Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovnf Structured version   Visualization version   GIF version

Theorem ovnf 44346
Description: The Lebesgue outer measure is a function that maps sets to nonnegative extended reals. This is step (a)(i) of the proof of Proposition 115D (a) of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypothesis
Ref Expression
ovnf.1 (𝜑𝑋 ∈ Fin)
Assertion
Ref Expression
ovnf (𝜑 → (voln*‘𝑋):𝒫 (ℝ ↑m 𝑋)⟶(0[,]+∞))

Proof of Theorem ovnf
Dummy variables 𝑖 𝑗 𝑘 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0e0iccpnf 13261 . . . . 5 0 ∈ (0[,]+∞)
21a1i 11 . . . 4 ((𝜑𝑦 ∈ 𝒫 (ℝ ↑m 𝑋)) → 0 ∈ (0[,]+∞))
3 0xr 11092 . . . . . 6 0 ∈ ℝ*
43a1i 11 . . . . 5 ((𝜑𝑦 ∈ 𝒫 (ℝ ↑m 𝑋)) → 0 ∈ ℝ*)
5 pnfxr 11099 . . . . . 6 +∞ ∈ ℝ*
65a1i 11 . . . . 5 ((𝜑𝑦 ∈ 𝒫 (ℝ ↑m 𝑋)) → +∞ ∈ ℝ*)
7 ovnf.1 . . . . . . 7 (𝜑𝑋 ∈ Fin)
87adantr 481 . . . . . 6 ((𝜑𝑦 ∈ 𝒫 (ℝ ↑m 𝑋)) → 𝑋 ∈ Fin)
9 elpwi 4550 . . . . . . 7 (𝑦 ∈ 𝒫 (ℝ ↑m 𝑋) → 𝑦 ⊆ (ℝ ↑m 𝑋))
109adantl 482 . . . . . 6 ((𝜑𝑦 ∈ 𝒫 (ℝ ↑m 𝑋)) → 𝑦 ⊆ (ℝ ↑m 𝑋))
11 eqid 2737 . . . . . 6 {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝑦 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))} = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝑦 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}
128, 10, 11ovnsupge0 44340 . . . . 5 ((𝜑𝑦 ∈ 𝒫 (ℝ ↑m 𝑋)) → {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝑦 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))} ⊆ (0[,]+∞))
138, 10, 11ovnpnfelsup 44342 . . . . . 6 ((𝜑𝑦 ∈ 𝒫 (ℝ ↑m 𝑋)) → +∞ ∈ {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝑦 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))})
1413ne0d 4279 . . . . 5 ((𝜑𝑦 ∈ 𝒫 (ℝ ↑m 𝑋)) → {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝑦 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))} ≠ ∅)
154, 6, 12, 14inficc 43316 . . . 4 ((𝜑𝑦 ∈ 𝒫 (ℝ ↑m 𝑋)) → inf({𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝑦 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}, ℝ*, < ) ∈ (0[,]+∞))
162, 15ifcld 4515 . . 3 ((𝜑𝑦 ∈ 𝒫 (ℝ ↑m 𝑋)) → if(𝑋 = ∅, 0, inf({𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝑦 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}, ℝ*, < )) ∈ (0[,]+∞))
17 eqid 2737 . . 3 (𝑦 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ if(𝑋 = ∅, 0, inf({𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝑦 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}, ℝ*, < ))) = (𝑦 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ if(𝑋 = ∅, 0, inf({𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝑦 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}, ℝ*, < )))
1816, 17fmptd 7025 . 2 (𝜑 → (𝑦 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ if(𝑋 = ∅, 0, inf({𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝑦 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}, ℝ*, < ))):𝒫 (ℝ ↑m 𝑋)⟶(0[,]+∞))
197ovnval 44324 . . 3 (𝜑 → (voln*‘𝑋) = (𝑦 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ if(𝑋 = ∅, 0, inf({𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝑦 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}, ℝ*, < ))))
2019feq1d 6620 . 2 (𝜑 → ((voln*‘𝑋):𝒫 (ℝ ↑m 𝑋)⟶(0[,]+∞) ↔ (𝑦 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ if(𝑋 = ∅, 0, inf({𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝑦 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}, ℝ*, < ))):𝒫 (ℝ ↑m 𝑋)⟶(0[,]+∞)))
2118, 20mpbird 256 1 (𝜑 → (voln*‘𝑋):𝒫 (ℝ ↑m 𝑋)⟶(0[,]+∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1540  wcel 2105  wrex 3071  {crab 3404  wss 3896  c0 4266  ifcif 4469  𝒫 cpw 4543   ciun 4935  cmpt 5168   × cxp 5603  ccom 5609  wf 6459  cfv 6463  (class class class)co 7313  m cmap 8661  Xcixp 8731  Fincfn 8779  infcinf 9268  cr 10940  0cc0 10941  +∞cpnf 11076  *cxr 11078   < clt 11079  cn 12043  [,)cico 13151  [,]cicc 13152  cprod 15684  volcvol 24698  Σ^csumge0 44145  voln*covoln 44319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-rep 5222  ax-sep 5236  ax-nul 5243  ax-pow 5301  ax-pr 5365  ax-un 7626  ax-inf2 9467  ax-cnex 10997  ax-resscn 10998  ax-1cn 10999  ax-icn 11000  ax-addcl 11001  ax-addrcl 11002  ax-mulcl 11003  ax-mulrcl 11004  ax-mulcom 11005  ax-addass 11006  ax-mulass 11007  ax-distr 11008  ax-i2m1 11009  ax-1ne0 11010  ax-1rid 11011  ax-rnegex 11012  ax-rrecex 11013  ax-cnre 11014  ax-pre-lttri 11015  ax-pre-lttrn 11016  ax-pre-ltadd 11017  ax-pre-mulgt0 11018  ax-pre-sup 11019
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-pss 3915  df-nul 4267  df-if 4470  df-pw 4545  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4849  df-int 4891  df-iun 4937  df-br 5086  df-opab 5148  df-mpt 5169  df-tr 5203  df-id 5505  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5560  df-se 5561  df-we 5562  df-xp 5611  df-rel 5612  df-cnv 5613  df-co 5614  df-dm 5615  df-rn 5616  df-res 5617  df-ima 5618  df-pred 6222  df-ord 6289  df-on 6290  df-lim 6291  df-suc 6292  df-iota 6415  df-fun 6465  df-fn 6466  df-f 6467  df-f1 6468  df-fo 6469  df-f1o 6470  df-fv 6471  df-isom 6472  df-riota 7270  df-ov 7316  df-oprab 7317  df-mpo 7318  df-of 7571  df-om 7756  df-1st 7874  df-2nd 7875  df-frecs 8142  df-wrecs 8173  df-recs 8247  df-rdg 8286  df-1o 8342  df-2o 8343  df-er 8544  df-map 8663  df-pm 8664  df-ixp 8732  df-en 8780  df-dom 8781  df-sdom 8782  df-fin 8783  df-fi 9238  df-sup 9269  df-inf 9270  df-oi 9337  df-dju 9727  df-card 9765  df-pnf 11081  df-mnf 11082  df-xr 11083  df-ltxr 11084  df-le 11085  df-sub 11277  df-neg 11278  df-div 11703  df-nn 12044  df-2 12106  df-3 12107  df-n0 12304  df-z 12390  df-uz 12653  df-q 12759  df-rp 12801  df-xneg 12918  df-xadd 12919  df-xmul 12920  df-ioo 13153  df-ico 13155  df-icc 13156  df-fz 13310  df-fzo 13453  df-fl 13582  df-seq 13792  df-exp 13853  df-hash 14115  df-cj 14879  df-re 14880  df-im 14881  df-sqrt 15015  df-abs 15016  df-clim 15266  df-rlim 15267  df-sum 15467  df-prod 15685  df-rest 17200  df-topgen 17221  df-psmet 20660  df-xmet 20661  df-met 20662  df-bl 20663  df-mopn 20664  df-top 22114  df-topon 22131  df-bases 22167  df-cmp 22609  df-ovol 24699  df-vol 24700  df-sumge0 44146  df-ovoln 44320
This theorem is referenced by:  ovn0  44349  ovncl  44350  ovn02  44351  ovnome  44356  dmovn  44387  hspmbl  44412
  Copyright terms: Public domain W3C validator