![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > om2uzuzi | Structured version Visualization version GIF version |
Description: The value 𝐺 (see om2uz0i 13908) at an ordinal natural number is in the upper integers. (Contributed by NM, 3-Oct-2004.) (Revised by Mario Carneiro, 13-Sep-2013.) |
Ref | Expression |
---|---|
om2uz.1 | ⊢ 𝐶 ∈ ℤ |
om2uz.2 | ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) |
Ref | Expression |
---|---|
om2uzuzi | ⊢ (𝐴 ∈ ω → (𝐺‘𝐴) ∈ (ℤ≥‘𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6881 | . . 3 ⊢ (𝑦 = ∅ → (𝐺‘𝑦) = (𝐺‘∅)) | |
2 | 1 | eleq1d 2810 | . 2 ⊢ (𝑦 = ∅ → ((𝐺‘𝑦) ∈ (ℤ≥‘𝐶) ↔ (𝐺‘∅) ∈ (ℤ≥‘𝐶))) |
3 | fveq2 6881 | . . 3 ⊢ (𝑦 = 𝑧 → (𝐺‘𝑦) = (𝐺‘𝑧)) | |
4 | 3 | eleq1d 2810 | . 2 ⊢ (𝑦 = 𝑧 → ((𝐺‘𝑦) ∈ (ℤ≥‘𝐶) ↔ (𝐺‘𝑧) ∈ (ℤ≥‘𝐶))) |
5 | fveq2 6881 | . . 3 ⊢ (𝑦 = suc 𝑧 → (𝐺‘𝑦) = (𝐺‘suc 𝑧)) | |
6 | 5 | eleq1d 2810 | . 2 ⊢ (𝑦 = suc 𝑧 → ((𝐺‘𝑦) ∈ (ℤ≥‘𝐶) ↔ (𝐺‘suc 𝑧) ∈ (ℤ≥‘𝐶))) |
7 | fveq2 6881 | . . 3 ⊢ (𝑦 = 𝐴 → (𝐺‘𝑦) = (𝐺‘𝐴)) | |
8 | 7 | eleq1d 2810 | . 2 ⊢ (𝑦 = 𝐴 → ((𝐺‘𝑦) ∈ (ℤ≥‘𝐶) ↔ (𝐺‘𝐴) ∈ (ℤ≥‘𝐶))) |
9 | om2uz.1 | . . . 4 ⊢ 𝐶 ∈ ℤ | |
10 | om2uz.2 | . . . 4 ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) | |
11 | 9, 10 | om2uz0i 13908 | . . 3 ⊢ (𝐺‘∅) = 𝐶 |
12 | uzid 12833 | . . . 4 ⊢ (𝐶 ∈ ℤ → 𝐶 ∈ (ℤ≥‘𝐶)) | |
13 | 9, 12 | ax-mp 5 | . . 3 ⊢ 𝐶 ∈ (ℤ≥‘𝐶) |
14 | 11, 13 | eqeltri 2821 | . 2 ⊢ (𝐺‘∅) ∈ (ℤ≥‘𝐶) |
15 | peano2uz 12881 | . . 3 ⊢ ((𝐺‘𝑧) ∈ (ℤ≥‘𝐶) → ((𝐺‘𝑧) + 1) ∈ (ℤ≥‘𝐶)) | |
16 | 9, 10 | om2uzsuci 13909 | . . . 4 ⊢ (𝑧 ∈ ω → (𝐺‘suc 𝑧) = ((𝐺‘𝑧) + 1)) |
17 | 16 | eleq1d 2810 | . . 3 ⊢ (𝑧 ∈ ω → ((𝐺‘suc 𝑧) ∈ (ℤ≥‘𝐶) ↔ ((𝐺‘𝑧) + 1) ∈ (ℤ≥‘𝐶))) |
18 | 15, 17 | imbitrrid 245 | . 2 ⊢ (𝑧 ∈ ω → ((𝐺‘𝑧) ∈ (ℤ≥‘𝐶) → (𝐺‘suc 𝑧) ∈ (ℤ≥‘𝐶))) |
19 | 2, 4, 6, 8, 14, 18 | finds 7882 | 1 ⊢ (𝐴 ∈ ω → (𝐺‘𝐴) ∈ (ℤ≥‘𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 Vcvv 3466 ∅c0 4314 ↦ cmpt 5221 ↾ cres 5668 suc csuc 6356 ‘cfv 6533 (class class class)co 7401 ωcom 7848 reccrdg 8404 1c1 11106 + caddc 11108 ℤcz 12554 ℤ≥cuz 12818 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11161 ax-resscn 11162 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-addrcl 11166 ax-mulcl 11167 ax-mulrcl 11168 ax-mulcom 11169 ax-addass 11170 ax-mulass 11171 ax-distr 11172 ax-i2m1 11173 ax-1ne0 11174 ax-1rid 11175 ax-rnegex 11176 ax-rrecex 11177 ax-cnre 11178 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 ax-pre-mulgt0 11182 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-er 8698 df-en 8935 df-dom 8936 df-sdom 8937 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-n0 12469 df-z 12555 df-uz 12819 |
This theorem is referenced by: om2uzlti 13911 om2uzlt2i 13912 om2uzrani 13913 om2uzf1oi 13914 uzrdgfni 13919 uzrdgxfr 13928 unbenlem 16837 |
Copyright terms: Public domain | W3C validator |