MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzrdgxfr Structured version   Visualization version   GIF version

Theorem uzrdgxfr 13990
Description: Transfer the value of the recursive sequence builder from one base to another. (Contributed by Mario Carneiro, 1-Apr-2014.)
Hypotheses
Ref Expression
uzrdgxfr.1 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω)
uzrdgxfr.2 𝐻 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐵) ↾ ω)
uzrdgxfr.3 𝐴 ∈ ℤ
uzrdgxfr.4 𝐵 ∈ ℤ
Assertion
Ref Expression
uzrdgxfr (𝑁 ∈ ω → (𝐺𝑁) = ((𝐻𝑁) + (𝐴𝐵)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝐺(𝑥)   𝐻(𝑥)   𝑁(𝑥)

Proof of Theorem uzrdgxfr
Dummy variables 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6881 . . 3 (𝑦 = ∅ → (𝐺𝑦) = (𝐺‘∅))
2 fveq2 6881 . . . 4 (𝑦 = ∅ → (𝐻𝑦) = (𝐻‘∅))
32oveq1d 7425 . . 3 (𝑦 = ∅ → ((𝐻𝑦) + (𝐴𝐵)) = ((𝐻‘∅) + (𝐴𝐵)))
41, 3eqeq12d 2752 . 2 (𝑦 = ∅ → ((𝐺𝑦) = ((𝐻𝑦) + (𝐴𝐵)) ↔ (𝐺‘∅) = ((𝐻‘∅) + (𝐴𝐵))))
5 fveq2 6881 . . 3 (𝑦 = 𝑘 → (𝐺𝑦) = (𝐺𝑘))
6 fveq2 6881 . . . 4 (𝑦 = 𝑘 → (𝐻𝑦) = (𝐻𝑘))
76oveq1d 7425 . . 3 (𝑦 = 𝑘 → ((𝐻𝑦) + (𝐴𝐵)) = ((𝐻𝑘) + (𝐴𝐵)))
85, 7eqeq12d 2752 . 2 (𝑦 = 𝑘 → ((𝐺𝑦) = ((𝐻𝑦) + (𝐴𝐵)) ↔ (𝐺𝑘) = ((𝐻𝑘) + (𝐴𝐵))))
9 fveq2 6881 . . 3 (𝑦 = suc 𝑘 → (𝐺𝑦) = (𝐺‘suc 𝑘))
10 fveq2 6881 . . . 4 (𝑦 = suc 𝑘 → (𝐻𝑦) = (𝐻‘suc 𝑘))
1110oveq1d 7425 . . 3 (𝑦 = suc 𝑘 → ((𝐻𝑦) + (𝐴𝐵)) = ((𝐻‘suc 𝑘) + (𝐴𝐵)))
129, 11eqeq12d 2752 . 2 (𝑦 = suc 𝑘 → ((𝐺𝑦) = ((𝐻𝑦) + (𝐴𝐵)) ↔ (𝐺‘suc 𝑘) = ((𝐻‘suc 𝑘) + (𝐴𝐵))))
13 fveq2 6881 . . 3 (𝑦 = 𝑁 → (𝐺𝑦) = (𝐺𝑁))
14 fveq2 6881 . . . 4 (𝑦 = 𝑁 → (𝐻𝑦) = (𝐻𝑁))
1514oveq1d 7425 . . 3 (𝑦 = 𝑁 → ((𝐻𝑦) + (𝐴𝐵)) = ((𝐻𝑁) + (𝐴𝐵)))
1613, 15eqeq12d 2752 . 2 (𝑦 = 𝑁 → ((𝐺𝑦) = ((𝐻𝑦) + (𝐴𝐵)) ↔ (𝐺𝑁) = ((𝐻𝑁) + (𝐴𝐵))))
17 uzrdgxfr.4 . . . . 5 𝐵 ∈ ℤ
18 zcn 12598 . . . . 5 (𝐵 ∈ ℤ → 𝐵 ∈ ℂ)
1917, 18ax-mp 5 . . . 4 𝐵 ∈ ℂ
20 uzrdgxfr.3 . . . . 5 𝐴 ∈ ℤ
21 zcn 12598 . . . . 5 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
2220, 21ax-mp 5 . . . 4 𝐴 ∈ ℂ
2319, 22pncan3i 11565 . . 3 (𝐵 + (𝐴𝐵)) = 𝐴
24 uzrdgxfr.2 . . . . 5 𝐻 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐵) ↾ ω)
2517, 24om2uz0i 13970 . . . 4 (𝐻‘∅) = 𝐵
2625oveq1i 7420 . . 3 ((𝐻‘∅) + (𝐴𝐵)) = (𝐵 + (𝐴𝐵))
27 uzrdgxfr.1 . . . 4 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω)
2820, 27om2uz0i 13970 . . 3 (𝐺‘∅) = 𝐴
2923, 26, 283eqtr4ri 2770 . 2 (𝐺‘∅) = ((𝐻‘∅) + (𝐴𝐵))
30 oveq1 7417 . . 3 ((𝐺𝑘) = ((𝐻𝑘) + (𝐴𝐵)) → ((𝐺𝑘) + 1) = (((𝐻𝑘) + (𝐴𝐵)) + 1))
3120, 27om2uzsuci 13971 . . . 4 (𝑘 ∈ ω → (𝐺‘suc 𝑘) = ((𝐺𝑘) + 1))
3217, 24om2uzsuci 13971 . . . . . 6 (𝑘 ∈ ω → (𝐻‘suc 𝑘) = ((𝐻𝑘) + 1))
3332oveq1d 7425 . . . . 5 (𝑘 ∈ ω → ((𝐻‘suc 𝑘) + (𝐴𝐵)) = (((𝐻𝑘) + 1) + (𝐴𝐵)))
3417, 24om2uzuzi 13972 . . . . . . . 8 (𝑘 ∈ ω → (𝐻𝑘) ∈ (ℤ𝐵))
35 eluzelz 12867 . . . . . . . 8 ((𝐻𝑘) ∈ (ℤ𝐵) → (𝐻𝑘) ∈ ℤ)
3634, 35syl 17 . . . . . . 7 (𝑘 ∈ ω → (𝐻𝑘) ∈ ℤ)
3736zcnd 12703 . . . . . 6 (𝑘 ∈ ω → (𝐻𝑘) ∈ ℂ)
38 ax-1cn 11192 . . . . . . 7 1 ∈ ℂ
3922, 19subcli 11564 . . . . . . 7 (𝐴𝐵) ∈ ℂ
40 add32 11459 . . . . . . 7 (((𝐻𝑘) ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝐴𝐵) ∈ ℂ) → (((𝐻𝑘) + 1) + (𝐴𝐵)) = (((𝐻𝑘) + (𝐴𝐵)) + 1))
4138, 39, 40mp3an23 1455 . . . . . 6 ((𝐻𝑘) ∈ ℂ → (((𝐻𝑘) + 1) + (𝐴𝐵)) = (((𝐻𝑘) + (𝐴𝐵)) + 1))
4237, 41syl 17 . . . . 5 (𝑘 ∈ ω → (((𝐻𝑘) + 1) + (𝐴𝐵)) = (((𝐻𝑘) + (𝐴𝐵)) + 1))
4333, 42eqtrd 2771 . . . 4 (𝑘 ∈ ω → ((𝐻‘suc 𝑘) + (𝐴𝐵)) = (((𝐻𝑘) + (𝐴𝐵)) + 1))
4431, 43eqeq12d 2752 . . 3 (𝑘 ∈ ω → ((𝐺‘suc 𝑘) = ((𝐻‘suc 𝑘) + (𝐴𝐵)) ↔ ((𝐺𝑘) + 1) = (((𝐻𝑘) + (𝐴𝐵)) + 1)))
4530, 44imbitrrid 246 . 2 (𝑘 ∈ ω → ((𝐺𝑘) = ((𝐻𝑘) + (𝐴𝐵)) → (𝐺‘suc 𝑘) = ((𝐻‘suc 𝑘) + (𝐴𝐵))))
464, 8, 12, 16, 29, 45finds 7897 1 (𝑁 ∈ ω → (𝐺𝑁) = ((𝐻𝑁) + (𝐴𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3464  c0 4313  cmpt 5206  cres 5661  suc csuc 6359  cfv 6536  (class class class)co 7410  ωcom 7866  reccrdg 8428  cc 11132  1c1 11135   + caddc 11137  cmin 11471  cz 12593  cuz 12857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-n0 12507  df-z 12594  df-uz 12858
This theorem is referenced by:  fz1isolem  14484
  Copyright terms: Public domain W3C validator