MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  om2uzsuci Structured version   Visualization version   GIF version

Theorem om2uzsuci 13920
Description: The value of 𝐺 (see om2uz0i 13919) at a successor. (Contributed by NM, 3-Oct-2004.) (Revised by Mario Carneiro, 13-Sep-2013.)
Hypotheses
Ref Expression
om2uz.1 𝐶 ∈ ℤ
om2uz.2 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω)
Assertion
Ref Expression
om2uzsuci (𝐴 ∈ ω → (𝐺‘suc 𝐴) = ((𝐺𝐴) + 1))
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐺(𝑥)

Proof of Theorem om2uzsuci
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 suceq 6403 . . . 4 (𝑧 = 𝐴 → suc 𝑧 = suc 𝐴)
21fveq2d 6865 . . 3 (𝑧 = 𝐴 → (𝐺‘suc 𝑧) = (𝐺‘suc 𝐴))
3 fveq2 6861 . . . 4 (𝑧 = 𝐴 → (𝐺𝑧) = (𝐺𝐴))
43oveq1d 7405 . . 3 (𝑧 = 𝐴 → ((𝐺𝑧) + 1) = ((𝐺𝐴) + 1))
52, 4eqeq12d 2746 . 2 (𝑧 = 𝐴 → ((𝐺‘suc 𝑧) = ((𝐺𝑧) + 1) ↔ (𝐺‘suc 𝐴) = ((𝐺𝐴) + 1)))
6 ovex 7423 . . 3 ((𝐺𝑧) + 1) ∈ V
7 om2uz.2 . . . 4 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω)
8 oveq1 7397 . . . 4 (𝑦 = 𝑥 → (𝑦 + 1) = (𝑥 + 1))
9 oveq1 7397 . . . 4 (𝑦 = (𝐺𝑧) → (𝑦 + 1) = ((𝐺𝑧) + 1))
107, 8, 9frsucmpt2 8411 . . 3 ((𝑧 ∈ ω ∧ ((𝐺𝑧) + 1) ∈ V) → (𝐺‘suc 𝑧) = ((𝐺𝑧) + 1))
116, 10mpan2 691 . 2 (𝑧 ∈ ω → (𝐺‘suc 𝑧) = ((𝐺𝑧) + 1))
125, 11vtoclga 3546 1 (𝐴 ∈ ω → (𝐺‘suc 𝐴) = ((𝐺𝐴) + 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3450  cmpt 5191  cres 5643  suc csuc 6337  cfv 6514  (class class class)co 7390  ωcom 7845  reccrdg 8380  1c1 11076   + caddc 11078  cz 12536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381
This theorem is referenced by:  om2uzuzi  13921  om2uzlti  13922  om2uzrani  13924  om2uzrdg  13928  uzrdgsuci  13932  uzrdgxfr  13939  fzennn  13940  axdc4uzlem  13955  hashgadd  14349
  Copyright terms: Public domain W3C validator