Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  dmdbr4 Structured version   Visualization version   GIF version

Theorem dmdbr4 30096
 Description: Binary relation expressing the dual modular pair property. This version quantifies an ordering instead of an inference. (Contributed by NM, 6-Jul-2004.) (New usage is discouraged.)
Assertion
Ref Expression
dmdbr4 ((𝐴C𝐵C ) → (𝐴 𝑀* 𝐵 ↔ ∀𝑥C ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem dmdbr4
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dmdbr2 30093 . 2 ((𝐴C𝐵C ) → (𝐴 𝑀* 𝐵 ↔ ∀𝑦C (𝐵𝑦 → (𝑦 ∩ (𝐴 𝐵)) ⊆ ((𝑦𝐴) ∨ 𝐵))))
2 chub2 29298 . . . . . . . . 9 ((𝐵C𝑥C ) → 𝐵 ⊆ (𝑥 𝐵))
32ancoms 462 . . . . . . . 8 ((𝑥C𝐵C ) → 𝐵 ⊆ (𝑥 𝐵))
4 chjcl 29147 . . . . . . . . 9 ((𝑥C𝐵C ) → (𝑥 𝐵) ∈ C )
5 sseq2 3979 . . . . . . . . . . 11 (𝑦 = (𝑥 𝐵) → (𝐵𝑦𝐵 ⊆ (𝑥 𝐵)))
6 ineq1 4166 . . . . . . . . . . . 12 (𝑦 = (𝑥 𝐵) → (𝑦 ∩ (𝐴 𝐵)) = ((𝑥 𝐵) ∩ (𝐴 𝐵)))
7 ineq1 4166 . . . . . . . . . . . . 13 (𝑦 = (𝑥 𝐵) → (𝑦𝐴) = ((𝑥 𝐵) ∩ 𝐴))
87oveq1d 7164 . . . . . . . . . . . 12 (𝑦 = (𝑥 𝐵) → ((𝑦𝐴) ∨ 𝐵) = (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵))
96, 8sseq12d 3986 . . . . . . . . . . 11 (𝑦 = (𝑥 𝐵) → ((𝑦 ∩ (𝐴 𝐵)) ⊆ ((𝑦𝐴) ∨ 𝐵) ↔ ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵)))
105, 9imbi12d 348 . . . . . . . . . 10 (𝑦 = (𝑥 𝐵) → ((𝐵𝑦 → (𝑦 ∩ (𝐴 𝐵)) ⊆ ((𝑦𝐴) ∨ 𝐵)) ↔ (𝐵 ⊆ (𝑥 𝐵) → ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵))))
1110rspcv 3604 . . . . . . . . 9 ((𝑥 𝐵) ∈ C → (∀𝑦C (𝐵𝑦 → (𝑦 ∩ (𝐴 𝐵)) ⊆ ((𝑦𝐴) ∨ 𝐵)) → (𝐵 ⊆ (𝑥 𝐵) → ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵))))
124, 11syl 17 . . . . . . . 8 ((𝑥C𝐵C ) → (∀𝑦C (𝐵𝑦 → (𝑦 ∩ (𝐴 𝐵)) ⊆ ((𝑦𝐴) ∨ 𝐵)) → (𝐵 ⊆ (𝑥 𝐵) → ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵))))
133, 12mpid 44 . . . . . . 7 ((𝑥C𝐵C ) → (∀𝑦C (𝐵𝑦 → (𝑦 ∩ (𝐴 𝐵)) ⊆ ((𝑦𝐴) ∨ 𝐵)) → ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵)))
1413ex 416 . . . . . 6 (𝑥C → (𝐵C → (∀𝑦C (𝐵𝑦 → (𝑦 ∩ (𝐴 𝐵)) ⊆ ((𝑦𝐴) ∨ 𝐵)) → ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵))))
1514com3l 89 . . . . 5 (𝐵C → (∀𝑦C (𝐵𝑦 → (𝑦 ∩ (𝐴 𝐵)) ⊆ ((𝑦𝐴) ∨ 𝐵)) → (𝑥C → ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵))))
1615ralrimdv 3183 . . . 4 (𝐵C → (∀𝑦C (𝐵𝑦 → (𝑦 ∩ (𝐴 𝐵)) ⊆ ((𝑦𝐴) ∨ 𝐵)) → ∀𝑥C ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵)))
17 chlejb2 29303 . . . . . . . . . . . 12 ((𝐵C𝑥C ) → (𝐵𝑥 ↔ (𝑥 𝐵) = 𝑥))
1817biimpa 480 . . . . . . . . . . 11 (((𝐵C𝑥C ) ∧ 𝐵𝑥) → (𝑥 𝐵) = 𝑥)
1918ineq1d 4173 . . . . . . . . . 10 (((𝐵C𝑥C ) ∧ 𝐵𝑥) → ((𝑥 𝐵) ∩ (𝐴 𝐵)) = (𝑥 ∩ (𝐴 𝐵)))
2018ineq1d 4173 . . . . . . . . . . 11 (((𝐵C𝑥C ) ∧ 𝐵𝑥) → ((𝑥 𝐵) ∩ 𝐴) = (𝑥𝐴))
2120oveq1d 7164 . . . . . . . . . 10 (((𝐵C𝑥C ) ∧ 𝐵𝑥) → (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) = ((𝑥𝐴) ∨ 𝐵))
2219, 21sseq12d 3986 . . . . . . . . 9 (((𝐵C𝑥C ) ∧ 𝐵𝑥) → (((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) ↔ (𝑥 ∩ (𝐴 𝐵)) ⊆ ((𝑥𝐴) ∨ 𝐵)))
2322biimpd 232 . . . . . . . 8 (((𝐵C𝑥C ) ∧ 𝐵𝑥) → (((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) → (𝑥 ∩ (𝐴 𝐵)) ⊆ ((𝑥𝐴) ∨ 𝐵)))
2423ex 416 . . . . . . 7 ((𝐵C𝑥C ) → (𝐵𝑥 → (((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) → (𝑥 ∩ (𝐴 𝐵)) ⊆ ((𝑥𝐴) ∨ 𝐵))))
2524com23 86 . . . . . 6 ((𝐵C𝑥C ) → (((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) → (𝐵𝑥 → (𝑥 ∩ (𝐴 𝐵)) ⊆ ((𝑥𝐴) ∨ 𝐵))))
2625ralimdva 3172 . . . . 5 (𝐵C → (∀𝑥C ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) → ∀𝑥C (𝐵𝑥 → (𝑥 ∩ (𝐴 𝐵)) ⊆ ((𝑥𝐴) ∨ 𝐵))))
27 sseq2 3979 . . . . . . 7 (𝑥 = 𝑦 → (𝐵𝑥𝐵𝑦))
28 ineq1 4166 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥 ∩ (𝐴 𝐵)) = (𝑦 ∩ (𝐴 𝐵)))
29 ineq1 4166 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥𝐴) = (𝑦𝐴))
3029oveq1d 7164 . . . . . . . 8 (𝑥 = 𝑦 → ((𝑥𝐴) ∨ 𝐵) = ((𝑦𝐴) ∨ 𝐵))
3128, 30sseq12d 3986 . . . . . . 7 (𝑥 = 𝑦 → ((𝑥 ∩ (𝐴 𝐵)) ⊆ ((𝑥𝐴) ∨ 𝐵) ↔ (𝑦 ∩ (𝐴 𝐵)) ⊆ ((𝑦𝐴) ∨ 𝐵)))
3227, 31imbi12d 348 . . . . . 6 (𝑥 = 𝑦 → ((𝐵𝑥 → (𝑥 ∩ (𝐴 𝐵)) ⊆ ((𝑥𝐴) ∨ 𝐵)) ↔ (𝐵𝑦 → (𝑦 ∩ (𝐴 𝐵)) ⊆ ((𝑦𝐴) ∨ 𝐵))))
3332cbvralvw 3434 . . . . 5 (∀𝑥C (𝐵𝑥 → (𝑥 ∩ (𝐴 𝐵)) ⊆ ((𝑥𝐴) ∨ 𝐵)) ↔ ∀𝑦C (𝐵𝑦 → (𝑦 ∩ (𝐴 𝐵)) ⊆ ((𝑦𝐴) ∨ 𝐵)))
3426, 33syl6ib 254 . . . 4 (𝐵C → (∀𝑥C ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) → ∀𝑦C (𝐵𝑦 → (𝑦 ∩ (𝐴 𝐵)) ⊆ ((𝑦𝐴) ∨ 𝐵))))
3516, 34impbid 215 . . 3 (𝐵C → (∀𝑦C (𝐵𝑦 → (𝑦 ∩ (𝐴 𝐵)) ⊆ ((𝑦𝐴) ∨ 𝐵)) ↔ ∀𝑥C ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵)))
3635adantl 485 . 2 ((𝐴C𝐵C ) → (∀𝑦C (𝐵𝑦 → (𝑦 ∩ (𝐴 𝐵)) ⊆ ((𝑦𝐴) ∨ 𝐵)) ↔ ∀𝑥C ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵)))
371, 36bitrd 282 1 ((𝐴C𝐵C ) → (𝐴 𝑀* 𝐵 ↔ ∀𝑥C ((𝑥 𝐵) ∩ (𝐴 𝐵)) ⊆ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2115  ∀wral 3133   ∩ cin 3918   ⊆ wss 3919   class class class wbr 5052  (class class class)co 7149   Cℋ cch 28719   ∨ℋ chj 28723   𝑀ℋ* cdmd 28757 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-inf2 9101  ax-cc 9855  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612  ax-pre-sup 10613  ax-addf 10614  ax-mulf 10615  ax-hilex 28789  ax-hfvadd 28790  ax-hvcom 28791  ax-hvass 28792  ax-hv0cl 28793  ax-hvaddid 28794  ax-hfvmul 28795  ax-hvmulid 28796  ax-hvmulass 28797  ax-hvdistr1 28798  ax-hvdistr2 28799  ax-hvmul0 28800  ax-hfi 28869  ax-his1 28872  ax-his2 28873  ax-his3 28874  ax-his4 28875  ax-hcompl 28992 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-iin 4908  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-se 5502  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-isom 6352  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-of 7403  df-om 7575  df-1st 7684  df-2nd 7685  df-supp 7827  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-2o 8099  df-oadd 8102  df-omul 8103  df-er 8285  df-map 8404  df-pm 8405  df-ixp 8458  df-en 8506  df-dom 8507  df-sdom 8508  df-fin 8509  df-fsupp 8831  df-fi 8872  df-sup 8903  df-inf 8904  df-oi 8971  df-card 9365  df-acn 9368  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-div 11296  df-nn 11635  df-2 11697  df-3 11698  df-4 11699  df-5 11700  df-6 11701  df-7 11702  df-8 11703  df-9 11704  df-n0 11895  df-z 11979  df-dec 12096  df-uz 12241  df-q 12346  df-rp 12387  df-xneg 12504  df-xadd 12505  df-xmul 12506  df-ioo 12739  df-ico 12741  df-icc 12742  df-fz 12895  df-fzo 13038  df-fl 13166  df-seq 13374  df-exp 13435  df-hash 13696  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-clim 14845  df-rlim 14846  df-sum 15043  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-hom 16589  df-cco 16590  df-rest 16696  df-topn 16697  df-0g 16715  df-gsum 16716  df-topgen 16717  df-pt 16718  df-prds 16721  df-xrs 16775  df-qtop 16780  df-imas 16781  df-xps 16783  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-submnd 17957  df-mulg 18225  df-cntz 18447  df-cmn 18908  df-psmet 20090  df-xmet 20091  df-met 20092  df-bl 20093  df-mopn 20094  df-fbas 20095  df-fg 20096  df-cnfld 20099  df-top 21506  df-topon 21523  df-topsp 21545  df-bases 21558  df-cld 21631  df-ntr 21632  df-cls 21633  df-nei 21710  df-cn 21839  df-cnp 21840  df-lm 21841  df-haus 21927  df-tx 22174  df-hmeo 22367  df-fil 22458  df-fm 22550  df-flim 22551  df-flf 22552  df-xms 22934  df-ms 22935  df-tms 22936  df-cfil 23866  df-cau 23867  df-cmet 23868  df-grpo 28283  df-gid 28284  df-ginv 28285  df-gdiv 28286  df-ablo 28335  df-vc 28349  df-nv 28382  df-va 28385  df-ba 28386  df-sm 28387  df-0v 28388  df-vs 28389  df-nmcv 28390  df-ims 28391  df-dip 28491  df-ssp 28512  df-ph 28603  df-cbn 28653  df-hnorm 28758  df-hba 28759  df-hvsub 28761  df-hlim 28762  df-hcau 28763  df-sh 28997  df-ch 29011  df-oc 29042  df-ch0 29043  df-shs 29098  df-chj 29100  df-dmd 30071 This theorem is referenced by:  dmdi4  30097  dmdbr5  30098  sumdmdi  30210  dmdbr4ati  30211
 Copyright terms: Public domain W3C validator