Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rhmimasubrnglem Structured version   Visualization version   GIF version

Theorem rhmimasubrnglem 46734
Description: Lemma for rhmimasubrng 46735: Modified part of mhmima 18705. (Contributed by Mario Carneiro, 10-Mar-2015.) (Revised by AV, 16-Feb-2025.)
Hypothesis
Ref Expression
rhmimasubrnglem.b 𝑀 = (mulGrp‘𝑅)
Assertion
Ref Expression
rhmimasubrnglem ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubRng‘𝑅)) → ∀𝑥 ∈ (𝐹𝑋)∀𝑦 ∈ (𝐹𝑋)(𝑥(+g𝑁)𝑦) ∈ (𝐹𝑋))
Distinct variable groups:   𝑥,𝐹,𝑦   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝑥,𝑅   𝑥,𝑋,𝑦
Allowed substitution hint:   𝑅(𝑦)

Proof of Theorem rhmimasubrnglem
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simpll 765 . . . . . . . 8 (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubRng‘𝑅)) ∧ (𝑧𝑋𝑥𝑋)) → 𝐹 ∈ (𝑀 MndHom 𝑁))
2 eqid 2732 . . . . . . . . . . . . 13 (Base‘𝑅) = (Base‘𝑅)
32subrngss 46717 . . . . . . . . . . . 12 (𝑋 ∈ (SubRng‘𝑅) → 𝑋 ⊆ (Base‘𝑅))
4 rhmimasubrnglem.b . . . . . . . . . . . . 13 𝑀 = (mulGrp‘𝑅)
54, 2mgpbas 19992 . . . . . . . . . . . 12 (Base‘𝑅) = (Base‘𝑀)
63, 5sseqtrdi 4032 . . . . . . . . . . 11 (𝑋 ∈ (SubRng‘𝑅) → 𝑋 ⊆ (Base‘𝑀))
76adantl 482 . . . . . . . . . 10 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubRng‘𝑅)) → 𝑋 ⊆ (Base‘𝑀))
87adantr 481 . . . . . . . . 9 (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubRng‘𝑅)) ∧ (𝑧𝑋𝑥𝑋)) → 𝑋 ⊆ (Base‘𝑀))
9 simprl 769 . . . . . . . . 9 (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubRng‘𝑅)) ∧ (𝑧𝑋𝑥𝑋)) → 𝑧𝑋)
108, 9sseldd 3983 . . . . . . . 8 (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubRng‘𝑅)) ∧ (𝑧𝑋𝑥𝑋)) → 𝑧 ∈ (Base‘𝑀))
11 simprr 771 . . . . . . . . 9 (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubRng‘𝑅)) ∧ (𝑧𝑋𝑥𝑋)) → 𝑥𝑋)
128, 11sseldd 3983 . . . . . . . 8 (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubRng‘𝑅)) ∧ (𝑧𝑋𝑥𝑋)) → 𝑥 ∈ (Base‘𝑀))
13 eqid 2732 . . . . . . . . 9 (Base‘𝑀) = (Base‘𝑀)
14 eqid 2732 . . . . . . . . 9 (+g𝑀) = (+g𝑀)
15 eqid 2732 . . . . . . . . 9 (+g𝑁) = (+g𝑁)
1613, 14, 15mhmlin 18678 . . . . . . . 8 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑧 ∈ (Base‘𝑀) ∧ 𝑥 ∈ (Base‘𝑀)) → (𝐹‘(𝑧(+g𝑀)𝑥)) = ((𝐹𝑧)(+g𝑁)(𝐹𝑥)))
171, 10, 12, 16syl3anc 1371 . . . . . . 7 (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubRng‘𝑅)) ∧ (𝑧𝑋𝑥𝑋)) → (𝐹‘(𝑧(+g𝑀)𝑥)) = ((𝐹𝑧)(+g𝑁)(𝐹𝑥)))
18 eqid 2732 . . . . . . . . . . . 12 (Base‘𝑁) = (Base‘𝑁)
1913, 18mhmf 18676 . . . . . . . . . . 11 (𝐹 ∈ (𝑀 MndHom 𝑁) → 𝐹:(Base‘𝑀)⟶(Base‘𝑁))
2019adantr 481 . . . . . . . . . 10 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubRng‘𝑅)) → 𝐹:(Base‘𝑀)⟶(Base‘𝑁))
2120ffnd 6718 . . . . . . . . 9 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubRng‘𝑅)) → 𝐹 Fn (Base‘𝑀))
2221adantr 481 . . . . . . . 8 (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubRng‘𝑅)) ∧ (𝑧𝑋𝑥𝑋)) → 𝐹 Fn (Base‘𝑀))
23 eqid 2732 . . . . . . . . . . . . 13 (.r𝑅) = (.r𝑅)
244, 23mgpplusg 19990 . . . . . . . . . . . 12 (.r𝑅) = (+g𝑀)
2524eqcomi 2741 . . . . . . . . . . 11 (+g𝑀) = (.r𝑅)
2625subrngmcl 46726 . . . . . . . . . 10 ((𝑋 ∈ (SubRng‘𝑅) ∧ 𝑧𝑋𝑥𝑋) → (𝑧(+g𝑀)𝑥) ∈ 𝑋)
27263expb 1120 . . . . . . . . 9 ((𝑋 ∈ (SubRng‘𝑅) ∧ (𝑧𝑋𝑥𝑋)) → (𝑧(+g𝑀)𝑥) ∈ 𝑋)
2827adantll 712 . . . . . . . 8 (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubRng‘𝑅)) ∧ (𝑧𝑋𝑥𝑋)) → (𝑧(+g𝑀)𝑥) ∈ 𝑋)
29 fnfvima 7234 . . . . . . . 8 ((𝐹 Fn (Base‘𝑀) ∧ 𝑋 ⊆ (Base‘𝑀) ∧ (𝑧(+g𝑀)𝑥) ∈ 𝑋) → (𝐹‘(𝑧(+g𝑀)𝑥)) ∈ (𝐹𝑋))
3022, 8, 28, 29syl3anc 1371 . . . . . . 7 (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubRng‘𝑅)) ∧ (𝑧𝑋𝑥𝑋)) → (𝐹‘(𝑧(+g𝑀)𝑥)) ∈ (𝐹𝑋))
3117, 30eqeltrrd 2834 . . . . . 6 (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubRng‘𝑅)) ∧ (𝑧𝑋𝑥𝑋)) → ((𝐹𝑧)(+g𝑁)(𝐹𝑥)) ∈ (𝐹𝑋))
3231anassrs 468 . . . . 5 ((((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubRng‘𝑅)) ∧ 𝑧𝑋) ∧ 𝑥𝑋) → ((𝐹𝑧)(+g𝑁)(𝐹𝑥)) ∈ (𝐹𝑋))
3332ralrimiva 3146 . . . 4 (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubRng‘𝑅)) ∧ 𝑧𝑋) → ∀𝑥𝑋 ((𝐹𝑧)(+g𝑁)(𝐹𝑥)) ∈ (𝐹𝑋))
34 oveq2 7416 . . . . . . . 8 (𝑦 = (𝐹𝑥) → ((𝐹𝑧)(+g𝑁)𝑦) = ((𝐹𝑧)(+g𝑁)(𝐹𝑥)))
3534eleq1d 2818 . . . . . . 7 (𝑦 = (𝐹𝑥) → (((𝐹𝑧)(+g𝑁)𝑦) ∈ (𝐹𝑋) ↔ ((𝐹𝑧)(+g𝑁)(𝐹𝑥)) ∈ (𝐹𝑋)))
3635ralima 7239 . . . . . 6 ((𝐹 Fn (Base‘𝑀) ∧ 𝑋 ⊆ (Base‘𝑀)) → (∀𝑦 ∈ (𝐹𝑋)((𝐹𝑧)(+g𝑁)𝑦) ∈ (𝐹𝑋) ↔ ∀𝑥𝑋 ((𝐹𝑧)(+g𝑁)(𝐹𝑥)) ∈ (𝐹𝑋)))
3721, 7, 36syl2anc 584 . . . . 5 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubRng‘𝑅)) → (∀𝑦 ∈ (𝐹𝑋)((𝐹𝑧)(+g𝑁)𝑦) ∈ (𝐹𝑋) ↔ ∀𝑥𝑋 ((𝐹𝑧)(+g𝑁)(𝐹𝑥)) ∈ (𝐹𝑋)))
3837adantr 481 . . . 4 (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubRng‘𝑅)) ∧ 𝑧𝑋) → (∀𝑦 ∈ (𝐹𝑋)((𝐹𝑧)(+g𝑁)𝑦) ∈ (𝐹𝑋) ↔ ∀𝑥𝑋 ((𝐹𝑧)(+g𝑁)(𝐹𝑥)) ∈ (𝐹𝑋)))
3933, 38mpbird 256 . . 3 (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubRng‘𝑅)) ∧ 𝑧𝑋) → ∀𝑦 ∈ (𝐹𝑋)((𝐹𝑧)(+g𝑁)𝑦) ∈ (𝐹𝑋))
4039ralrimiva 3146 . 2 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubRng‘𝑅)) → ∀𝑧𝑋𝑦 ∈ (𝐹𝑋)((𝐹𝑧)(+g𝑁)𝑦) ∈ (𝐹𝑋))
41 oveq1 7415 . . . . . 6 (𝑥 = (𝐹𝑧) → (𝑥(+g𝑁)𝑦) = ((𝐹𝑧)(+g𝑁)𝑦))
4241eleq1d 2818 . . . . 5 (𝑥 = (𝐹𝑧) → ((𝑥(+g𝑁)𝑦) ∈ (𝐹𝑋) ↔ ((𝐹𝑧)(+g𝑁)𝑦) ∈ (𝐹𝑋)))
4342ralbidv 3177 . . . 4 (𝑥 = (𝐹𝑧) → (∀𝑦 ∈ (𝐹𝑋)(𝑥(+g𝑁)𝑦) ∈ (𝐹𝑋) ↔ ∀𝑦 ∈ (𝐹𝑋)((𝐹𝑧)(+g𝑁)𝑦) ∈ (𝐹𝑋)))
4443ralima 7239 . . 3 ((𝐹 Fn (Base‘𝑀) ∧ 𝑋 ⊆ (Base‘𝑀)) → (∀𝑥 ∈ (𝐹𝑋)∀𝑦 ∈ (𝐹𝑋)(𝑥(+g𝑁)𝑦) ∈ (𝐹𝑋) ↔ ∀𝑧𝑋𝑦 ∈ (𝐹𝑋)((𝐹𝑧)(+g𝑁)𝑦) ∈ (𝐹𝑋)))
4521, 7, 44syl2anc 584 . 2 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubRng‘𝑅)) → (∀𝑥 ∈ (𝐹𝑋)∀𝑦 ∈ (𝐹𝑋)(𝑥(+g𝑁)𝑦) ∈ (𝐹𝑋) ↔ ∀𝑧𝑋𝑦 ∈ (𝐹𝑋)((𝐹𝑧)(+g𝑁)𝑦) ∈ (𝐹𝑋)))
4640, 45mpbird 256 1 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubRng‘𝑅)) → ∀𝑥 ∈ (𝐹𝑋)∀𝑦 ∈ (𝐹𝑋)(𝑥(+g𝑁)𝑦) ∈ (𝐹𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3061  wss 3948  cima 5679   Fn wfn 6538  wf 6539  cfv 6543  (class class class)co 7408  Basecbs 17143  +gcplusg 17196  .rcmulr 17197   MndHom cmhm 18668  mulGrpcmgp 19986  SubRngcsubrng 46714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-er 8702  df-map 8821  df-en 8939  df-dom 8940  df-sdom 8941  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-2 12274  df-3 12275  df-sets 17096  df-slot 17114  df-ndx 17126  df-base 17144  df-ress 17173  df-plusg 17209  df-mulr 17210  df-mgm 18560  df-sgrp 18609  df-mhm 18670  df-subg 19002  df-abl 19650  df-mgp 19987  df-rng 46639  df-subrng 46715
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator