HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hial0 Structured version   Visualization version   GIF version

Theorem hial0 28652
Description: A vector whose inner product is always zero is zero. (Contributed by NM, 24-Oct-1999.) (New usage is discouraged.)
Assertion
Ref Expression
hial0 (𝐴 ∈ ℋ → (∀𝑥 ∈ ℋ (𝐴 ·ih 𝑥) = 0 ↔ 𝐴 = 0))
Distinct variable group:   𝑥,𝐴

Proof of Theorem hial0
StepHypRef Expression
1 oveq2 6978 . . . . 5 (𝑥 = 𝐴 → (𝐴 ·ih 𝑥) = (𝐴 ·ih 𝐴))
21eqeq1d 2774 . . . 4 (𝑥 = 𝐴 → ((𝐴 ·ih 𝑥) = 0 ↔ (𝐴 ·ih 𝐴) = 0))
32rspcv 3525 . . 3 (𝐴 ∈ ℋ → (∀𝑥 ∈ ℋ (𝐴 ·ih 𝑥) = 0 → (𝐴 ·ih 𝐴) = 0))
4 his6 28649 . . 3 (𝐴 ∈ ℋ → ((𝐴 ·ih 𝐴) = 0 ↔ 𝐴 = 0))
53, 4sylibd 231 . 2 (𝐴 ∈ ℋ → (∀𝑥 ∈ ℋ (𝐴 ·ih 𝑥) = 0 → 𝐴 = 0))
6 oveq1 6977 . . . . . 6 (𝐴 = 0 → (𝐴 ·ih 𝑥) = (0 ·ih 𝑥))
7 hi01 28646 . . . . . 6 (𝑥 ∈ ℋ → (0 ·ih 𝑥) = 0)
86, 7sylan9eq 2828 . . . . 5 ((𝐴 = 0𝑥 ∈ ℋ) → (𝐴 ·ih 𝑥) = 0)
98ex 405 . . . 4 (𝐴 = 0 → (𝑥 ∈ ℋ → (𝐴 ·ih 𝑥) = 0))
109a1i 11 . . 3 (𝐴 ∈ ℋ → (𝐴 = 0 → (𝑥 ∈ ℋ → (𝐴 ·ih 𝑥) = 0)))
1110ralrimdv 3132 . 2 (𝐴 ∈ ℋ → (𝐴 = 0 → ∀𝑥 ∈ ℋ (𝐴 ·ih 𝑥) = 0))
125, 11impbid 204 1 (𝐴 ∈ ℋ → (∀𝑥 ∈ ℋ (𝐴 ·ih 𝑥) = 0 ↔ 𝐴 = 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198   = wceq 1507  wcel 2050  wral 3082  (class class class)co 6970  0cc0 10329  chba 28469   ·ih csp 28472  0c0v 28474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2744  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-resscn 10386  ax-1cn 10387  ax-icn 10388  ax-addcl 10389  ax-addrcl 10390  ax-mulcl 10391  ax-mulrcl 10392  ax-mulcom 10393  ax-addass 10394  ax-mulass 10395  ax-distr 10396  ax-i2m1 10397  ax-1ne0 10398  ax-1rid 10399  ax-rnegex 10400  ax-rrecex 10401  ax-cnre 10402  ax-pre-lttri 10403  ax-pre-lttrn 10404  ax-pre-ltadd 10405  ax-hv0cl 28553  ax-hvmul0 28560  ax-hfi 28629  ax-his3 28634  ax-his4 28635
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2753  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-rab 3091  df-v 3411  df-sbc 3676  df-csb 3781  df-dif 3826  df-un 3828  df-in 3830  df-ss 3837  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-op 4442  df-uni 4707  df-iun 4788  df-br 4924  df-opab 4986  df-mpt 5003  df-id 5306  df-po 5320  df-so 5321  df-xp 5407  df-rel 5408  df-cnv 5409  df-co 5410  df-dm 5411  df-rn 5412  df-res 5413  df-ima 5414  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-ov 6973  df-er 8083  df-en 8301  df-dom 8302  df-sdom 8303  df-pnf 10470  df-mnf 10471  df-ltxr 10473
This theorem is referenced by:  choc1  28879  ho01i  29380  ho02i  29381
  Copyright terms: Public domain W3C validator