| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > raddswap12d | Structured version Visualization version GIF version | ||
| Description: Swap the first two
variables in an equation with addition on the right,
converting it into a subtraction. Version of mvrraddd 11641 with a commuted
consequent, and of mvlraddd 11639 with a commuted hypothesis.
EDITORIAL: The label for this theorem is questionable. Do not move until it would have 7 uses: current additional uses: (none). (Contributed by SN, 21-Aug-2024.) |
| Ref | Expression |
|---|---|
| raddswap12d.b | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| raddswap12d.c | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| raddswap12d.1 | ⊢ (𝜑 → 𝐴 = (𝐵 + 𝐶)) |
| Ref | Expression |
|---|---|
| raddswap12d | ⊢ (𝜑 → 𝐵 = (𝐴 − 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raddswap12d.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 2 | raddswap12d.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 3 | raddswap12d.1 | . . 3 ⊢ (𝜑 → 𝐴 = (𝐵 + 𝐶)) | |
| 4 | 1, 2, 3 | mvrraddd 11641 | . 2 ⊢ (𝜑 → (𝐴 − 𝐶) = 𝐵) |
| 5 | 4 | eqcomd 2740 | 1 ⊢ (𝜑 → 𝐵 = (𝐴 − 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 (class class class)co 7399 ℂcc 11119 + caddc 11124 − cmin 11458 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 ax-resscn 11178 ax-1cn 11179 ax-icn 11180 ax-addcl 11181 ax-addrcl 11182 ax-mulcl 11183 ax-mulrcl 11184 ax-mulcom 11185 ax-addass 11186 ax-mulass 11187 ax-distr 11188 ax-i2m1 11189 ax-1ne0 11190 ax-1rid 11191 ax-rnegex 11192 ax-rrecex 11193 ax-cnre 11194 ax-pre-lttri 11195 ax-pre-lttrn 11196 ax-pre-ltadd 11197 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-br 5117 df-opab 5179 df-mpt 5199 df-id 5545 df-po 5558 df-so 5559 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-riota 7356 df-ov 7402 df-oprab 7403 df-mpo 7404 df-er 8713 df-en 8954 df-dom 8955 df-sdom 8956 df-pnf 11263 df-mnf 11264 df-ltxr 11266 df-sub 11460 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |