MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  om2uzuzi Structured version   Visualization version   GIF version

Theorem om2uzuzi 13597
Description: The value 𝐺 (see om2uz0i 13595) at an ordinal natural number is in the upper integers. (Contributed by NM, 3-Oct-2004.) (Revised by Mario Carneiro, 13-Sep-2013.)
Hypotheses
Ref Expression
om2uz.1 𝐶 ∈ ℤ
om2uz.2 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω)
Assertion
Ref Expression
om2uzuzi (𝐴 ∈ ω → (𝐺𝐴) ∈ (ℤ𝐶))
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐺(𝑥)

Proof of Theorem om2uzuzi
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6756 . . 3 (𝑦 = ∅ → (𝐺𝑦) = (𝐺‘∅))
21eleq1d 2823 . 2 (𝑦 = ∅ → ((𝐺𝑦) ∈ (ℤ𝐶) ↔ (𝐺‘∅) ∈ (ℤ𝐶)))
3 fveq2 6756 . . 3 (𝑦 = 𝑧 → (𝐺𝑦) = (𝐺𝑧))
43eleq1d 2823 . 2 (𝑦 = 𝑧 → ((𝐺𝑦) ∈ (ℤ𝐶) ↔ (𝐺𝑧) ∈ (ℤ𝐶)))
5 fveq2 6756 . . 3 (𝑦 = suc 𝑧 → (𝐺𝑦) = (𝐺‘suc 𝑧))
65eleq1d 2823 . 2 (𝑦 = suc 𝑧 → ((𝐺𝑦) ∈ (ℤ𝐶) ↔ (𝐺‘suc 𝑧) ∈ (ℤ𝐶)))
7 fveq2 6756 . . 3 (𝑦 = 𝐴 → (𝐺𝑦) = (𝐺𝐴))
87eleq1d 2823 . 2 (𝑦 = 𝐴 → ((𝐺𝑦) ∈ (ℤ𝐶) ↔ (𝐺𝐴) ∈ (ℤ𝐶)))
9 om2uz.1 . . . 4 𝐶 ∈ ℤ
10 om2uz.2 . . . 4 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω)
119, 10om2uz0i 13595 . . 3 (𝐺‘∅) = 𝐶
12 uzid 12526 . . . 4 (𝐶 ∈ ℤ → 𝐶 ∈ (ℤ𝐶))
139, 12ax-mp 5 . . 3 𝐶 ∈ (ℤ𝐶)
1411, 13eqeltri 2835 . 2 (𝐺‘∅) ∈ (ℤ𝐶)
15 peano2uz 12570 . . 3 ((𝐺𝑧) ∈ (ℤ𝐶) → ((𝐺𝑧) + 1) ∈ (ℤ𝐶))
169, 10om2uzsuci 13596 . . . 4 (𝑧 ∈ ω → (𝐺‘suc 𝑧) = ((𝐺𝑧) + 1))
1716eleq1d 2823 . . 3 (𝑧 ∈ ω → ((𝐺‘suc 𝑧) ∈ (ℤ𝐶) ↔ ((𝐺𝑧) + 1) ∈ (ℤ𝐶)))
1815, 17syl5ibr 245 . 2 (𝑧 ∈ ω → ((𝐺𝑧) ∈ (ℤ𝐶) → (𝐺‘suc 𝑧) ∈ (ℤ𝐶)))
192, 4, 6, 8, 14, 18finds 7719 1 (𝐴 ∈ ω → (𝐺𝐴) ∈ (ℤ𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  Vcvv 3422  c0 4253  cmpt 5153  cres 5582  suc csuc 6253  cfv 6418  (class class class)co 7255  ωcom 7687  reccrdg 8211  1c1 10803   + caddc 10805  cz 12249  cuz 12511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512
This theorem is referenced by:  om2uzlti  13598  om2uzlt2i  13599  om2uzrani  13600  om2uzf1oi  13601  uzrdgfni  13606  uzrdgxfr  13615  unbenlem  16537
  Copyright terms: Public domain W3C validator