Step | Hyp | Ref
| Expression |
1 | | fveq2 6771 |
. . 3
⊢ (𝑦 = ∅ → (𝐺‘𝑦) = (𝐺‘∅)) |
2 | | fveq2 6771 |
. . . 4
⊢ (𝑦 = ∅ → (𝐻‘𝑦) = (𝐻‘∅)) |
3 | 2 | oveq1d 7287 |
. . 3
⊢ (𝑦 = ∅ → ((𝐻‘𝑦) + (𝐴 − 𝐵)) = ((𝐻‘∅) + (𝐴 − 𝐵))) |
4 | 1, 3 | eqeq12d 2756 |
. 2
⊢ (𝑦 = ∅ → ((𝐺‘𝑦) = ((𝐻‘𝑦) + (𝐴 − 𝐵)) ↔ (𝐺‘∅) = ((𝐻‘∅) + (𝐴 − 𝐵)))) |
5 | | fveq2 6771 |
. . 3
⊢ (𝑦 = 𝑘 → (𝐺‘𝑦) = (𝐺‘𝑘)) |
6 | | fveq2 6771 |
. . . 4
⊢ (𝑦 = 𝑘 → (𝐻‘𝑦) = (𝐻‘𝑘)) |
7 | 6 | oveq1d 7287 |
. . 3
⊢ (𝑦 = 𝑘 → ((𝐻‘𝑦) + (𝐴 − 𝐵)) = ((𝐻‘𝑘) + (𝐴 − 𝐵))) |
8 | 5, 7 | eqeq12d 2756 |
. 2
⊢ (𝑦 = 𝑘 → ((𝐺‘𝑦) = ((𝐻‘𝑦) + (𝐴 − 𝐵)) ↔ (𝐺‘𝑘) = ((𝐻‘𝑘) + (𝐴 − 𝐵)))) |
9 | | fveq2 6771 |
. . 3
⊢ (𝑦 = suc 𝑘 → (𝐺‘𝑦) = (𝐺‘suc 𝑘)) |
10 | | fveq2 6771 |
. . . 4
⊢ (𝑦 = suc 𝑘 → (𝐻‘𝑦) = (𝐻‘suc 𝑘)) |
11 | 10 | oveq1d 7287 |
. . 3
⊢ (𝑦 = suc 𝑘 → ((𝐻‘𝑦) + (𝐴 − 𝐵)) = ((𝐻‘suc 𝑘) + (𝐴 − 𝐵))) |
12 | 9, 11 | eqeq12d 2756 |
. 2
⊢ (𝑦 = suc 𝑘 → ((𝐺‘𝑦) = ((𝐻‘𝑦) + (𝐴 − 𝐵)) ↔ (𝐺‘suc 𝑘) = ((𝐻‘suc 𝑘) + (𝐴 − 𝐵)))) |
13 | | fveq2 6771 |
. . 3
⊢ (𝑦 = 𝑁 → (𝐺‘𝑦) = (𝐺‘𝑁)) |
14 | | fveq2 6771 |
. . . 4
⊢ (𝑦 = 𝑁 → (𝐻‘𝑦) = (𝐻‘𝑁)) |
15 | 14 | oveq1d 7287 |
. . 3
⊢ (𝑦 = 𝑁 → ((𝐻‘𝑦) + (𝐴 − 𝐵)) = ((𝐻‘𝑁) + (𝐴 − 𝐵))) |
16 | 13, 15 | eqeq12d 2756 |
. 2
⊢ (𝑦 = 𝑁 → ((𝐺‘𝑦) = ((𝐻‘𝑦) + (𝐴 − 𝐵)) ↔ (𝐺‘𝑁) = ((𝐻‘𝑁) + (𝐴 − 𝐵)))) |
17 | | uzrdgxfr.4 |
. . . . 5
⊢ 𝐵 ∈ ℤ |
18 | | zcn 12335 |
. . . . 5
⊢ (𝐵 ∈ ℤ → 𝐵 ∈
ℂ) |
19 | 17, 18 | ax-mp 5 |
. . . 4
⊢ 𝐵 ∈ ℂ |
20 | | uzrdgxfr.3 |
. . . . 5
⊢ 𝐴 ∈ ℤ |
21 | | zcn 12335 |
. . . . 5
⊢ (𝐴 ∈ ℤ → 𝐴 ∈
ℂ) |
22 | 20, 21 | ax-mp 5 |
. . . 4
⊢ 𝐴 ∈ ℂ |
23 | 19, 22 | pncan3i 11309 |
. . 3
⊢ (𝐵 + (𝐴 − 𝐵)) = 𝐴 |
24 | | uzrdgxfr.2 |
. . . . 5
⊢ 𝐻 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐵) ↾ ω) |
25 | 17, 24 | om2uz0i 13678 |
. . . 4
⊢ (𝐻‘∅) = 𝐵 |
26 | 25 | oveq1i 7282 |
. . 3
⊢ ((𝐻‘∅) + (𝐴 − 𝐵)) = (𝐵 + (𝐴 − 𝐵)) |
27 | | uzrdgxfr.1 |
. . . 4
⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω) |
28 | 20, 27 | om2uz0i 13678 |
. . 3
⊢ (𝐺‘∅) = 𝐴 |
29 | 23, 26, 28 | 3eqtr4ri 2779 |
. 2
⊢ (𝐺‘∅) = ((𝐻‘∅) + (𝐴 − 𝐵)) |
30 | | oveq1 7279 |
. . 3
⊢ ((𝐺‘𝑘) = ((𝐻‘𝑘) + (𝐴 − 𝐵)) → ((𝐺‘𝑘) + 1) = (((𝐻‘𝑘) + (𝐴 − 𝐵)) + 1)) |
31 | 20, 27 | om2uzsuci 13679 |
. . . 4
⊢ (𝑘 ∈ ω → (𝐺‘suc 𝑘) = ((𝐺‘𝑘) + 1)) |
32 | 17, 24 | om2uzsuci 13679 |
. . . . . 6
⊢ (𝑘 ∈ ω → (𝐻‘suc 𝑘) = ((𝐻‘𝑘) + 1)) |
33 | 32 | oveq1d 7287 |
. . . . 5
⊢ (𝑘 ∈ ω → ((𝐻‘suc 𝑘) + (𝐴 − 𝐵)) = (((𝐻‘𝑘) + 1) + (𝐴 − 𝐵))) |
34 | 17, 24 | om2uzuzi 13680 |
. . . . . . . 8
⊢ (𝑘 ∈ ω → (𝐻‘𝑘) ∈ (ℤ≥‘𝐵)) |
35 | | eluzelz 12603 |
. . . . . . . 8
⊢ ((𝐻‘𝑘) ∈ (ℤ≥‘𝐵) → (𝐻‘𝑘) ∈ ℤ) |
36 | 34, 35 | syl 17 |
. . . . . . 7
⊢ (𝑘 ∈ ω → (𝐻‘𝑘) ∈ ℤ) |
37 | 36 | zcnd 12438 |
. . . . . 6
⊢ (𝑘 ∈ ω → (𝐻‘𝑘) ∈ ℂ) |
38 | | ax-1cn 10940 |
. . . . . . 7
⊢ 1 ∈
ℂ |
39 | 22, 19 | subcli 11308 |
. . . . . . 7
⊢ (𝐴 − 𝐵) ∈ ℂ |
40 | | add32 11204 |
. . . . . . 7
⊢ (((𝐻‘𝑘) ∈ ℂ ∧ 1 ∈ ℂ ∧
(𝐴 − 𝐵) ∈ ℂ) →
(((𝐻‘𝑘) + 1) + (𝐴 − 𝐵)) = (((𝐻‘𝑘) + (𝐴 − 𝐵)) + 1)) |
41 | 38, 39, 40 | mp3an23 1452 |
. . . . . 6
⊢ ((𝐻‘𝑘) ∈ ℂ → (((𝐻‘𝑘) + 1) + (𝐴 − 𝐵)) = (((𝐻‘𝑘) + (𝐴 − 𝐵)) + 1)) |
42 | 37, 41 | syl 17 |
. . . . 5
⊢ (𝑘 ∈ ω → (((𝐻‘𝑘) + 1) + (𝐴 − 𝐵)) = (((𝐻‘𝑘) + (𝐴 − 𝐵)) + 1)) |
43 | 33, 42 | eqtrd 2780 |
. . . 4
⊢ (𝑘 ∈ ω → ((𝐻‘suc 𝑘) + (𝐴 − 𝐵)) = (((𝐻‘𝑘) + (𝐴 − 𝐵)) + 1)) |
44 | 31, 43 | eqeq12d 2756 |
. . 3
⊢ (𝑘 ∈ ω → ((𝐺‘suc 𝑘) = ((𝐻‘suc 𝑘) + (𝐴 − 𝐵)) ↔ ((𝐺‘𝑘) + 1) = (((𝐻‘𝑘) + (𝐴 − 𝐵)) + 1))) |
45 | 30, 44 | syl5ibr 245 |
. 2
⊢ (𝑘 ∈ ω → ((𝐺‘𝑘) = ((𝐻‘𝑘) + (𝐴 − 𝐵)) → (𝐺‘suc 𝑘) = ((𝐻‘suc 𝑘) + (𝐴 − 𝐵)))) |
46 | 4, 8, 12, 16, 29, 45 | finds 7740 |
1
⊢ (𝑁 ∈ ω → (𝐺‘𝑁) = ((𝐻‘𝑁) + (𝐴 − 𝐵))) |