![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > om2uzsuci | Structured version Visualization version GIF version |
Description: The value of 𝐺 (see om2uz0i 13917) at a successor. (Contributed by NM, 3-Oct-2004.) (Revised by Mario Carneiro, 13-Sep-2013.) |
Ref | Expression |
---|---|
om2uz.1 | ⊢ 𝐶 ∈ ℤ |
om2uz.2 | ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) |
Ref | Expression |
---|---|
om2uzsuci | ⊢ (𝐴 ∈ ω → (𝐺‘suc 𝐴) = ((𝐺‘𝐴) + 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | suceq 6430 | . . . 4 ⊢ (𝑧 = 𝐴 → suc 𝑧 = suc 𝐴) | |
2 | 1 | fveq2d 6895 | . . 3 ⊢ (𝑧 = 𝐴 → (𝐺‘suc 𝑧) = (𝐺‘suc 𝐴)) |
3 | fveq2 6891 | . . . 4 ⊢ (𝑧 = 𝐴 → (𝐺‘𝑧) = (𝐺‘𝐴)) | |
4 | 3 | oveq1d 7427 | . . 3 ⊢ (𝑧 = 𝐴 → ((𝐺‘𝑧) + 1) = ((𝐺‘𝐴) + 1)) |
5 | 2, 4 | eqeq12d 2747 | . 2 ⊢ (𝑧 = 𝐴 → ((𝐺‘suc 𝑧) = ((𝐺‘𝑧) + 1) ↔ (𝐺‘suc 𝐴) = ((𝐺‘𝐴) + 1))) |
6 | ovex 7445 | . . 3 ⊢ ((𝐺‘𝑧) + 1) ∈ V | |
7 | om2uz.2 | . . . 4 ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) | |
8 | oveq1 7419 | . . . 4 ⊢ (𝑦 = 𝑥 → (𝑦 + 1) = (𝑥 + 1)) | |
9 | oveq1 7419 | . . . 4 ⊢ (𝑦 = (𝐺‘𝑧) → (𝑦 + 1) = ((𝐺‘𝑧) + 1)) | |
10 | 7, 8, 9 | frsucmpt2 8444 | . . 3 ⊢ ((𝑧 ∈ ω ∧ ((𝐺‘𝑧) + 1) ∈ V) → (𝐺‘suc 𝑧) = ((𝐺‘𝑧) + 1)) |
11 | 6, 10 | mpan2 688 | . 2 ⊢ (𝑧 ∈ ω → (𝐺‘suc 𝑧) = ((𝐺‘𝑧) + 1)) |
12 | 5, 11 | vtoclga 3566 | 1 ⊢ (𝐴 ∈ ω → (𝐺‘suc 𝐴) = ((𝐺‘𝐴) + 1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 Vcvv 3473 ↦ cmpt 5231 ↾ cres 5678 suc csuc 6366 ‘cfv 6543 (class class class)co 7412 ωcom 7859 reccrdg 8413 1c1 11115 + caddc 11117 ℤcz 12563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-om 7860 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 |
This theorem is referenced by: om2uzuzi 13919 om2uzlti 13920 om2uzrani 13922 om2uzrdg 13926 uzrdgsuci 13930 uzrdgxfr 13937 fzennn 13938 axdc4uzlem 13953 hashgadd 14342 |
Copyright terms: Public domain | W3C validator |