MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  om2uzuzi Structured version   Visualization version   GIF version

Theorem om2uzuzi 13774
Description: The value 𝐺 (see om2uz0i 13772) at an ordinal natural number is in the upper integers. (Contributed by NM, 3-Oct-2004.) (Revised by Mario Carneiro, 13-Sep-2013.)
Hypotheses
Ref Expression
om2uz.1 𝐶 ∈ ℤ
om2uz.2 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω)
Assertion
Ref Expression
om2uzuzi (𝐴 ∈ ω → (𝐺𝐴) ∈ (ℤ𝐶))
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐺(𝑥)

Proof of Theorem om2uzuzi
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6829 . . 3 (𝑦 = ∅ → (𝐺𝑦) = (𝐺‘∅))
21eleq1d 2822 . 2 (𝑦 = ∅ → ((𝐺𝑦) ∈ (ℤ𝐶) ↔ (𝐺‘∅) ∈ (ℤ𝐶)))
3 fveq2 6829 . . 3 (𝑦 = 𝑧 → (𝐺𝑦) = (𝐺𝑧))
43eleq1d 2822 . 2 (𝑦 = 𝑧 → ((𝐺𝑦) ∈ (ℤ𝐶) ↔ (𝐺𝑧) ∈ (ℤ𝐶)))
5 fveq2 6829 . . 3 (𝑦 = suc 𝑧 → (𝐺𝑦) = (𝐺‘suc 𝑧))
65eleq1d 2822 . 2 (𝑦 = suc 𝑧 → ((𝐺𝑦) ∈ (ℤ𝐶) ↔ (𝐺‘suc 𝑧) ∈ (ℤ𝐶)))
7 fveq2 6829 . . 3 (𝑦 = 𝐴 → (𝐺𝑦) = (𝐺𝐴))
87eleq1d 2822 . 2 (𝑦 = 𝐴 → ((𝐺𝑦) ∈ (ℤ𝐶) ↔ (𝐺𝐴) ∈ (ℤ𝐶)))
9 om2uz.1 . . . 4 𝐶 ∈ ℤ
10 om2uz.2 . . . 4 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω)
119, 10om2uz0i 13772 . . 3 (𝐺‘∅) = 𝐶
12 uzid 12702 . . . 4 (𝐶 ∈ ℤ → 𝐶 ∈ (ℤ𝐶))
139, 12ax-mp 5 . . 3 𝐶 ∈ (ℤ𝐶)
1411, 13eqeltri 2834 . 2 (𝐺‘∅) ∈ (ℤ𝐶)
15 peano2uz 12746 . . 3 ((𝐺𝑧) ∈ (ℤ𝐶) → ((𝐺𝑧) + 1) ∈ (ℤ𝐶))
169, 10om2uzsuci 13773 . . . 4 (𝑧 ∈ ω → (𝐺‘suc 𝑧) = ((𝐺𝑧) + 1))
1716eleq1d 2822 . . 3 (𝑧 ∈ ω → ((𝐺‘suc 𝑧) ∈ (ℤ𝐶) ↔ ((𝐺𝑧) + 1) ∈ (ℤ𝐶)))
1815, 17syl5ibr 246 . 2 (𝑧 ∈ ω → ((𝐺𝑧) ∈ (ℤ𝐶) → (𝐺‘suc 𝑧) ∈ (ℤ𝐶)))
192, 4, 6, 8, 14, 18finds 7817 1 (𝐴 ∈ ω → (𝐺𝐴) ∈ (ℤ𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  Vcvv 3442  c0 4273  cmpt 5179  cres 5626  suc csuc 6308  cfv 6483  (class class class)co 7341  ωcom 7784  reccrdg 8314  1c1 10977   + caddc 10979  cz 12424  cuz 12687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5247  ax-nul 5254  ax-pow 5312  ax-pr 5376  ax-un 7654  ax-cnex 11032  ax-resscn 11033  ax-1cn 11034  ax-icn 11035  ax-addcl 11036  ax-addrcl 11037  ax-mulcl 11038  ax-mulrcl 11039  ax-mulcom 11040  ax-addass 11041  ax-mulass 11042  ax-distr 11043  ax-i2m1 11044  ax-1ne0 11045  ax-1rid 11046  ax-rnegex 11047  ax-rrecex 11048  ax-cnre 11049  ax-pre-lttri 11050  ax-pre-lttrn 11051  ax-pre-ltadd 11052  ax-pre-mulgt0 11053
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3731  df-csb 3847  df-dif 3904  df-un 3906  df-in 3908  df-ss 3918  df-pss 3920  df-nul 4274  df-if 4478  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4857  df-iun 4947  df-br 5097  df-opab 5159  df-mpt 5180  df-tr 5214  df-id 5522  df-eprel 5528  df-po 5536  df-so 5537  df-fr 5579  df-we 5581  df-xp 5630  df-rel 5631  df-cnv 5632  df-co 5633  df-dm 5634  df-rn 5635  df-res 5636  df-ima 5637  df-pred 6242  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6435  df-fun 6485  df-fn 6486  df-f 6487  df-f1 6488  df-fo 6489  df-f1o 6490  df-fv 6491  df-riota 7297  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7785  df-2nd 7904  df-frecs 8171  df-wrecs 8202  df-recs 8276  df-rdg 8315  df-er 8573  df-en 8809  df-dom 8810  df-sdom 8811  df-pnf 11116  df-mnf 11117  df-xr 11118  df-ltxr 11119  df-le 11120  df-sub 11312  df-neg 11313  df-nn 12079  df-n0 12339  df-z 12425  df-uz 12688
This theorem is referenced by:  om2uzlti  13775  om2uzlt2i  13776  om2uzrani  13777  om2uzf1oi  13778  uzrdgfni  13783  uzrdgxfr  13792  unbenlem  16706
  Copyright terms: Public domain W3C validator