MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  om2uzsuci Structured version   Visualization version   GIF version

Theorem om2uzsuci 13989
Description: The value of 𝐺 (see om2uz0i 13988) at a successor. (Contributed by NM, 3-Oct-2004.) (Revised by Mario Carneiro, 13-Sep-2013.)
Hypotheses
Ref Expression
om2uz.1 𝐶 ∈ ℤ
om2uz.2 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω)
Assertion
Ref Expression
om2uzsuci (𝐴 ∈ ω → (𝐺‘suc 𝐴) = ((𝐺𝐴) + 1))
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐺(𝑥)

Proof of Theorem om2uzsuci
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 suceq 6450 . . . 4 (𝑧 = 𝐴 → suc 𝑧 = suc 𝐴)
21fveq2d 6910 . . 3 (𝑧 = 𝐴 → (𝐺‘suc 𝑧) = (𝐺‘suc 𝐴))
3 fveq2 6906 . . . 4 (𝑧 = 𝐴 → (𝐺𝑧) = (𝐺𝐴))
43oveq1d 7446 . . 3 (𝑧 = 𝐴 → ((𝐺𝑧) + 1) = ((𝐺𝐴) + 1))
52, 4eqeq12d 2753 . 2 (𝑧 = 𝐴 → ((𝐺‘suc 𝑧) = ((𝐺𝑧) + 1) ↔ (𝐺‘suc 𝐴) = ((𝐺𝐴) + 1)))
6 ovex 7464 . . 3 ((𝐺𝑧) + 1) ∈ V
7 om2uz.2 . . . 4 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω)
8 oveq1 7438 . . . 4 (𝑦 = 𝑥 → (𝑦 + 1) = (𝑥 + 1))
9 oveq1 7438 . . . 4 (𝑦 = (𝐺𝑧) → (𝑦 + 1) = ((𝐺𝑧) + 1))
107, 8, 9frsucmpt2 8480 . . 3 ((𝑧 ∈ ω ∧ ((𝐺𝑧) + 1) ∈ V) → (𝐺‘suc 𝑧) = ((𝐺𝑧) + 1))
116, 10mpan2 691 . 2 (𝑧 ∈ ω → (𝐺‘suc 𝑧) = ((𝐺𝑧) + 1))
125, 11vtoclga 3577 1 (𝐴 ∈ ω → (𝐺‘suc 𝐴) = ((𝐺𝐴) + 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  Vcvv 3480  cmpt 5225  cres 5687  suc csuc 6386  cfv 6561  (class class class)co 7431  ωcom 7887  reccrdg 8449  1c1 11156   + caddc 11158  cz 12613
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450
This theorem is referenced by:  om2uzuzi  13990  om2uzlti  13991  om2uzrani  13993  om2uzrdg  13997  uzrdgsuci  14001  uzrdgxfr  14008  fzennn  14009  axdc4uzlem  14024  hashgadd  14416
  Copyright terms: Public domain W3C validator