MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rhmimasubrnglem Structured version   Visualization version   GIF version

Theorem rhmimasubrnglem 20491
Description: Lemma for rhmimasubrng 20492: Modified part of mhmima 18768. (Contributed by Mario Carneiro, 10-Mar-2015.) (Revised by AV, 16-Feb-2025.)
Hypothesis
Ref Expression
rhmimasubrnglem.b 𝑀 = (mulGrp‘𝑅)
Assertion
Ref Expression
rhmimasubrnglem ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubRng‘𝑅)) → ∀𝑥 ∈ (𝐹𝑋)∀𝑦 ∈ (𝐹𝑋)(𝑥(+g𝑁)𝑦) ∈ (𝐹𝑋))
Distinct variable groups:   𝑥,𝐹,𝑦   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝑥,𝑅   𝑥,𝑋,𝑦
Allowed substitution hint:   𝑅(𝑦)

Proof of Theorem rhmimasubrnglem
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simpll 766 . . . . . . . 8 (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubRng‘𝑅)) ∧ (𝑧𝑋𝑥𝑋)) → 𝐹 ∈ (𝑀 MndHom 𝑁))
2 eqid 2727 . . . . . . . . . . . . 13 (Base‘𝑅) = (Base‘𝑅)
32subrngss 20474 . . . . . . . . . . . 12 (𝑋 ∈ (SubRng‘𝑅) → 𝑋 ⊆ (Base‘𝑅))
4 rhmimasubrnglem.b . . . . . . . . . . . . 13 𝑀 = (mulGrp‘𝑅)
54, 2mgpbas 20071 . . . . . . . . . . . 12 (Base‘𝑅) = (Base‘𝑀)
63, 5sseqtrdi 4028 . . . . . . . . . . 11 (𝑋 ∈ (SubRng‘𝑅) → 𝑋 ⊆ (Base‘𝑀))
76adantl 481 . . . . . . . . . 10 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubRng‘𝑅)) → 𝑋 ⊆ (Base‘𝑀))
87adantr 480 . . . . . . . . 9 (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubRng‘𝑅)) ∧ (𝑧𝑋𝑥𝑋)) → 𝑋 ⊆ (Base‘𝑀))
9 simprl 770 . . . . . . . . 9 (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubRng‘𝑅)) ∧ (𝑧𝑋𝑥𝑋)) → 𝑧𝑋)
108, 9sseldd 3979 . . . . . . . 8 (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubRng‘𝑅)) ∧ (𝑧𝑋𝑥𝑋)) → 𝑧 ∈ (Base‘𝑀))
11 simprr 772 . . . . . . . . 9 (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubRng‘𝑅)) ∧ (𝑧𝑋𝑥𝑋)) → 𝑥𝑋)
128, 11sseldd 3979 . . . . . . . 8 (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubRng‘𝑅)) ∧ (𝑧𝑋𝑥𝑋)) → 𝑥 ∈ (Base‘𝑀))
13 eqid 2727 . . . . . . . . 9 (Base‘𝑀) = (Base‘𝑀)
14 eqid 2727 . . . . . . . . 9 (+g𝑀) = (+g𝑀)
15 eqid 2727 . . . . . . . . 9 (+g𝑁) = (+g𝑁)
1613, 14, 15mhmlin 18741 . . . . . . . 8 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑧 ∈ (Base‘𝑀) ∧ 𝑥 ∈ (Base‘𝑀)) → (𝐹‘(𝑧(+g𝑀)𝑥)) = ((𝐹𝑧)(+g𝑁)(𝐹𝑥)))
171, 10, 12, 16syl3anc 1369 . . . . . . 7 (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubRng‘𝑅)) ∧ (𝑧𝑋𝑥𝑋)) → (𝐹‘(𝑧(+g𝑀)𝑥)) = ((𝐹𝑧)(+g𝑁)(𝐹𝑥)))
18 eqid 2727 . . . . . . . . . . . 12 (Base‘𝑁) = (Base‘𝑁)
1913, 18mhmf 18737 . . . . . . . . . . 11 (𝐹 ∈ (𝑀 MndHom 𝑁) → 𝐹:(Base‘𝑀)⟶(Base‘𝑁))
2019adantr 480 . . . . . . . . . 10 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubRng‘𝑅)) → 𝐹:(Base‘𝑀)⟶(Base‘𝑁))
2120ffnd 6717 . . . . . . . . 9 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubRng‘𝑅)) → 𝐹 Fn (Base‘𝑀))
2221adantr 480 . . . . . . . 8 (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubRng‘𝑅)) ∧ (𝑧𝑋𝑥𝑋)) → 𝐹 Fn (Base‘𝑀))
23 eqid 2727 . . . . . . . . . . . . 13 (.r𝑅) = (.r𝑅)
244, 23mgpplusg 20069 . . . . . . . . . . . 12 (.r𝑅) = (+g𝑀)
2524eqcomi 2736 . . . . . . . . . . 11 (+g𝑀) = (.r𝑅)
2625subrngmcl 20483 . . . . . . . . . 10 ((𝑋 ∈ (SubRng‘𝑅) ∧ 𝑧𝑋𝑥𝑋) → (𝑧(+g𝑀)𝑥) ∈ 𝑋)
27263expb 1118 . . . . . . . . 9 ((𝑋 ∈ (SubRng‘𝑅) ∧ (𝑧𝑋𝑥𝑋)) → (𝑧(+g𝑀)𝑥) ∈ 𝑋)
2827adantll 713 . . . . . . . 8 (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubRng‘𝑅)) ∧ (𝑧𝑋𝑥𝑋)) → (𝑧(+g𝑀)𝑥) ∈ 𝑋)
29 fnfvima 7239 . . . . . . . 8 ((𝐹 Fn (Base‘𝑀) ∧ 𝑋 ⊆ (Base‘𝑀) ∧ (𝑧(+g𝑀)𝑥) ∈ 𝑋) → (𝐹‘(𝑧(+g𝑀)𝑥)) ∈ (𝐹𝑋))
3022, 8, 28, 29syl3anc 1369 . . . . . . 7 (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubRng‘𝑅)) ∧ (𝑧𝑋𝑥𝑋)) → (𝐹‘(𝑧(+g𝑀)𝑥)) ∈ (𝐹𝑋))
3117, 30eqeltrrd 2829 . . . . . 6 (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubRng‘𝑅)) ∧ (𝑧𝑋𝑥𝑋)) → ((𝐹𝑧)(+g𝑁)(𝐹𝑥)) ∈ (𝐹𝑋))
3231anassrs 467 . . . . 5 ((((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubRng‘𝑅)) ∧ 𝑧𝑋) ∧ 𝑥𝑋) → ((𝐹𝑧)(+g𝑁)(𝐹𝑥)) ∈ (𝐹𝑋))
3332ralrimiva 3141 . . . 4 (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubRng‘𝑅)) ∧ 𝑧𝑋) → ∀𝑥𝑋 ((𝐹𝑧)(+g𝑁)(𝐹𝑥)) ∈ (𝐹𝑋))
34 oveq2 7422 . . . . . . . 8 (𝑦 = (𝐹𝑥) → ((𝐹𝑧)(+g𝑁)𝑦) = ((𝐹𝑧)(+g𝑁)(𝐹𝑥)))
3534eleq1d 2813 . . . . . . 7 (𝑦 = (𝐹𝑥) → (((𝐹𝑧)(+g𝑁)𝑦) ∈ (𝐹𝑋) ↔ ((𝐹𝑧)(+g𝑁)(𝐹𝑥)) ∈ (𝐹𝑋)))
3635ralima 7244 . . . . . 6 ((𝐹 Fn (Base‘𝑀) ∧ 𝑋 ⊆ (Base‘𝑀)) → (∀𝑦 ∈ (𝐹𝑋)((𝐹𝑧)(+g𝑁)𝑦) ∈ (𝐹𝑋) ↔ ∀𝑥𝑋 ((𝐹𝑧)(+g𝑁)(𝐹𝑥)) ∈ (𝐹𝑋)))
3721, 7, 36syl2anc 583 . . . . 5 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubRng‘𝑅)) → (∀𝑦 ∈ (𝐹𝑋)((𝐹𝑧)(+g𝑁)𝑦) ∈ (𝐹𝑋) ↔ ∀𝑥𝑋 ((𝐹𝑧)(+g𝑁)(𝐹𝑥)) ∈ (𝐹𝑋)))
3837adantr 480 . . . 4 (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubRng‘𝑅)) ∧ 𝑧𝑋) → (∀𝑦 ∈ (𝐹𝑋)((𝐹𝑧)(+g𝑁)𝑦) ∈ (𝐹𝑋) ↔ ∀𝑥𝑋 ((𝐹𝑧)(+g𝑁)(𝐹𝑥)) ∈ (𝐹𝑋)))
3933, 38mpbird 257 . . 3 (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubRng‘𝑅)) ∧ 𝑧𝑋) → ∀𝑦 ∈ (𝐹𝑋)((𝐹𝑧)(+g𝑁)𝑦) ∈ (𝐹𝑋))
4039ralrimiva 3141 . 2 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubRng‘𝑅)) → ∀𝑧𝑋𝑦 ∈ (𝐹𝑋)((𝐹𝑧)(+g𝑁)𝑦) ∈ (𝐹𝑋))
41 oveq1 7421 . . . . . 6 (𝑥 = (𝐹𝑧) → (𝑥(+g𝑁)𝑦) = ((𝐹𝑧)(+g𝑁)𝑦))
4241eleq1d 2813 . . . . 5 (𝑥 = (𝐹𝑧) → ((𝑥(+g𝑁)𝑦) ∈ (𝐹𝑋) ↔ ((𝐹𝑧)(+g𝑁)𝑦) ∈ (𝐹𝑋)))
4342ralbidv 3172 . . . 4 (𝑥 = (𝐹𝑧) → (∀𝑦 ∈ (𝐹𝑋)(𝑥(+g𝑁)𝑦) ∈ (𝐹𝑋) ↔ ∀𝑦 ∈ (𝐹𝑋)((𝐹𝑧)(+g𝑁)𝑦) ∈ (𝐹𝑋)))
4443ralima 7244 . . 3 ((𝐹 Fn (Base‘𝑀) ∧ 𝑋 ⊆ (Base‘𝑀)) → (∀𝑥 ∈ (𝐹𝑋)∀𝑦 ∈ (𝐹𝑋)(𝑥(+g𝑁)𝑦) ∈ (𝐹𝑋) ↔ ∀𝑧𝑋𝑦 ∈ (𝐹𝑋)((𝐹𝑧)(+g𝑁)𝑦) ∈ (𝐹𝑋)))
4521, 7, 44syl2anc 583 . 2 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubRng‘𝑅)) → (∀𝑥 ∈ (𝐹𝑋)∀𝑦 ∈ (𝐹𝑋)(𝑥(+g𝑁)𝑦) ∈ (𝐹𝑋) ↔ ∀𝑧𝑋𝑦 ∈ (𝐹𝑋)((𝐹𝑧)(+g𝑁)𝑦) ∈ (𝐹𝑋)))
4640, 45mpbird 257 1 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubRng‘𝑅)) → ∀𝑥 ∈ (𝐹𝑋)∀𝑦 ∈ (𝐹𝑋)(𝑥(+g𝑁)𝑦) ∈ (𝐹𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wcel 2099  wral 3056  wss 3944  cima 5675   Fn wfn 6537  wf 6538  cfv 6542  (class class class)co 7414  Basecbs 17171  +gcplusg 17224  .rcmulr 17225   MndHom cmhm 18729  mulGrpcmgp 20065  SubRngcsubrng 20471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206  ax-pre-mulgt0 11207
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8718  df-map 8838  df-en 8956  df-dom 8957  df-sdom 8958  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-nn 12235  df-2 12297  df-3 12298  df-sets 17124  df-slot 17142  df-ndx 17154  df-base 17172  df-ress 17201  df-plusg 17237  df-mulr 17238  df-mgm 18591  df-sgrp 18670  df-mhm 18731  df-subg 19069  df-abl 19729  df-mgp 20066  df-rng 20084  df-subrng 20472
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator