2913 . . . . . . 7 ((𝑧 ∈ ω ∧ (𝐺𝑧) = 𝑦) → (𝑦 + 1) ∈ ran 𝐺)
2928rexlimiva 3267 . . . . . 6 (∃𝑧 ∈ ω (𝐺𝑧) = 𝑦 → (𝑦 + 1) ∈ ran 𝐺)
306, 29sylbi 220 . . . . 5 (𝑦 ∈ ran 𝐺 → (𝑦 + 1) ∈ ran 𝐺)
3130a1i 11 . . . 4 (𝑦 ∈ (ℤ𝐶) → (𝑦 ∈ ran 𝐺 → (𝑦 + 1) ∈ ran 𝐺))
3213, 14, 15, 14, 20, 31uzind4i 12288 . . 3 (𝑦 ∈ (ℤ𝐶) → 𝑦 ∈ ran 𝐺)
3312, 32impbii 212 . 2 (𝑦 ∈ ran 𝐺𝑦 ∈ (ℤ𝐶))
3433eqriv 2818 1 ran 𝐺 = (ℤ𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2115  wrex 3127  Vcvv 3471  c0 4266  cmpt 5119  ran crn 5529  cres 5530  suc csuc 6166   Fn wfn 6323  cfv 6328  (class class class)co 7130  ωcom 7555  reccrdg 8020  1c1 10515   + caddc 10517  cz 11959  cuz 12221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-cnex 10570  ax-resscn 10571  ax-1cn 10572  ax-icn 10573  ax-addcl 10574  ax-addrcl 10575  ax-mulcl 10576  ax-mulrcl 10577  ax-mulcom 10578  ax-addass 10579  ax-mulass 10580  ax-distr 10581  ax-i2m1 10582  ax-1ne0 10583  ax-1rid 10584  ax-rnegex 10585  ax-rrecex 10586  ax-cnre 10587  ax-pre-lttri 10588  ax-pre-lttrn 10589  ax-pre-ltadd 10590  ax-pre-mulgt0 10591
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-reu 3133  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-iun 4894  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-om 7556  df-wrecs 7922  df-recs 7983  df-rdg 8021  df-er 8264  df-en 8485  df-dom 8486  df-sdom 8487  df-pnf 10654  df-mnf 10655  df-xr 10656  df-ltxr 10657  df-le 10658  df-sub 10849  df-neg 10850  df-nn 11616  df-n0 11876  df-z 11960  df-uz 12222
This theorem is referenced by:  om2uzf1oi  13304
  Copyright terms: Public domain W3C validator