| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > om2uzsuci | Structured version Visualization version GIF version | ||
| Description: The value of 𝐺 (see om2uz0i 13912) at a successor. (Contributed by NM, 3-Oct-2004.) (Revised by Mario Carneiro, 13-Sep-2013.) |
| Ref | Expression |
|---|---|
| om2uz.1 | ⊢ 𝐶 ∈ ℤ |
| om2uz.2 | ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) |
| Ref | Expression |
|---|---|
| om2uzsuci | ⊢ (𝐴 ∈ ω → (𝐺‘suc 𝐴) = ((𝐺‘𝐴) + 1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suceq 6400 | . . . 4 ⊢ (𝑧 = 𝐴 → suc 𝑧 = suc 𝐴) | |
| 2 | 1 | fveq2d 6862 | . . 3 ⊢ (𝑧 = 𝐴 → (𝐺‘suc 𝑧) = (𝐺‘suc 𝐴)) |
| 3 | fveq2 6858 | . . . 4 ⊢ (𝑧 = 𝐴 → (𝐺‘𝑧) = (𝐺‘𝐴)) | |
| 4 | 3 | oveq1d 7402 | . . 3 ⊢ (𝑧 = 𝐴 → ((𝐺‘𝑧) + 1) = ((𝐺‘𝐴) + 1)) |
| 5 | 2, 4 | eqeq12d 2745 | . 2 ⊢ (𝑧 = 𝐴 → ((𝐺‘suc 𝑧) = ((𝐺‘𝑧) + 1) ↔ (𝐺‘suc 𝐴) = ((𝐺‘𝐴) + 1))) |
| 6 | ovex 7420 | . . 3 ⊢ ((𝐺‘𝑧) + 1) ∈ V | |
| 7 | om2uz.2 | . . . 4 ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) | |
| 8 | oveq1 7394 | . . . 4 ⊢ (𝑦 = 𝑥 → (𝑦 + 1) = (𝑥 + 1)) | |
| 9 | oveq1 7394 | . . . 4 ⊢ (𝑦 = (𝐺‘𝑧) → (𝑦 + 1) = ((𝐺‘𝑧) + 1)) | |
| 10 | 7, 8, 9 | frsucmpt2 8408 | . . 3 ⊢ ((𝑧 ∈ ω ∧ ((𝐺‘𝑧) + 1) ∈ V) → (𝐺‘suc 𝑧) = ((𝐺‘𝑧) + 1)) |
| 11 | 6, 10 | mpan2 691 | . 2 ⊢ (𝑧 ∈ ω → (𝐺‘suc 𝑧) = ((𝐺‘𝑧) + 1)) |
| 12 | 5, 11 | vtoclga 3543 | 1 ⊢ (𝐴 ∈ ω → (𝐺‘suc 𝐴) = ((𝐺‘𝐴) + 1)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ↦ cmpt 5188 ↾ cres 5640 suc csuc 6334 ‘cfv 6511 (class class class)co 7387 ωcom 7842 reccrdg 8377 1c1 11069 + caddc 11071 ℤcz 12529 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 |
| This theorem is referenced by: om2uzuzi 13914 om2uzlti 13915 om2uzrani 13917 om2uzrdg 13921 uzrdgsuci 13925 uzrdgxfr 13932 fzennn 13933 axdc4uzlem 13948 hashgadd 14342 |
| Copyright terms: Public domain | W3C validator |