![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hial02 | Structured version Visualization version GIF version |
Description: A vector whose inner product is always zero is zero. (Contributed by NM, 28-Jan-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hial02 | ⊢ (𝐴 ∈ ℋ → (∀𝑥 ∈ ℋ (𝑥 ·ih 𝐴) = 0 ↔ 𝐴 = 0ℎ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7422 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ·ih 𝐴) = (𝐴 ·ih 𝐴)) | |
2 | 1 | eqeq1d 2728 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 ·ih 𝐴) = 0 ↔ (𝐴 ·ih 𝐴) = 0)) |
3 | 2 | rspcv 3605 | . . 3 ⊢ (𝐴 ∈ ℋ → (∀𝑥 ∈ ℋ (𝑥 ·ih 𝐴) = 0 → (𝐴 ·ih 𝐴) = 0)) |
4 | his6 31028 | . . 3 ⊢ (𝐴 ∈ ℋ → ((𝐴 ·ih 𝐴) = 0 ↔ 𝐴 = 0ℎ)) | |
5 | 3, 4 | sylibd 238 | . 2 ⊢ (𝐴 ∈ ℋ → (∀𝑥 ∈ ℋ (𝑥 ·ih 𝐴) = 0 → 𝐴 = 0ℎ)) |
6 | oveq2 7423 | . . . . . 6 ⊢ (𝐴 = 0ℎ → (𝑥 ·ih 𝐴) = (𝑥 ·ih 0ℎ)) | |
7 | hi02 31026 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → (𝑥 ·ih 0ℎ) = 0) | |
8 | 6, 7 | sylan9eq 2786 | . . . . 5 ⊢ ((𝐴 = 0ℎ ∧ 𝑥 ∈ ℋ) → (𝑥 ·ih 𝐴) = 0) |
9 | 8 | ex 411 | . . . 4 ⊢ (𝐴 = 0ℎ → (𝑥 ∈ ℋ → (𝑥 ·ih 𝐴) = 0)) |
10 | 9 | a1i 11 | . . 3 ⊢ (𝐴 ∈ ℋ → (𝐴 = 0ℎ → (𝑥 ∈ ℋ → (𝑥 ·ih 𝐴) = 0))) |
11 | 10 | ralrimdv 3142 | . 2 ⊢ (𝐴 ∈ ℋ → (𝐴 = 0ℎ → ∀𝑥 ∈ ℋ (𝑥 ·ih 𝐴) = 0)) |
12 | 5, 11 | impbid 211 | 1 ⊢ (𝐴 ∈ ℋ → (∀𝑥 ∈ ℋ (𝑥 ·ih 𝐴) = 0 ↔ 𝐴 = 0ℎ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1534 ∈ wcel 2099 ∀wral 3051 (class class class)co 7415 0cc0 11148 ℋchba 30848 ·ih csp 30851 0ℎc0v 30853 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7737 ax-resscn 11205 ax-1cn 11206 ax-icn 11207 ax-addcl 11208 ax-addrcl 11209 ax-mulcl 11210 ax-mulrcl 11211 ax-mulcom 11212 ax-addass 11213 ax-mulass 11214 ax-distr 11215 ax-i2m1 11216 ax-1ne0 11217 ax-1rid 11218 ax-rnegex 11219 ax-rrecex 11220 ax-cnre 11221 ax-pre-lttri 11222 ax-pre-lttrn 11223 ax-pre-ltadd 11224 ax-pre-mulgt0 11225 ax-hv0cl 30932 ax-hvmul0 30939 ax-hfi 31008 ax-his1 31011 ax-his3 31013 ax-his4 31014 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3365 df-reu 3366 df-rab 3421 df-v 3466 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4325 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4908 df-iun 4997 df-br 5146 df-opab 5208 df-mpt 5229 df-id 5572 df-po 5586 df-so 5587 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-iota 6497 df-fun 6547 df-fn 6548 df-f 6549 df-f1 6550 df-fo 6551 df-f1o 6552 df-fv 6553 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-er 8725 df-en 8966 df-dom 8967 df-sdom 8968 df-pnf 11290 df-mnf 11291 df-xr 11292 df-ltxr 11293 df-le 11294 df-sub 11486 df-neg 11487 df-div 11912 df-2 12320 df-cj 15098 df-re 15099 df-im 15100 |
This theorem is referenced by: ho02i 31758 |
Copyright terms: Public domain | W3C validator |