MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  om2uzrani Structured version   Visualization version   GIF version

Theorem om2uzrani 13315
Description: Range of 𝐺 (see om2uz0i 13310). (Contributed by NM, 3-Oct-2004.) (Revised by Mario Carneiro, 13-Sep-2013.)
Hypotheses
Ref Expression
om2uz.1 𝐶 ∈ ℤ
om2uz.2 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω)
Assertion
Ref Expression
om2uzrani ran 𝐺 = (ℤ𝐶)
Distinct variable group:   𝑥,𝐶
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem om2uzrani
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frfnom 8053 . . . . . 6 (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) Fn ω
2 om2uz.2 . . . . . . 7 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω)
32fneq1i 6420 . . . . . 6 (𝐺 Fn ω ↔ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) Fn ω)
41, 3mpbir 234 . . . . 5 𝐺 Fn ω
5 fvelrnb 6701 . . . . 5 (𝐺 Fn ω → (𝑦 ∈ ran 𝐺 ↔ ∃𝑧 ∈ ω (𝐺𝑧) = 𝑦))
64, 5ax-mp 5 . . . 4 (𝑦 ∈ ran 𝐺 ↔ ∃𝑧 ∈ ω (𝐺𝑧) = 𝑦)
7 om2uz.1 . . . . . . 7 𝐶 ∈ ℤ
87, 2om2uzuzi 13312 . . . . . 6 (𝑧 ∈ ω → (𝐺𝑧) ∈ (ℤ𝐶))
9 eleq1 2877 . . . . . 6 ((𝐺𝑧) = 𝑦 → ((𝐺𝑧) ∈ (ℤ𝐶) ↔ 𝑦 ∈ (ℤ𝐶)))
108, 9syl5ibcom 248 . . . . 5 (𝑧 ∈ ω → ((𝐺𝑧) = 𝑦𝑦 ∈ (ℤ𝐶)))
1110rexlimiv 3239 . . . 4 (∃𝑧 ∈ ω (𝐺𝑧) = 𝑦𝑦 ∈ (ℤ𝐶))
126, 11sylbi 220 . . 3 (𝑦 ∈ ran 𝐺𝑦 ∈ (ℤ𝐶))
13 eleq1 2877 . . . 4 (𝑧 = 𝐶 → (𝑧 ∈ ran 𝐺𝐶 ∈ ran 𝐺))
14 eleq1 2877 . . . 4 (𝑧 = 𝑦 → (𝑧 ∈ ran 𝐺𝑦 ∈ ran 𝐺))
15 eleq1 2877 . . . 4 (𝑧 = (𝑦 + 1) → (𝑧 ∈ ran 𝐺 ↔ (𝑦 + 1) ∈ ran 𝐺))
167, 2om2uz0i 13310 . . . . 5 (𝐺‘∅) = 𝐶
17 peano1 7581 . . . . . 6 ∅ ∈ ω
18 fnfvelrn 6825 . . . . . 6 ((𝐺 Fn ω ∧ ∅ ∈ ω) → (𝐺‘∅) ∈ ran 𝐺)
194, 17, 18mp2an 691 . . . . 5 (𝐺‘∅) ∈ ran 𝐺
2016, 19eqeltrri 2887 . . . 4 𝐶 ∈ ran 𝐺
217, 2om2uzsuci 13311 . . . . . . . . 9 (𝑧 ∈ ω → (𝐺‘suc 𝑧) = ((𝐺𝑧) + 1))
22 oveq1 7142 . . . . . . . . 9 ((𝐺𝑧) = 𝑦 → ((𝐺𝑧) + 1) = (𝑦 + 1))
2321, 22sylan9eq 2853 . . . . . . . 8 ((𝑧 ∈ ω ∧ (𝐺𝑧) = 𝑦) → (𝐺‘suc 𝑧) = (𝑦 + 1))
24 peano2 7582 . . . . . . . . . 10 (𝑧 ∈ ω → suc 𝑧 ∈ ω)
25 fnfvelrn 6825 . . . . . . . . . 10 ((𝐺 Fn ω ∧ suc 𝑧 ∈ ω) → (𝐺‘suc 𝑧) ∈ ran 𝐺)
264, 24, 25sylancr 590 . . . . . . . . 9 (𝑧 ∈ ω → (𝐺‘suc 𝑧) ∈ ran 𝐺)
2726adantr 484 . . . . . . . 8 ((𝑧 ∈ ω ∧ (𝐺𝑧) = 𝑦) → (𝐺‘suc 𝑧) ∈ ran 𝐺)
2823, 27eqeltrrd 2891 . . . . . . 7 ((𝑧 ∈ ω ∧ (𝐺𝑧) = 𝑦) → (𝑦 + 1) ∈ ran 𝐺)
2928rexlimiva 3240 . . . . . 6 (∃𝑧 ∈ ω (𝐺𝑧) = 𝑦 → (𝑦 + 1) ∈ ran 𝐺)
306, 29sylbi 220 . . . . 5 (𝑦 ∈ ran 𝐺 → (𝑦 + 1) ∈ ran 𝐺)
3130a1i 11 . . . 4 (𝑦 ∈ (ℤ𝐶) → (𝑦 ∈ ran 𝐺 → (𝑦 + 1) ∈ ran 𝐺))
3213, 14, 15, 14, 20, 31uzind4i 12298 . . 3 (𝑦 ∈ (ℤ𝐶) → 𝑦 ∈ ran 𝐺)
3312, 32impbii 212 . 2 (𝑦 ∈ ran 𝐺𝑦 ∈ (ℤ𝐶))
3433eqriv 2795 1 ran 𝐺 = (ℤ𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wrex 3107  Vcvv 3441  c0 4243  cmpt 5110  ran crn 5520  cres 5521  suc csuc 6161   Fn wfn 6319  cfv 6324  (class class class)co 7135  ωcom 7560  reccrdg 8028  1c1 10527   + caddc 10529  cz 11969  cuz 12231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232
This theorem is referenced by:  om2uzf1oi  13316
  Copyright terms: Public domain W3C validator