| Step | Hyp | Ref
| Expression |
| 1 | | fveq2 6881 |
. . 3
⊢ (𝑦 = ∅ → (𝐺‘𝑦) = (𝐺‘∅)) |
| 2 | | fveq2 6881 |
. . . 4
⊢ (𝑦 = ∅ → (𝐻‘𝑦) = (𝐻‘∅)) |
| 3 | 2 | oveq1d 7425 |
. . 3
⊢ (𝑦 = ∅ → ((𝐻‘𝑦) + (𝐴 − 𝐵)) = ((𝐻‘∅) + (𝐴 − 𝐵))) |
| 4 | 1, 3 | eqeq12d 2752 |
. 2
⊢ (𝑦 = ∅ → ((𝐺‘𝑦) = ((𝐻‘𝑦) + (𝐴 − 𝐵)) ↔ (𝐺‘∅) = ((𝐻‘∅) + (𝐴 − 𝐵)))) |
| 5 | | fveq2 6881 |
. . 3
⊢ (𝑦 = 𝑘 → (𝐺‘𝑦) = (𝐺‘𝑘)) |
| 6 | | fveq2 6881 |
. . . 4
⊢ (𝑦 = 𝑘 → (𝐻‘𝑦) = (𝐻‘𝑘)) |
| 7 | 6 | oveq1d 7425 |
. . 3
⊢ (𝑦 = 𝑘 → ((𝐻‘𝑦) + (𝐴 − 𝐵)) = ((𝐻‘𝑘) + (𝐴 − 𝐵))) |
| 8 | 5, 7 | eqeq12d 2752 |
. 2
⊢ (𝑦 = 𝑘 → ((𝐺‘𝑦) = ((𝐻‘𝑦) + (𝐴 − 𝐵)) ↔ (𝐺‘𝑘) = ((𝐻‘𝑘) + (𝐴 − 𝐵)))) |
| 9 | | fveq2 6881 |
. . 3
⊢ (𝑦 = suc 𝑘 → (𝐺‘𝑦) = (𝐺‘suc 𝑘)) |
| 10 | | fveq2 6881 |
. . . 4
⊢ (𝑦 = suc 𝑘 → (𝐻‘𝑦) = (𝐻‘suc 𝑘)) |
| 11 | 10 | oveq1d 7425 |
. . 3
⊢ (𝑦 = suc 𝑘 → ((𝐻‘𝑦) + (𝐴 − 𝐵)) = ((𝐻‘suc 𝑘) + (𝐴 − 𝐵))) |
| 12 | 9, 11 | eqeq12d 2752 |
. 2
⊢ (𝑦 = suc 𝑘 → ((𝐺‘𝑦) = ((𝐻‘𝑦) + (𝐴 − 𝐵)) ↔ (𝐺‘suc 𝑘) = ((𝐻‘suc 𝑘) + (𝐴 − 𝐵)))) |
| 13 | | fveq2 6881 |
. . 3
⊢ (𝑦 = 𝑁 → (𝐺‘𝑦) = (𝐺‘𝑁)) |
| 14 | | fveq2 6881 |
. . . 4
⊢ (𝑦 = 𝑁 → (𝐻‘𝑦) = (𝐻‘𝑁)) |
| 15 | 14 | oveq1d 7425 |
. . 3
⊢ (𝑦 = 𝑁 → ((𝐻‘𝑦) + (𝐴 − 𝐵)) = ((𝐻‘𝑁) + (𝐴 − 𝐵))) |
| 16 | 13, 15 | eqeq12d 2752 |
. 2
⊢ (𝑦 = 𝑁 → ((𝐺‘𝑦) = ((𝐻‘𝑦) + (𝐴 − 𝐵)) ↔ (𝐺‘𝑁) = ((𝐻‘𝑁) + (𝐴 − 𝐵)))) |
| 17 | | uzrdgxfr.4 |
. . . . 5
⊢ 𝐵 ∈ ℤ |
| 18 | | zcn 12598 |
. . . . 5
⊢ (𝐵 ∈ ℤ → 𝐵 ∈
ℂ) |
| 19 | 17, 18 | ax-mp 5 |
. . . 4
⊢ 𝐵 ∈ ℂ |
| 20 | | uzrdgxfr.3 |
. . . . 5
⊢ 𝐴 ∈ ℤ |
| 21 | | zcn 12598 |
. . . . 5
⊢ (𝐴 ∈ ℤ → 𝐴 ∈
ℂ) |
| 22 | 20, 21 | ax-mp 5 |
. . . 4
⊢ 𝐴 ∈ ℂ |
| 23 | 19, 22 | pncan3i 11565 |
. . 3
⊢ (𝐵 + (𝐴 − 𝐵)) = 𝐴 |
| 24 | | uzrdgxfr.2 |
. . . . 5
⊢ 𝐻 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐵) ↾ ω) |
| 25 | 17, 24 | om2uz0i 13970 |
. . . 4
⊢ (𝐻‘∅) = 𝐵 |
| 26 | 25 | oveq1i 7420 |
. . 3
⊢ ((𝐻‘∅) + (𝐴 − 𝐵)) = (𝐵 + (𝐴 − 𝐵)) |
| 27 | | uzrdgxfr.1 |
. . . 4
⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω) |
| 28 | 20, 27 | om2uz0i 13970 |
. . 3
⊢ (𝐺‘∅) = 𝐴 |
| 29 | 23, 26, 28 | 3eqtr4ri 2770 |
. 2
⊢ (𝐺‘∅) = ((𝐻‘∅) + (𝐴 − 𝐵)) |
| 30 | | oveq1 7417 |
. . 3
⊢ ((𝐺‘𝑘) = ((𝐻‘𝑘) + (𝐴 − 𝐵)) → ((𝐺‘𝑘) + 1) = (((𝐻‘𝑘) + (𝐴 − 𝐵)) + 1)) |
| 31 | 20, 27 | om2uzsuci 13971 |
. . . 4
⊢ (𝑘 ∈ ω → (𝐺‘suc 𝑘) = ((𝐺‘𝑘) + 1)) |
| 32 | 17, 24 | om2uzsuci 13971 |
. . . . . 6
⊢ (𝑘 ∈ ω → (𝐻‘suc 𝑘) = ((𝐻‘𝑘) + 1)) |
| 33 | 32 | oveq1d 7425 |
. . . . 5
⊢ (𝑘 ∈ ω → ((𝐻‘suc 𝑘) + (𝐴 − 𝐵)) = (((𝐻‘𝑘) + 1) + (𝐴 − 𝐵))) |
| 34 | 17, 24 | om2uzuzi 13972 |
. . . . . . . 8
⊢ (𝑘 ∈ ω → (𝐻‘𝑘) ∈ (ℤ≥‘𝐵)) |
| 35 | | eluzelz 12867 |
. . . . . . . 8
⊢ ((𝐻‘𝑘) ∈ (ℤ≥‘𝐵) → (𝐻‘𝑘) ∈ ℤ) |
| 36 | 34, 35 | syl 17 |
. . . . . . 7
⊢ (𝑘 ∈ ω → (𝐻‘𝑘) ∈ ℤ) |
| 37 | 36 | zcnd 12703 |
. . . . . 6
⊢ (𝑘 ∈ ω → (𝐻‘𝑘) ∈ ℂ) |
| 38 | | ax-1cn 11192 |
. . . . . . 7
⊢ 1 ∈
ℂ |
| 39 | 22, 19 | subcli 11564 |
. . . . . . 7
⊢ (𝐴 − 𝐵) ∈ ℂ |
| 40 | | add32 11459 |
. . . . . . 7
⊢ (((𝐻‘𝑘) ∈ ℂ ∧ 1 ∈ ℂ ∧
(𝐴 − 𝐵) ∈ ℂ) →
(((𝐻‘𝑘) + 1) + (𝐴 − 𝐵)) = (((𝐻‘𝑘) + (𝐴 − 𝐵)) + 1)) |
| 41 | 38, 39, 40 | mp3an23 1455 |
. . . . . 6
⊢ ((𝐻‘𝑘) ∈ ℂ → (((𝐻‘𝑘) + 1) + (𝐴 − 𝐵)) = (((𝐻‘𝑘) + (𝐴 − 𝐵)) + 1)) |
| 42 | 37, 41 | syl 17 |
. . . . 5
⊢ (𝑘 ∈ ω → (((𝐻‘𝑘) + 1) + (𝐴 − 𝐵)) = (((𝐻‘𝑘) + (𝐴 − 𝐵)) + 1)) |
| 43 | 33, 42 | eqtrd 2771 |
. . . 4
⊢ (𝑘 ∈ ω → ((𝐻‘suc 𝑘) + (𝐴 − 𝐵)) = (((𝐻‘𝑘) + (𝐴 − 𝐵)) + 1)) |
| 44 | 31, 43 | eqeq12d 2752 |
. . 3
⊢ (𝑘 ∈ ω → ((𝐺‘suc 𝑘) = ((𝐻‘suc 𝑘) + (𝐴 − 𝐵)) ↔ ((𝐺‘𝑘) + 1) = (((𝐻‘𝑘) + (𝐴 − 𝐵)) + 1))) |
| 45 | 30, 44 | imbitrrid 246 |
. 2
⊢ (𝑘 ∈ ω → ((𝐺‘𝑘) = ((𝐻‘𝑘) + (𝐴 − 𝐵)) → (𝐺‘suc 𝑘) = ((𝐻‘suc 𝑘) + (𝐴 − 𝐵)))) |
| 46 | 4, 8, 12, 16, 29, 45 | finds 7897 |
1
⊢ (𝑁 ∈ ω → (𝐺‘𝑁) = ((𝐻‘𝑁) + (𝐴 − 𝐵))) |