![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ovolsf | Structured version Visualization version GIF version |
Description: Closure for the partial sums of the interval length function. (Contributed by Mario Carneiro, 16-Mar-2014.) |
Ref | Expression |
---|---|
ovolfs.1 | ⊢ 𝐺 = ((abs ∘ − ) ∘ 𝐹) |
ovolfs.2 | ⊢ 𝑆 = seq1( + , 𝐺) |
Ref | Expression |
---|---|
ovolsf | ⊢ (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝑆:ℕ⟶(0[,)+∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnuz 12093 | . . 3 ⊢ ℕ = (ℤ≥‘1) | |
2 | 1zzd 11824 | . . 3 ⊢ (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 1 ∈ ℤ) | |
3 | ovolfs.1 | . . . . 5 ⊢ 𝐺 = ((abs ∘ − ) ∘ 𝐹) | |
4 | 3 | ovolfsf 23787 | . . . 4 ⊢ (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝐺:ℕ⟶(0[,)+∞)) |
5 | 4 | ffvelrnda 6674 | . . 3 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → (𝐺‘𝑥) ∈ (0[,)+∞)) |
6 | ge0addcl 12662 | . . . 4 ⊢ ((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥 + 𝑦) ∈ (0[,)+∞)) | |
7 | 6 | adantl 474 | . . 3 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → (𝑥 + 𝑦) ∈ (0[,)+∞)) |
8 | 1, 2, 5, 7 | seqf 13204 | . 2 ⊢ (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → seq1( + , 𝐺):ℕ⟶(0[,)+∞)) |
9 | ovolfs.2 | . . 3 ⊢ 𝑆 = seq1( + , 𝐺) | |
10 | 9 | feq1i 6332 | . 2 ⊢ (𝑆:ℕ⟶(0[,)+∞) ↔ seq1( + , 𝐺):ℕ⟶(0[,)+∞)) |
11 | 8, 10 | sylibr 226 | 1 ⊢ (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝑆:ℕ⟶(0[,)+∞)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1507 ∈ wcel 2050 ∩ cin 3822 × cxp 5401 ∘ ccom 5407 ⟶wf 6181 (class class class)co 6974 ℝcr 10332 0cc0 10333 1c1 10334 + caddc 10336 +∞cpnf 10469 ≤ cle 10473 − cmin 10668 ℕcn 11437 [,)cico 12554 seqcseq 13182 abscabs 14452 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2744 ax-sep 5056 ax-nul 5063 ax-pow 5115 ax-pr 5182 ax-un 7277 ax-cnex 10389 ax-resscn 10390 ax-1cn 10391 ax-icn 10392 ax-addcl 10393 ax-addrcl 10394 ax-mulcl 10395 ax-mulrcl 10396 ax-mulcom 10397 ax-addass 10398 ax-mulass 10399 ax-distr 10400 ax-i2m1 10401 ax-1ne0 10402 ax-1rid 10403 ax-rnegex 10404 ax-rrecex 10405 ax-cnre 10406 ax-pre-lttri 10407 ax-pre-lttrn 10408 ax-pre-ltadd 10409 ax-pre-mulgt0 10410 ax-pre-sup 10411 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2753 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-nel 3068 df-ral 3087 df-rex 3088 df-reu 3089 df-rmo 3090 df-rab 3091 df-v 3411 df-sbc 3676 df-csb 3781 df-dif 3826 df-un 3828 df-in 3830 df-ss 3837 df-pss 3839 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4709 df-iun 4790 df-br 4926 df-opab 4988 df-mpt 5005 df-tr 5027 df-id 5308 df-eprel 5313 df-po 5322 df-so 5323 df-fr 5362 df-we 5364 df-xp 5409 df-rel 5410 df-cnv 5411 df-co 5412 df-dm 5413 df-rn 5414 df-res 5415 df-ima 5416 df-pred 5983 df-ord 6029 df-on 6030 df-lim 6031 df-suc 6032 df-iota 6149 df-fun 6187 df-fn 6188 df-f 6189 df-f1 6190 df-fo 6191 df-f1o 6192 df-fv 6193 df-riota 6935 df-ov 6977 df-oprab 6978 df-mpo 6979 df-om 7395 df-1st 7499 df-2nd 7500 df-wrecs 7748 df-recs 7810 df-rdg 7848 df-er 8087 df-en 8305 df-dom 8306 df-sdom 8307 df-sup 8699 df-pnf 10474 df-mnf 10475 df-xr 10476 df-ltxr 10477 df-le 10478 df-sub 10670 df-neg 10671 df-div 11097 df-nn 11438 df-2 11501 df-3 11502 df-n0 11706 df-z 11792 df-uz 12057 df-rp 12203 df-ico 12558 df-fz 12707 df-seq 13183 df-exp 13243 df-cj 14317 df-re 14318 df-im 14319 df-sqrt 14453 df-abs 14454 |
This theorem is referenced by: elovolm 23791 ovolmge0 23793 ovolgelb 23796 ovollb2lem 23804 ovollb2 23805 ovolunlem1a 23812 ovolunlem1 23813 ovoliunlem1 23818 ovoliunlem2 23819 ovolscalem1 23829 ovolicc1 23832 ovolicc2lem4 23836 ioombl1lem2 23875 ioombl1lem4 23877 uniioovol 23895 uniiccvol 23896 uniioombllem1 23897 uniioombllem2 23899 uniioombllem3 23901 uniioombllem6 23904 mblfinlem3 34401 mblfinlem4 34402 ismblfin 34403 |
Copyright terms: Public domain | W3C validator |