MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzrdgxfr Structured version   Visualization version   GIF version

Theorem uzrdgxfr 13698
Description: Transfer the value of the recursive sequence builder from one base to another. (Contributed by Mario Carneiro, 1-Apr-2014.)
Hypotheses
Ref Expression
uzrdgxfr.1 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω)
uzrdgxfr.2 𝐻 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐵) ↾ ω)
uzrdgxfr.3 𝐴 ∈ ℤ
uzrdgxfr.4 𝐵 ∈ ℤ
Assertion
Ref Expression
uzrdgxfr (𝑁 ∈ ω → (𝐺𝑁) = ((𝐻𝑁) + (𝐴𝐵)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝐺(𝑥)   𝐻(𝑥)   𝑁(𝑥)

Proof of Theorem uzrdgxfr
Dummy variables 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6771 . . 3 (𝑦 = ∅ → (𝐺𝑦) = (𝐺‘∅))
2 fveq2 6771 . . . 4 (𝑦 = ∅ → (𝐻𝑦) = (𝐻‘∅))
32oveq1d 7287 . . 3 (𝑦 = ∅ → ((𝐻𝑦) + (𝐴𝐵)) = ((𝐻‘∅) + (𝐴𝐵)))
41, 3eqeq12d 2756 . 2 (𝑦 = ∅ → ((𝐺𝑦) = ((𝐻𝑦) + (𝐴𝐵)) ↔ (𝐺‘∅) = ((𝐻‘∅) + (𝐴𝐵))))
5 fveq2 6771 . . 3 (𝑦 = 𝑘 → (𝐺𝑦) = (𝐺𝑘))
6 fveq2 6771 . . . 4 (𝑦 = 𝑘 → (𝐻𝑦) = (𝐻𝑘))
76oveq1d 7287 . . 3 (𝑦 = 𝑘 → ((𝐻𝑦) + (𝐴𝐵)) = ((𝐻𝑘) + (𝐴𝐵)))
85, 7eqeq12d 2756 . 2 (𝑦 = 𝑘 → ((𝐺𝑦) = ((𝐻𝑦) + (𝐴𝐵)) ↔ (𝐺𝑘) = ((𝐻𝑘) + (𝐴𝐵))))
9 fveq2 6771 . . 3 (𝑦 = suc 𝑘 → (𝐺𝑦) = (𝐺‘suc 𝑘))
10 fveq2 6771 . . . 4 (𝑦 = suc 𝑘 → (𝐻𝑦) = (𝐻‘suc 𝑘))
1110oveq1d 7287 . . 3 (𝑦 = suc 𝑘 → ((𝐻𝑦) + (𝐴𝐵)) = ((𝐻‘suc 𝑘) + (𝐴𝐵)))
129, 11eqeq12d 2756 . 2 (𝑦 = suc 𝑘 → ((𝐺𝑦) = ((𝐻𝑦) + (𝐴𝐵)) ↔ (𝐺‘suc 𝑘) = ((𝐻‘suc 𝑘) + (𝐴𝐵))))
13 fveq2 6771 . . 3 (𝑦 = 𝑁 → (𝐺𝑦) = (𝐺𝑁))
14 fveq2 6771 . . . 4 (𝑦 = 𝑁 → (𝐻𝑦) = (𝐻𝑁))
1514oveq1d 7287 . . 3 (𝑦 = 𝑁 → ((𝐻𝑦) + (𝐴𝐵)) = ((𝐻𝑁) + (𝐴𝐵)))
1613, 15eqeq12d 2756 . 2 (𝑦 = 𝑁 → ((𝐺𝑦) = ((𝐻𝑦) + (𝐴𝐵)) ↔ (𝐺𝑁) = ((𝐻𝑁) + (𝐴𝐵))))
17 uzrdgxfr.4 . . . . 5 𝐵 ∈ ℤ
18 zcn 12335 . . . . 5 (𝐵 ∈ ℤ → 𝐵 ∈ ℂ)
1917, 18ax-mp 5 . . . 4 𝐵 ∈ ℂ
20 uzrdgxfr.3 . . . . 5 𝐴 ∈ ℤ
21 zcn 12335 . . . . 5 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
2220, 21ax-mp 5 . . . 4 𝐴 ∈ ℂ
2319, 22pncan3i 11309 . . 3 (𝐵 + (𝐴𝐵)) = 𝐴
24 uzrdgxfr.2 . . . . 5 𝐻 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐵) ↾ ω)
2517, 24om2uz0i 13678 . . . 4 (𝐻‘∅) = 𝐵
2625oveq1i 7282 . . 3 ((𝐻‘∅) + (𝐴𝐵)) = (𝐵 + (𝐴𝐵))
27 uzrdgxfr.1 . . . 4 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω)
2820, 27om2uz0i 13678 . . 3 (𝐺‘∅) = 𝐴
2923, 26, 283eqtr4ri 2779 . 2 (𝐺‘∅) = ((𝐻‘∅) + (𝐴𝐵))
30 oveq1 7279 . . 3 ((𝐺𝑘) = ((𝐻𝑘) + (𝐴𝐵)) → ((𝐺𝑘) + 1) = (((𝐻𝑘) + (𝐴𝐵)) + 1))
3120, 27om2uzsuci 13679 . . . 4 (𝑘 ∈ ω → (𝐺‘suc 𝑘) = ((𝐺𝑘) + 1))
3217, 24om2uzsuci 13679 . . . . . 6 (𝑘 ∈ ω → (𝐻‘suc 𝑘) = ((𝐻𝑘) + 1))
3332oveq1d 7287 . . . . 5 (𝑘 ∈ ω → ((𝐻‘suc 𝑘) + (𝐴𝐵)) = (((𝐻𝑘) + 1) + (𝐴𝐵)))
3417, 24om2uzuzi 13680 . . . . . . . 8 (𝑘 ∈ ω → (𝐻𝑘) ∈ (ℤ𝐵))
35 eluzelz 12603 . . . . . . . 8 ((𝐻𝑘) ∈ (ℤ𝐵) → (𝐻𝑘) ∈ ℤ)
3634, 35syl 17 . . . . . . 7 (𝑘 ∈ ω → (𝐻𝑘) ∈ ℤ)
3736zcnd 12438 . . . . . 6 (𝑘 ∈ ω → (𝐻𝑘) ∈ ℂ)
38 ax-1cn 10940 . . . . . . 7 1 ∈ ℂ
3922, 19subcli 11308 . . . . . . 7 (𝐴𝐵) ∈ ℂ
40 add32 11204 . . . . . . 7 (((𝐻𝑘) ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝐴𝐵) ∈ ℂ) → (((𝐻𝑘) + 1) + (𝐴𝐵)) = (((𝐻𝑘) + (𝐴𝐵)) + 1))
4138, 39, 40mp3an23 1452 . . . . . 6 ((𝐻𝑘) ∈ ℂ → (((𝐻𝑘) + 1) + (𝐴𝐵)) = (((𝐻𝑘) + (𝐴𝐵)) + 1))
4237, 41syl 17 . . . . 5 (𝑘 ∈ ω → (((𝐻𝑘) + 1) + (𝐴𝐵)) = (((𝐻𝑘) + (𝐴𝐵)) + 1))
4333, 42eqtrd 2780 . . . 4 (𝑘 ∈ ω → ((𝐻‘suc 𝑘) + (𝐴𝐵)) = (((𝐻𝑘) + (𝐴𝐵)) + 1))
4431, 43eqeq12d 2756 . . 3 (𝑘 ∈ ω → ((𝐺‘suc 𝑘) = ((𝐻‘suc 𝑘) + (𝐴𝐵)) ↔ ((𝐺𝑘) + 1) = (((𝐻𝑘) + (𝐴𝐵)) + 1)))
4530, 44syl5ibr 245 . 2 (𝑘 ∈ ω → ((𝐺𝑘) = ((𝐻𝑘) + (𝐴𝐵)) → (𝐺‘suc 𝑘) = ((𝐻‘suc 𝑘) + (𝐴𝐵))))
464, 8, 12, 16, 29, 45finds 7740 1 (𝑁 ∈ ω → (𝐺𝑁) = ((𝐻𝑁) + (𝐴𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2110  Vcvv 3431  c0 4262  cmpt 5162  cres 5592  suc csuc 6267  cfv 6432  (class class class)co 7272  ωcom 7707  reccrdg 8232  cc 10880  1c1 10883   + caddc 10885  cmin 11216  cz 12330  cuz 12593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7583  ax-cnex 10938  ax-resscn 10939  ax-1cn 10940  ax-icn 10941  ax-addcl 10942  ax-addrcl 10943  ax-mulcl 10944  ax-mulrcl 10945  ax-mulcom 10946  ax-addass 10947  ax-mulass 10948  ax-distr 10949  ax-i2m1 10950  ax-1ne0 10951  ax-1rid 10952  ax-rnegex 10953  ax-rrecex 10954  ax-cnre 10955  ax-pre-lttri 10956  ax-pre-lttrn 10957  ax-pre-ltadd 10958  ax-pre-mulgt0 10959
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7229  df-ov 7275  df-oprab 7276  df-mpo 7277  df-om 7708  df-2nd 7826  df-frecs 8089  df-wrecs 8120  df-recs 8194  df-rdg 8233  df-er 8490  df-en 8726  df-dom 8727  df-sdom 8728  df-pnf 11022  df-mnf 11023  df-xr 11024  df-ltxr 11025  df-le 11026  df-sub 11218  df-neg 11219  df-nn 11985  df-n0 12245  df-z 12331  df-uz 12594
This theorem is referenced by:  fz1isolem  14186
  Copyright terms: Public domain W3C validator