MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  om2uzsuci Structured version   Visualization version   GIF version

Theorem om2uzsuci 13769
Description: The value of 𝐺 (see om2uz0i 13768) at a successor. (Contributed by NM, 3-Oct-2004.) (Revised by Mario Carneiro, 13-Sep-2013.)
Hypotheses
Ref Expression
om2uz.1 𝐶 ∈ ℤ
om2uz.2 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω)
Assertion
Ref Expression
om2uzsuci (𝐴 ∈ ω → (𝐺‘suc 𝐴) = ((𝐺𝐴) + 1))
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐺(𝑥)

Proof of Theorem om2uzsuci
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 suceq 6367 . . . 4 (𝑧 = 𝐴 → suc 𝑧 = suc 𝐴)
21fveq2d 6829 . . 3 (𝑧 = 𝐴 → (𝐺‘suc 𝑧) = (𝐺‘suc 𝐴))
3 fveq2 6825 . . . 4 (𝑧 = 𝐴 → (𝐺𝑧) = (𝐺𝐴))
43oveq1d 7352 . . 3 (𝑧 = 𝐴 → ((𝐺𝑧) + 1) = ((𝐺𝐴) + 1))
52, 4eqeq12d 2752 . 2 (𝑧 = 𝐴 → ((𝐺‘suc 𝑧) = ((𝐺𝑧) + 1) ↔ (𝐺‘suc 𝐴) = ((𝐺𝐴) + 1)))
6 ovex 7370 . . 3 ((𝐺𝑧) + 1) ∈ V
7 om2uz.2 . . . 4 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω)
8 oveq1 7344 . . . 4 (𝑦 = 𝑥 → (𝑦 + 1) = (𝑥 + 1))
9 oveq1 7344 . . . 4 (𝑦 = (𝐺𝑧) → (𝑦 + 1) = ((𝐺𝑧) + 1))
107, 8, 9frsucmpt2 8341 . . 3 ((𝑧 ∈ ω ∧ ((𝐺𝑧) + 1) ∈ V) → (𝐺‘suc 𝑧) = ((𝐺𝑧) + 1))
116, 10mpan2 688 . 2 (𝑧 ∈ ω → (𝐺‘suc 𝑧) = ((𝐺𝑧) + 1))
125, 11vtoclga 3522 1 (𝐴 ∈ ω → (𝐺‘suc 𝐴) = ((𝐺𝐴) + 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2105  Vcvv 3441  cmpt 5175  cres 5622  suc csuc 6304  cfv 6479  (class class class)co 7337  ωcom 7780  reccrdg 8310  1c1 10973   + caddc 10975  cz 12420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5243  ax-nul 5250  ax-pr 5372  ax-un 7650
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5176  df-tr 5210  df-id 5518  df-eprel 5524  df-po 5532  df-so 5533  df-fr 5575  df-we 5577  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-pred 6238  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-ov 7340  df-om 7781  df-2nd 7900  df-frecs 8167  df-wrecs 8198  df-recs 8272  df-rdg 8311
This theorem is referenced by:  om2uzuzi  13770  om2uzlti  13771  om2uzrani  13773  om2uzrdg  13777  uzrdgsuci  13781  uzrdgxfr  13788  fzennn  13789  axdc4uzlem  13804  hashgadd  14192
  Copyright terms: Public domain W3C validator