| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hial0 | Structured version Visualization version GIF version | ||
| Description: A vector whose inner product is always zero is zero. (Contributed by NM, 24-Oct-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hial0 | ⊢ (𝐴 ∈ ℋ → (∀𝑥 ∈ ℋ (𝐴 ·ih 𝑥) = 0 ↔ 𝐴 = 0ℎ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 7357 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝐴 ·ih 𝑥) = (𝐴 ·ih 𝐴)) | |
| 2 | 1 | eqeq1d 2731 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝐴 ·ih 𝑥) = 0 ↔ (𝐴 ·ih 𝐴) = 0)) |
| 3 | 2 | rspcv 3573 | . . 3 ⊢ (𝐴 ∈ ℋ → (∀𝑥 ∈ ℋ (𝐴 ·ih 𝑥) = 0 → (𝐴 ·ih 𝐴) = 0)) |
| 4 | his6 31043 | . . 3 ⊢ (𝐴 ∈ ℋ → ((𝐴 ·ih 𝐴) = 0 ↔ 𝐴 = 0ℎ)) | |
| 5 | 3, 4 | sylibd 239 | . 2 ⊢ (𝐴 ∈ ℋ → (∀𝑥 ∈ ℋ (𝐴 ·ih 𝑥) = 0 → 𝐴 = 0ℎ)) |
| 6 | oveq1 7356 | . . . . . 6 ⊢ (𝐴 = 0ℎ → (𝐴 ·ih 𝑥) = (0ℎ ·ih 𝑥)) | |
| 7 | hi01 31040 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → (0ℎ ·ih 𝑥) = 0) | |
| 8 | 6, 7 | sylan9eq 2784 | . . . . 5 ⊢ ((𝐴 = 0ℎ ∧ 𝑥 ∈ ℋ) → (𝐴 ·ih 𝑥) = 0) |
| 9 | 8 | ex 412 | . . . 4 ⊢ (𝐴 = 0ℎ → (𝑥 ∈ ℋ → (𝐴 ·ih 𝑥) = 0)) |
| 10 | 9 | a1i 11 | . . 3 ⊢ (𝐴 ∈ ℋ → (𝐴 = 0ℎ → (𝑥 ∈ ℋ → (𝐴 ·ih 𝑥) = 0))) |
| 11 | 10 | ralrimdv 3127 | . 2 ⊢ (𝐴 ∈ ℋ → (𝐴 = 0ℎ → ∀𝑥 ∈ ℋ (𝐴 ·ih 𝑥) = 0)) |
| 12 | 5, 11 | impbid 212 | 1 ⊢ (𝐴 ∈ ℋ → (∀𝑥 ∈ ℋ (𝐴 ·ih 𝑥) = 0 ↔ 𝐴 = 0ℎ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∀wral 3044 (class class class)co 7349 0cc0 11009 ℋchba 30863 ·ih csp 30866 0ℎc0v 30868 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-hv0cl 30947 ax-hvmul0 30954 ax-hfi 31023 ax-his3 31028 ax-his4 31029 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-ltxr 11154 |
| This theorem is referenced by: choc1 31271 ho01i 31772 ho02i 31773 |
| Copyright terms: Public domain | W3C validator |