HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  dmdbr4 Structured version   Visualization version   GIF version

Theorem dmdbr4 32278
Description: Binary relation expressing the dual modular pair property. This version quantifies an ordering instead of an inference. (Contributed by NM, 6-Jul-2004.) (New usage is discouraged.)
Assertion
Ref Expression
dmdbr4 ((𝐴C𝐵C ) → (𝐴 𝑀* 𝐵 ↔ ∀𝑥C ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem dmdbr4
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dmdbr2 32275 . 2 ((𝐴C𝐵C ) → (𝐴 𝑀* 𝐵 ↔ ∀𝑦C (𝐵𝑦 → (𝑦 ∩ (𝐴 𝐵)) ⊆ ((𝑦𝐴) ∨ 𝐵))))
2 chub2 31480 . . . . . . . . 9 ((𝐵C𝑥C ) → 𝐵 ⊆ (𝑥 𝐵))
32ancoms 458 . . . . . . . 8 ((𝑥C𝐵C ) → 𝐵 ⊆ (𝑥 𝐵))
4 chjcl 31329 . . . . . . . . 9 ((𝑥C𝐵C ) → (𝑥 𝐵) ∈ C )
5 sseq2 3956 . . . . . . . . . . 11 (𝑦 = (𝑥 𝐵) → (𝐵𝑦𝐵 ⊆ (𝑥 𝐵)))
6 ineq1 4158 . . . . . . . . . . . 12 (𝑦 = (𝑥 𝐵) → (𝑦 ∩ (𝐴 𝐵)) = ((𝑥 𝐵) ∩ (𝐴 𝐵)))
7 ineq1 4158 . . . . . . . . . . . . 13 (𝑦 = (𝑥 𝐵) → (𝑦𝐴) = ((𝑥 𝐵) ∩ 𝐴))
87oveq1d 7356 . . . . . . . . . . . 12 (𝑦 = (𝑥 𝐵) → ((𝑦𝐴) ∨ 𝐵) = (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵))
96, 8sseq12d 3963 . . . . . . . . . . 11 (𝑦 = (𝑥 𝐵) → ((𝑦 ∩ (𝐴 𝐵)) ⊆ ((𝑦𝐴) ∨ 𝐵) ↔ ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵)))
105, 9imbi12d 344 . . . . . . . . . 10 (𝑦 = (𝑥 𝐵) → ((𝐵𝑦 → (𝑦 ∩ (𝐴 𝐵)) ⊆ ((𝑦𝐴) ∨ 𝐵)) ↔ (𝐵 ⊆ (𝑥 𝐵) → ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵))))
1110rspcv 3568 . . . . . . . . 9 ((𝑥 𝐵) ∈ C → (∀𝑦C (𝐵𝑦 → (𝑦 ∩ (𝐴 𝐵)) ⊆ ((𝑦𝐴) ∨ 𝐵)) → (𝐵 ⊆ (𝑥 𝐵) → ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵))))
124, 11syl 17 . . . . . . . 8 ((𝑥C𝐵C ) → (∀𝑦C (𝐵𝑦 → (𝑦 ∩ (𝐴 𝐵)) ⊆ ((𝑦𝐴) ∨ 𝐵)) → (𝐵 ⊆ (𝑥 𝐵) → ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵))))
133, 12mpid 44 . . . . . . 7 ((𝑥C𝐵C ) → (∀𝑦C (𝐵𝑦 → (𝑦 ∩ (𝐴 𝐵)) ⊆ ((𝑦𝐴) ∨ 𝐵)) → ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵)))
1413ex 412 . . . . . 6 (𝑥C → (𝐵C → (∀𝑦C (𝐵𝑦 → (𝑦 ∩ (𝐴 𝐵)) ⊆ ((𝑦𝐴) ∨ 𝐵)) → ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵))))
1514com3l 89 . . . . 5 (𝐵C → (∀𝑦C (𝐵𝑦 → (𝑦 ∩ (𝐴 𝐵)) ⊆ ((𝑦𝐴) ∨ 𝐵)) → (𝑥C → ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵))))
1615ralrimdv 3130 . . . 4 (𝐵C → (∀𝑦C (𝐵𝑦 → (𝑦 ∩ (𝐴 𝐵)) ⊆ ((𝑦𝐴) ∨ 𝐵)) → ∀𝑥C ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵)))
17 chlejb2 31485 . . . . . . . . . . . 12 ((𝐵C𝑥C ) → (𝐵𝑥 ↔ (𝑥 𝐵) = 𝑥))
1817biimpa 476 . . . . . . . . . . 11 (((𝐵C𝑥C ) ∧ 𝐵𝑥) → (𝑥 𝐵) = 𝑥)
1918ineq1d 4164 . . . . . . . . . 10 (((𝐵C𝑥C ) ∧ 𝐵𝑥) → ((𝑥 𝐵) ∩ (𝐴 𝐵)) = (𝑥 ∩ (𝐴 𝐵)))
2018ineq1d 4164 . . . . . . . . . . 11 (((𝐵C𝑥C ) ∧ 𝐵𝑥) → ((𝑥 𝐵) ∩ 𝐴) = (𝑥𝐴))
2120oveq1d 7356 . . . . . . . . . 10 (((𝐵C𝑥C ) ∧ 𝐵𝑥) → (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) = ((𝑥𝐴) ∨ 𝐵))
2219, 21sseq12d 3963 . . . . . . . . 9 (((𝐵C𝑥C ) ∧ 𝐵𝑥) → (((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) ↔ (𝑥 ∩ (𝐴 𝐵)) ⊆ ((𝑥𝐴) ∨ 𝐵)))
2322biimpd 229 . . . . . . . 8 (((𝐵C𝑥C ) ∧ 𝐵𝑥) → (((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) → (𝑥 ∩ (𝐴 𝐵)) ⊆ ((𝑥𝐴) ∨ 𝐵)))
2423ex 412 . . . . . . 7 ((𝐵C𝑥C ) → (𝐵𝑥 → (((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) → (𝑥 ∩ (𝐴 𝐵)) ⊆ ((𝑥𝐴) ∨ 𝐵))))
2524com23 86 . . . . . 6 ((𝐵C𝑥C ) → (((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) → (𝐵𝑥 → (𝑥 ∩ (𝐴 𝐵)) ⊆ ((𝑥𝐴) ∨ 𝐵))))
2625ralimdva 3144 . . . . 5 (𝐵C → (∀𝑥C ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) → ∀𝑥C (𝐵𝑥 → (𝑥 ∩ (𝐴 𝐵)) ⊆ ((𝑥𝐴) ∨ 𝐵))))
27 sseq2 3956 . . . . . . 7 (𝑥 = 𝑦 → (𝐵𝑥𝐵𝑦))
28 ineq1 4158 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥 ∩ (𝐴 𝐵)) = (𝑦 ∩ (𝐴 𝐵)))
29 ineq1 4158 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥𝐴) = (𝑦𝐴))
3029oveq1d 7356 . . . . . . . 8 (𝑥 = 𝑦 → ((𝑥𝐴) ∨ 𝐵) = ((𝑦𝐴) ∨ 𝐵))
3128, 30sseq12d 3963 . . . . . . 7 (𝑥 = 𝑦 → ((𝑥 ∩ (𝐴 𝐵)) ⊆ ((𝑥𝐴) ∨ 𝐵) ↔ (𝑦 ∩ (𝐴 𝐵)) ⊆ ((𝑦𝐴) ∨ 𝐵)))
3227, 31imbi12d 344 . . . . . 6 (𝑥 = 𝑦 → ((𝐵𝑥 → (𝑥 ∩ (𝐴 𝐵)) ⊆ ((𝑥𝐴) ∨ 𝐵)) ↔ (𝐵𝑦 → (𝑦 ∩ (𝐴 𝐵)) ⊆ ((𝑦𝐴) ∨ 𝐵))))
3332cbvralvw 3210 . . . . 5 (∀𝑥C (𝐵𝑥 → (𝑥 ∩ (𝐴 𝐵)) ⊆ ((𝑥𝐴) ∨ 𝐵)) ↔ ∀𝑦C (𝐵𝑦 → (𝑦 ∩ (𝐴 𝐵)) ⊆ ((𝑦𝐴) ∨ 𝐵)))
3426, 33imbitrdi 251 . . . 4 (𝐵C → (∀𝑥C ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) → ∀𝑦C (𝐵𝑦 → (𝑦 ∩ (𝐴 𝐵)) ⊆ ((𝑦𝐴) ∨ 𝐵))))
3516, 34impbid 212 . . 3 (𝐵C → (∀𝑦C (𝐵𝑦 → (𝑦 ∩ (𝐴 𝐵)) ⊆ ((𝑦𝐴) ∨ 𝐵)) ↔ ∀𝑥C ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵)))
3635adantl 481 . 2 ((𝐴C𝐵C ) → (∀𝑦C (𝐵𝑦 → (𝑦 ∩ (𝐴 𝐵)) ⊆ ((𝑦𝐴) ∨ 𝐵)) ↔ ∀𝑥C ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵)))
371, 36bitrd 279 1 ((𝐴C𝐵C ) → (𝐴 𝑀* 𝐵 ↔ ∀𝑥C ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  cin 3896  wss 3897   class class class wbr 5086  (class class class)co 7341   C cch 30901   chj 30905   𝑀* cdmd 30939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-inf2 9526  ax-cc 10321  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079  ax-addf 11080  ax-mulf 11081  ax-hilex 30971  ax-hfvadd 30972  ax-hvcom 30973  ax-hvass 30974  ax-hv0cl 30975  ax-hvaddid 30976  ax-hfvmul 30977  ax-hvmulid 30978  ax-hvmulass 30979  ax-hvdistr1 30980  ax-hvdistr2 30981  ax-hvmul0 30982  ax-hfi 31051  ax-his1 31054  ax-his2 31055  ax-his3 31056  ax-his4 31057  ax-hcompl 31174
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-iin 4939  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-se 5565  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-isom 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-oadd 8384  df-omul 8385  df-er 8617  df-map 8747  df-pm 8748  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-fi 9290  df-sup 9321  df-inf 9322  df-oi 9391  df-card 9827  df-acn 9830  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-7 12188  df-8 12189  df-9 12190  df-n0 12377  df-z 12464  df-dec 12584  df-uz 12728  df-q 12842  df-rp 12886  df-xneg 13006  df-xadd 13007  df-xmul 13008  df-ioo 13244  df-ico 13246  df-icc 13247  df-fz 13403  df-fzo 13550  df-fl 13691  df-seq 13904  df-exp 13964  df-hash 14233  df-cj 15001  df-re 15002  df-im 15003  df-sqrt 15137  df-abs 15138  df-clim 15390  df-rlim 15391  df-sum 15589  df-struct 17053  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-ress 17137  df-plusg 17169  df-mulr 17170  df-starv 17171  df-sca 17172  df-vsca 17173  df-ip 17174  df-tset 17175  df-ple 17176  df-ds 17178  df-unif 17179  df-hom 17180  df-cco 17181  df-rest 17321  df-topn 17322  df-0g 17340  df-gsum 17341  df-topgen 17342  df-pt 17343  df-prds 17346  df-xrs 17401  df-qtop 17406  df-imas 17407  df-xps 17409  df-mre 17483  df-mrc 17484  df-acs 17486  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-mulg 18976  df-cntz 19224  df-cmn 19689  df-psmet 21278  df-xmet 21279  df-met 21280  df-bl 21281  df-mopn 21282  df-fbas 21283  df-fg 21284  df-cnfld 21287  df-top 22804  df-topon 22821  df-topsp 22843  df-bases 22856  df-cld 22929  df-ntr 22930  df-cls 22931  df-nei 23008  df-cn 23137  df-cnp 23138  df-lm 23139  df-haus 23225  df-tx 23472  df-hmeo 23665  df-fil 23756  df-fm 23848  df-flim 23849  df-flf 23850  df-xms 24230  df-ms 24231  df-tms 24232  df-cfil 25177  df-cau 25178  df-cmet 25179  df-grpo 30465  df-gid 30466  df-ginv 30467  df-gdiv 30468  df-ablo 30517  df-vc 30531  df-nv 30564  df-va 30567  df-ba 30568  df-sm 30569  df-0v 30570  df-vs 30571  df-nmcv 30572  df-ims 30573  df-dip 30673  df-ssp 30694  df-ph 30785  df-cbn 30835  df-hnorm 30940  df-hba 30941  df-hvsub 30943  df-hlim 30944  df-hcau 30945  df-sh 31179  df-ch 31193  df-oc 31224  df-ch0 31225  df-shs 31280  df-chj 31282  df-dmd 32253
This theorem is referenced by:  dmdi4  32279  dmdbr5  32280  sumdmdi  32392  dmdbr4ati  32393
  Copyright terms: Public domain W3C validator