![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hial0 | Structured version Visualization version GIF version |
Description: A vector whose inner product is always zero is zero. (Contributed by NM, 24-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hial0 | ⊢ (𝐴 ∈ ℋ → (∀𝑥 ∈ ℋ (𝐴 ·ih 𝑥) = 0 ↔ 𝐴 = 0ℎ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 6930 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝐴 ·ih 𝑥) = (𝐴 ·ih 𝐴)) | |
2 | 1 | eqeq1d 2780 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝐴 ·ih 𝑥) = 0 ↔ (𝐴 ·ih 𝐴) = 0)) |
3 | 2 | rspcv 3507 | . . 3 ⊢ (𝐴 ∈ ℋ → (∀𝑥 ∈ ℋ (𝐴 ·ih 𝑥) = 0 → (𝐴 ·ih 𝐴) = 0)) |
4 | his6 28528 | . . 3 ⊢ (𝐴 ∈ ℋ → ((𝐴 ·ih 𝐴) = 0 ↔ 𝐴 = 0ℎ)) | |
5 | 3, 4 | sylibd 231 | . 2 ⊢ (𝐴 ∈ ℋ → (∀𝑥 ∈ ℋ (𝐴 ·ih 𝑥) = 0 → 𝐴 = 0ℎ)) |
6 | oveq1 6929 | . . . . . 6 ⊢ (𝐴 = 0ℎ → (𝐴 ·ih 𝑥) = (0ℎ ·ih 𝑥)) | |
7 | hi01 28525 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → (0ℎ ·ih 𝑥) = 0) | |
8 | 6, 7 | sylan9eq 2834 | . . . . 5 ⊢ ((𝐴 = 0ℎ ∧ 𝑥 ∈ ℋ) → (𝐴 ·ih 𝑥) = 0) |
9 | 8 | ex 403 | . . . 4 ⊢ (𝐴 = 0ℎ → (𝑥 ∈ ℋ → (𝐴 ·ih 𝑥) = 0)) |
10 | 9 | a1i 11 | . . 3 ⊢ (𝐴 ∈ ℋ → (𝐴 = 0ℎ → (𝑥 ∈ ℋ → (𝐴 ·ih 𝑥) = 0))) |
11 | 10 | ralrimdv 3150 | . 2 ⊢ (𝐴 ∈ ℋ → (𝐴 = 0ℎ → ∀𝑥 ∈ ℋ (𝐴 ·ih 𝑥) = 0)) |
12 | 5, 11 | impbid 204 | 1 ⊢ (𝐴 ∈ ℋ → (∀𝑥 ∈ ℋ (𝐴 ·ih 𝑥) = 0 ↔ 𝐴 = 0ℎ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 = wceq 1601 ∈ wcel 2107 ∀wral 3090 (class class class)co 6922 0cc0 10272 ℋchba 28348 ·ih csp 28351 0ℎc0v 28353 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-hv0cl 28432 ax-hvmul0 28439 ax-hfi 28508 ax-his3 28513 ax-his4 28514 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-po 5274 df-so 5275 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-ov 6925 df-er 8026 df-en 8242 df-dom 8243 df-sdom 8244 df-pnf 10413 df-mnf 10414 df-ltxr 10416 |
This theorem is referenced by: choc1 28758 ho01i 29259 ho02i 29260 |
Copyright terms: Public domain | W3C validator |