Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > om2uzuzi | Structured version Visualization version GIF version |
Description: The value 𝐺 (see om2uz0i 13667) at an ordinal natural number is in the upper integers. (Contributed by NM, 3-Oct-2004.) (Revised by Mario Carneiro, 13-Sep-2013.) |
Ref | Expression |
---|---|
om2uz.1 | ⊢ 𝐶 ∈ ℤ |
om2uz.2 | ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) |
Ref | Expression |
---|---|
om2uzuzi | ⊢ (𝐴 ∈ ω → (𝐺‘𝐴) ∈ (ℤ≥‘𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6774 | . . 3 ⊢ (𝑦 = ∅ → (𝐺‘𝑦) = (𝐺‘∅)) | |
2 | 1 | eleq1d 2823 | . 2 ⊢ (𝑦 = ∅ → ((𝐺‘𝑦) ∈ (ℤ≥‘𝐶) ↔ (𝐺‘∅) ∈ (ℤ≥‘𝐶))) |
3 | fveq2 6774 | . . 3 ⊢ (𝑦 = 𝑧 → (𝐺‘𝑦) = (𝐺‘𝑧)) | |
4 | 3 | eleq1d 2823 | . 2 ⊢ (𝑦 = 𝑧 → ((𝐺‘𝑦) ∈ (ℤ≥‘𝐶) ↔ (𝐺‘𝑧) ∈ (ℤ≥‘𝐶))) |
5 | fveq2 6774 | . . 3 ⊢ (𝑦 = suc 𝑧 → (𝐺‘𝑦) = (𝐺‘suc 𝑧)) | |
6 | 5 | eleq1d 2823 | . 2 ⊢ (𝑦 = suc 𝑧 → ((𝐺‘𝑦) ∈ (ℤ≥‘𝐶) ↔ (𝐺‘suc 𝑧) ∈ (ℤ≥‘𝐶))) |
7 | fveq2 6774 | . . 3 ⊢ (𝑦 = 𝐴 → (𝐺‘𝑦) = (𝐺‘𝐴)) | |
8 | 7 | eleq1d 2823 | . 2 ⊢ (𝑦 = 𝐴 → ((𝐺‘𝑦) ∈ (ℤ≥‘𝐶) ↔ (𝐺‘𝐴) ∈ (ℤ≥‘𝐶))) |
9 | om2uz.1 | . . . 4 ⊢ 𝐶 ∈ ℤ | |
10 | om2uz.2 | . . . 4 ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) | |
11 | 9, 10 | om2uz0i 13667 | . . 3 ⊢ (𝐺‘∅) = 𝐶 |
12 | uzid 12597 | . . . 4 ⊢ (𝐶 ∈ ℤ → 𝐶 ∈ (ℤ≥‘𝐶)) | |
13 | 9, 12 | ax-mp 5 | . . 3 ⊢ 𝐶 ∈ (ℤ≥‘𝐶) |
14 | 11, 13 | eqeltri 2835 | . 2 ⊢ (𝐺‘∅) ∈ (ℤ≥‘𝐶) |
15 | peano2uz 12641 | . . 3 ⊢ ((𝐺‘𝑧) ∈ (ℤ≥‘𝐶) → ((𝐺‘𝑧) + 1) ∈ (ℤ≥‘𝐶)) | |
16 | 9, 10 | om2uzsuci 13668 | . . . 4 ⊢ (𝑧 ∈ ω → (𝐺‘suc 𝑧) = ((𝐺‘𝑧) + 1)) |
17 | 16 | eleq1d 2823 | . . 3 ⊢ (𝑧 ∈ ω → ((𝐺‘suc 𝑧) ∈ (ℤ≥‘𝐶) ↔ ((𝐺‘𝑧) + 1) ∈ (ℤ≥‘𝐶))) |
18 | 15, 17 | syl5ibr 245 | . 2 ⊢ (𝑧 ∈ ω → ((𝐺‘𝑧) ∈ (ℤ≥‘𝐶) → (𝐺‘suc 𝑧) ∈ (ℤ≥‘𝐶))) |
19 | 2, 4, 6, 8, 14, 18 | finds 7745 | 1 ⊢ (𝐴 ∈ ω → (𝐺‘𝐴) ∈ (ℤ≥‘𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ∅c0 4256 ↦ cmpt 5157 ↾ cres 5591 suc csuc 6268 ‘cfv 6433 (class class class)co 7275 ωcom 7712 reccrdg 8240 1c1 10872 + caddc 10874 ℤcz 12319 ℤ≥cuz 12582 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-n0 12234 df-z 12320 df-uz 12583 |
This theorem is referenced by: om2uzlti 13670 om2uzlt2i 13671 om2uzrani 13672 om2uzf1oi 13673 uzrdgfni 13678 uzrdgxfr 13687 unbenlem 16609 |
Copyright terms: Public domain | W3C validator |