MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzrdgxfr Structured version   Visualization version   GIF version

Theorem uzrdgxfr 13936
Description: Transfer the value of the recursive sequence builder from one base to another. (Contributed by Mario Carneiro, 1-Apr-2014.)
Hypotheses
Ref Expression
uzrdgxfr.1 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω)
uzrdgxfr.2 𝐻 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐵) ↾ ω)
uzrdgxfr.3 𝐴 ∈ ℤ
uzrdgxfr.4 𝐵 ∈ ℤ
Assertion
Ref Expression
uzrdgxfr (𝑁 ∈ ω → (𝐺𝑁) = ((𝐻𝑁) + (𝐴𝐵)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝐺(𝑥)   𝐻(𝑥)   𝑁(𝑥)

Proof of Theorem uzrdgxfr
Dummy variables 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6891 . . 3 (𝑦 = ∅ → (𝐺𝑦) = (𝐺‘∅))
2 fveq2 6891 . . . 4 (𝑦 = ∅ → (𝐻𝑦) = (𝐻‘∅))
32oveq1d 7426 . . 3 (𝑦 = ∅ → ((𝐻𝑦) + (𝐴𝐵)) = ((𝐻‘∅) + (𝐴𝐵)))
41, 3eqeq12d 2748 . 2 (𝑦 = ∅ → ((𝐺𝑦) = ((𝐻𝑦) + (𝐴𝐵)) ↔ (𝐺‘∅) = ((𝐻‘∅) + (𝐴𝐵))))
5 fveq2 6891 . . 3 (𝑦 = 𝑘 → (𝐺𝑦) = (𝐺𝑘))
6 fveq2 6891 . . . 4 (𝑦 = 𝑘 → (𝐻𝑦) = (𝐻𝑘))
76oveq1d 7426 . . 3 (𝑦 = 𝑘 → ((𝐻𝑦) + (𝐴𝐵)) = ((𝐻𝑘) + (𝐴𝐵)))
85, 7eqeq12d 2748 . 2 (𝑦 = 𝑘 → ((𝐺𝑦) = ((𝐻𝑦) + (𝐴𝐵)) ↔ (𝐺𝑘) = ((𝐻𝑘) + (𝐴𝐵))))
9 fveq2 6891 . . 3 (𝑦 = suc 𝑘 → (𝐺𝑦) = (𝐺‘suc 𝑘))
10 fveq2 6891 . . . 4 (𝑦 = suc 𝑘 → (𝐻𝑦) = (𝐻‘suc 𝑘))
1110oveq1d 7426 . . 3 (𝑦 = suc 𝑘 → ((𝐻𝑦) + (𝐴𝐵)) = ((𝐻‘suc 𝑘) + (𝐴𝐵)))
129, 11eqeq12d 2748 . 2 (𝑦 = suc 𝑘 → ((𝐺𝑦) = ((𝐻𝑦) + (𝐴𝐵)) ↔ (𝐺‘suc 𝑘) = ((𝐻‘suc 𝑘) + (𝐴𝐵))))
13 fveq2 6891 . . 3 (𝑦 = 𝑁 → (𝐺𝑦) = (𝐺𝑁))
14 fveq2 6891 . . . 4 (𝑦 = 𝑁 → (𝐻𝑦) = (𝐻𝑁))
1514oveq1d 7426 . . 3 (𝑦 = 𝑁 → ((𝐻𝑦) + (𝐴𝐵)) = ((𝐻𝑁) + (𝐴𝐵)))
1613, 15eqeq12d 2748 . 2 (𝑦 = 𝑁 → ((𝐺𝑦) = ((𝐻𝑦) + (𝐴𝐵)) ↔ (𝐺𝑁) = ((𝐻𝑁) + (𝐴𝐵))))
17 uzrdgxfr.4 . . . . 5 𝐵 ∈ ℤ
18 zcn 12567 . . . . 5 (𝐵 ∈ ℤ → 𝐵 ∈ ℂ)
1917, 18ax-mp 5 . . . 4 𝐵 ∈ ℂ
20 uzrdgxfr.3 . . . . 5 𝐴 ∈ ℤ
21 zcn 12567 . . . . 5 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
2220, 21ax-mp 5 . . . 4 𝐴 ∈ ℂ
2319, 22pncan3i 11541 . . 3 (𝐵 + (𝐴𝐵)) = 𝐴
24 uzrdgxfr.2 . . . . 5 𝐻 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐵) ↾ ω)
2517, 24om2uz0i 13916 . . . 4 (𝐻‘∅) = 𝐵
2625oveq1i 7421 . . 3 ((𝐻‘∅) + (𝐴𝐵)) = (𝐵 + (𝐴𝐵))
27 uzrdgxfr.1 . . . 4 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω)
2820, 27om2uz0i 13916 . . 3 (𝐺‘∅) = 𝐴
2923, 26, 283eqtr4ri 2771 . 2 (𝐺‘∅) = ((𝐻‘∅) + (𝐴𝐵))
30 oveq1 7418 . . 3 ((𝐺𝑘) = ((𝐻𝑘) + (𝐴𝐵)) → ((𝐺𝑘) + 1) = (((𝐻𝑘) + (𝐴𝐵)) + 1))
3120, 27om2uzsuci 13917 . . . 4 (𝑘 ∈ ω → (𝐺‘suc 𝑘) = ((𝐺𝑘) + 1))
3217, 24om2uzsuci 13917 . . . . . 6 (𝑘 ∈ ω → (𝐻‘suc 𝑘) = ((𝐻𝑘) + 1))
3332oveq1d 7426 . . . . 5 (𝑘 ∈ ω → ((𝐻‘suc 𝑘) + (𝐴𝐵)) = (((𝐻𝑘) + 1) + (𝐴𝐵)))
3417, 24om2uzuzi 13918 . . . . . . . 8 (𝑘 ∈ ω → (𝐻𝑘) ∈ (ℤ𝐵))
35 eluzelz 12836 . . . . . . . 8 ((𝐻𝑘) ∈ (ℤ𝐵) → (𝐻𝑘) ∈ ℤ)
3634, 35syl 17 . . . . . . 7 (𝑘 ∈ ω → (𝐻𝑘) ∈ ℤ)
3736zcnd 12671 . . . . . 6 (𝑘 ∈ ω → (𝐻𝑘) ∈ ℂ)
38 ax-1cn 11170 . . . . . . 7 1 ∈ ℂ
3922, 19subcli 11540 . . . . . . 7 (𝐴𝐵) ∈ ℂ
40 add32 11436 . . . . . . 7 (((𝐻𝑘) ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝐴𝐵) ∈ ℂ) → (((𝐻𝑘) + 1) + (𝐴𝐵)) = (((𝐻𝑘) + (𝐴𝐵)) + 1))
4138, 39, 40mp3an23 1453 . . . . . 6 ((𝐻𝑘) ∈ ℂ → (((𝐻𝑘) + 1) + (𝐴𝐵)) = (((𝐻𝑘) + (𝐴𝐵)) + 1))
4237, 41syl 17 . . . . 5 (𝑘 ∈ ω → (((𝐻𝑘) + 1) + (𝐴𝐵)) = (((𝐻𝑘) + (𝐴𝐵)) + 1))
4333, 42eqtrd 2772 . . . 4 (𝑘 ∈ ω → ((𝐻‘suc 𝑘) + (𝐴𝐵)) = (((𝐻𝑘) + (𝐴𝐵)) + 1))
4431, 43eqeq12d 2748 . . 3 (𝑘 ∈ ω → ((𝐺‘suc 𝑘) = ((𝐻‘suc 𝑘) + (𝐴𝐵)) ↔ ((𝐺𝑘) + 1) = (((𝐻𝑘) + (𝐴𝐵)) + 1)))
4530, 44imbitrrid 245 . 2 (𝑘 ∈ ω → ((𝐺𝑘) = ((𝐻𝑘) + (𝐴𝐵)) → (𝐺‘suc 𝑘) = ((𝐻‘suc 𝑘) + (𝐴𝐵))))
464, 8, 12, 16, 29, 45finds 7891 1 (𝑁 ∈ ω → (𝐺𝑁) = ((𝐻𝑁) + (𝐴𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  Vcvv 3474  c0 4322  cmpt 5231  cres 5678  suc csuc 6366  cfv 6543  (class class class)co 7411  ωcom 7857  reccrdg 8411  cc 11110  1c1 11113   + caddc 11115  cmin 11448  cz 12562  cuz 12826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-n0 12477  df-z 12563  df-uz 12827
This theorem is referenced by:  fz1isolem  14426
  Copyright terms: Public domain W3C validator