Step | Hyp | Ref
| Expression |
1 | | simpll 765 |
. . . . . . . 8
⊢ (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubRng‘𝑅)) ∧ (𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋)) → 𝐹 ∈ (𝑀 MndHom 𝑁)) |
2 | | eqid 2732 |
. . . . . . . . . . . . 13
⊢
(Base‘𝑅) =
(Base‘𝑅) |
3 | 2 | subrngss 46717 |
. . . . . . . . . . . 12
⊢ (𝑋 ∈ (SubRng‘𝑅) → 𝑋 ⊆ (Base‘𝑅)) |
4 | | rhmimasubrnglem.b |
. . . . . . . . . . . . 13
⊢ 𝑀 = (mulGrp‘𝑅) |
5 | 4, 2 | mgpbas 19992 |
. . . . . . . . . . . 12
⊢
(Base‘𝑅) =
(Base‘𝑀) |
6 | 3, 5 | sseqtrdi 4032 |
. . . . . . . . . . 11
⊢ (𝑋 ∈ (SubRng‘𝑅) → 𝑋 ⊆ (Base‘𝑀)) |
7 | 6 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubRng‘𝑅)) → 𝑋 ⊆ (Base‘𝑀)) |
8 | 7 | adantr 481 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubRng‘𝑅)) ∧ (𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋)) → 𝑋 ⊆ (Base‘𝑀)) |
9 | | simprl 769 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubRng‘𝑅)) ∧ (𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋)) → 𝑧 ∈ 𝑋) |
10 | 8, 9 | sseldd 3983 |
. . . . . . . 8
⊢ (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubRng‘𝑅)) ∧ (𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋)) → 𝑧 ∈ (Base‘𝑀)) |
11 | | simprr 771 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubRng‘𝑅)) ∧ (𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋)) → 𝑥 ∈ 𝑋) |
12 | 8, 11 | sseldd 3983 |
. . . . . . . 8
⊢ (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubRng‘𝑅)) ∧ (𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋)) → 𝑥 ∈ (Base‘𝑀)) |
13 | | eqid 2732 |
. . . . . . . . 9
⊢
(Base‘𝑀) =
(Base‘𝑀) |
14 | | eqid 2732 |
. . . . . . . . 9
⊢
(+g‘𝑀) = (+g‘𝑀) |
15 | | eqid 2732 |
. . . . . . . . 9
⊢
(+g‘𝑁) = (+g‘𝑁) |
16 | 13, 14, 15 | mhmlin 18678 |
. . . . . . . 8
⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑧 ∈ (Base‘𝑀) ∧ 𝑥 ∈ (Base‘𝑀)) → (𝐹‘(𝑧(+g‘𝑀)𝑥)) = ((𝐹‘𝑧)(+g‘𝑁)(𝐹‘𝑥))) |
17 | 1, 10, 12, 16 | syl3anc 1371 |
. . . . . . 7
⊢ (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubRng‘𝑅)) ∧ (𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋)) → (𝐹‘(𝑧(+g‘𝑀)𝑥)) = ((𝐹‘𝑧)(+g‘𝑁)(𝐹‘𝑥))) |
18 | | eqid 2732 |
. . . . . . . . . . . 12
⊢
(Base‘𝑁) =
(Base‘𝑁) |
19 | 13, 18 | mhmf 18676 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ (𝑀 MndHom 𝑁) → 𝐹:(Base‘𝑀)⟶(Base‘𝑁)) |
20 | 19 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubRng‘𝑅)) → 𝐹:(Base‘𝑀)⟶(Base‘𝑁)) |
21 | 20 | ffnd 6718 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubRng‘𝑅)) → 𝐹 Fn (Base‘𝑀)) |
22 | 21 | adantr 481 |
. . . . . . . 8
⊢ (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubRng‘𝑅)) ∧ (𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋)) → 𝐹 Fn (Base‘𝑀)) |
23 | | eqid 2732 |
. . . . . . . . . . . . 13
⊢
(.r‘𝑅) = (.r‘𝑅) |
24 | 4, 23 | mgpplusg 19990 |
. . . . . . . . . . . 12
⊢
(.r‘𝑅) = (+g‘𝑀) |
25 | 24 | eqcomi 2741 |
. . . . . . . . . . 11
⊢
(+g‘𝑀) = (.r‘𝑅) |
26 | 25 | subrngmcl 46726 |
. . . . . . . . . 10
⊢ ((𝑋 ∈ (SubRng‘𝑅) ∧ 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋) → (𝑧(+g‘𝑀)𝑥) ∈ 𝑋) |
27 | 26 | 3expb 1120 |
. . . . . . . . 9
⊢ ((𝑋 ∈ (SubRng‘𝑅) ∧ (𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋)) → (𝑧(+g‘𝑀)𝑥) ∈ 𝑋) |
28 | 27 | adantll 712 |
. . . . . . . 8
⊢ (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubRng‘𝑅)) ∧ (𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋)) → (𝑧(+g‘𝑀)𝑥) ∈ 𝑋) |
29 | | fnfvima 7234 |
. . . . . . . 8
⊢ ((𝐹 Fn (Base‘𝑀) ∧ 𝑋 ⊆ (Base‘𝑀) ∧ (𝑧(+g‘𝑀)𝑥) ∈ 𝑋) → (𝐹‘(𝑧(+g‘𝑀)𝑥)) ∈ (𝐹 “ 𝑋)) |
30 | 22, 8, 28, 29 | syl3anc 1371 |
. . . . . . 7
⊢ (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubRng‘𝑅)) ∧ (𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋)) → (𝐹‘(𝑧(+g‘𝑀)𝑥)) ∈ (𝐹 “ 𝑋)) |
31 | 17, 30 | eqeltrrd 2834 |
. . . . . 6
⊢ (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubRng‘𝑅)) ∧ (𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋)) → ((𝐹‘𝑧)(+g‘𝑁)(𝐹‘𝑥)) ∈ (𝐹 “ 𝑋)) |
32 | 31 | anassrs 468 |
. . . . 5
⊢ ((((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubRng‘𝑅)) ∧ 𝑧 ∈ 𝑋) ∧ 𝑥 ∈ 𝑋) → ((𝐹‘𝑧)(+g‘𝑁)(𝐹‘𝑥)) ∈ (𝐹 “ 𝑋)) |
33 | 32 | ralrimiva 3146 |
. . . 4
⊢ (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubRng‘𝑅)) ∧ 𝑧 ∈ 𝑋) → ∀𝑥 ∈ 𝑋 ((𝐹‘𝑧)(+g‘𝑁)(𝐹‘𝑥)) ∈ (𝐹 “ 𝑋)) |
34 | | oveq2 7416 |
. . . . . . . 8
⊢ (𝑦 = (𝐹‘𝑥) → ((𝐹‘𝑧)(+g‘𝑁)𝑦) = ((𝐹‘𝑧)(+g‘𝑁)(𝐹‘𝑥))) |
35 | 34 | eleq1d 2818 |
. . . . . . 7
⊢ (𝑦 = (𝐹‘𝑥) → (((𝐹‘𝑧)(+g‘𝑁)𝑦) ∈ (𝐹 “ 𝑋) ↔ ((𝐹‘𝑧)(+g‘𝑁)(𝐹‘𝑥)) ∈ (𝐹 “ 𝑋))) |
36 | 35 | ralima 7239 |
. . . . . 6
⊢ ((𝐹 Fn (Base‘𝑀) ∧ 𝑋 ⊆ (Base‘𝑀)) → (∀𝑦 ∈ (𝐹 “ 𝑋)((𝐹‘𝑧)(+g‘𝑁)𝑦) ∈ (𝐹 “ 𝑋) ↔ ∀𝑥 ∈ 𝑋 ((𝐹‘𝑧)(+g‘𝑁)(𝐹‘𝑥)) ∈ (𝐹 “ 𝑋))) |
37 | 21, 7, 36 | syl2anc 584 |
. . . . 5
⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubRng‘𝑅)) → (∀𝑦 ∈ (𝐹 “ 𝑋)((𝐹‘𝑧)(+g‘𝑁)𝑦) ∈ (𝐹 “ 𝑋) ↔ ∀𝑥 ∈ 𝑋 ((𝐹‘𝑧)(+g‘𝑁)(𝐹‘𝑥)) ∈ (𝐹 “ 𝑋))) |
38 | 37 | adantr 481 |
. . . 4
⊢ (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubRng‘𝑅)) ∧ 𝑧 ∈ 𝑋) → (∀𝑦 ∈ (𝐹 “ 𝑋)((𝐹‘𝑧)(+g‘𝑁)𝑦) ∈ (𝐹 “ 𝑋) ↔ ∀𝑥 ∈ 𝑋 ((𝐹‘𝑧)(+g‘𝑁)(𝐹‘𝑥)) ∈ (𝐹 “ 𝑋))) |
39 | 33, 38 | mpbird 256 |
. . 3
⊢ (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubRng‘𝑅)) ∧ 𝑧 ∈ 𝑋) → ∀𝑦 ∈ (𝐹 “ 𝑋)((𝐹‘𝑧)(+g‘𝑁)𝑦) ∈ (𝐹 “ 𝑋)) |
40 | 39 | ralrimiva 3146 |
. 2
⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubRng‘𝑅)) → ∀𝑧 ∈ 𝑋 ∀𝑦 ∈ (𝐹 “ 𝑋)((𝐹‘𝑧)(+g‘𝑁)𝑦) ∈ (𝐹 “ 𝑋)) |
41 | | oveq1 7415 |
. . . . . 6
⊢ (𝑥 = (𝐹‘𝑧) → (𝑥(+g‘𝑁)𝑦) = ((𝐹‘𝑧)(+g‘𝑁)𝑦)) |
42 | 41 | eleq1d 2818 |
. . . . 5
⊢ (𝑥 = (𝐹‘𝑧) → ((𝑥(+g‘𝑁)𝑦) ∈ (𝐹 “ 𝑋) ↔ ((𝐹‘𝑧)(+g‘𝑁)𝑦) ∈ (𝐹 “ 𝑋))) |
43 | 42 | ralbidv 3177 |
. . . 4
⊢ (𝑥 = (𝐹‘𝑧) → (∀𝑦 ∈ (𝐹 “ 𝑋)(𝑥(+g‘𝑁)𝑦) ∈ (𝐹 “ 𝑋) ↔ ∀𝑦 ∈ (𝐹 “ 𝑋)((𝐹‘𝑧)(+g‘𝑁)𝑦) ∈ (𝐹 “ 𝑋))) |
44 | 43 | ralima 7239 |
. . 3
⊢ ((𝐹 Fn (Base‘𝑀) ∧ 𝑋 ⊆ (Base‘𝑀)) → (∀𝑥 ∈ (𝐹 “ 𝑋)∀𝑦 ∈ (𝐹 “ 𝑋)(𝑥(+g‘𝑁)𝑦) ∈ (𝐹 “ 𝑋) ↔ ∀𝑧 ∈ 𝑋 ∀𝑦 ∈ (𝐹 “ 𝑋)((𝐹‘𝑧)(+g‘𝑁)𝑦) ∈ (𝐹 “ 𝑋))) |
45 | 21, 7, 44 | syl2anc 584 |
. 2
⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubRng‘𝑅)) → (∀𝑥 ∈ (𝐹 “ 𝑋)∀𝑦 ∈ (𝐹 “ 𝑋)(𝑥(+g‘𝑁)𝑦) ∈ (𝐹 “ 𝑋) ↔ ∀𝑧 ∈ 𝑋 ∀𝑦 ∈ (𝐹 “ 𝑋)((𝐹‘𝑧)(+g‘𝑁)𝑦) ∈ (𝐹 “ 𝑋))) |
46 | 40, 45 | mpbird 256 |
1
⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubRng‘𝑅)) → ∀𝑥 ∈ (𝐹 “ 𝑋)∀𝑦 ∈ (𝐹 “ 𝑋)(𝑥(+g‘𝑁)𝑦) ∈ (𝐹 “ 𝑋)) |