![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hial0 | Structured version Visualization version GIF version |
Description: A vector whose inner product is always zero is zero. (Contributed by NM, 24-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hial0 | ⊢ (𝐴 ∈ ℋ → (∀𝑥 ∈ ℋ (𝐴 ·ih 𝑥) = 0 ↔ 𝐴 = 0ℎ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 6978 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝐴 ·ih 𝑥) = (𝐴 ·ih 𝐴)) | |
2 | 1 | eqeq1d 2774 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝐴 ·ih 𝑥) = 0 ↔ (𝐴 ·ih 𝐴) = 0)) |
3 | 2 | rspcv 3525 | . . 3 ⊢ (𝐴 ∈ ℋ → (∀𝑥 ∈ ℋ (𝐴 ·ih 𝑥) = 0 → (𝐴 ·ih 𝐴) = 0)) |
4 | his6 28649 | . . 3 ⊢ (𝐴 ∈ ℋ → ((𝐴 ·ih 𝐴) = 0 ↔ 𝐴 = 0ℎ)) | |
5 | 3, 4 | sylibd 231 | . 2 ⊢ (𝐴 ∈ ℋ → (∀𝑥 ∈ ℋ (𝐴 ·ih 𝑥) = 0 → 𝐴 = 0ℎ)) |
6 | oveq1 6977 | . . . . . 6 ⊢ (𝐴 = 0ℎ → (𝐴 ·ih 𝑥) = (0ℎ ·ih 𝑥)) | |
7 | hi01 28646 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → (0ℎ ·ih 𝑥) = 0) | |
8 | 6, 7 | sylan9eq 2828 | . . . . 5 ⊢ ((𝐴 = 0ℎ ∧ 𝑥 ∈ ℋ) → (𝐴 ·ih 𝑥) = 0) |
9 | 8 | ex 405 | . . . 4 ⊢ (𝐴 = 0ℎ → (𝑥 ∈ ℋ → (𝐴 ·ih 𝑥) = 0)) |
10 | 9 | a1i 11 | . . 3 ⊢ (𝐴 ∈ ℋ → (𝐴 = 0ℎ → (𝑥 ∈ ℋ → (𝐴 ·ih 𝑥) = 0))) |
11 | 10 | ralrimdv 3132 | . 2 ⊢ (𝐴 ∈ ℋ → (𝐴 = 0ℎ → ∀𝑥 ∈ ℋ (𝐴 ·ih 𝑥) = 0)) |
12 | 5, 11 | impbid 204 | 1 ⊢ (𝐴 ∈ ℋ → (∀𝑥 ∈ ℋ (𝐴 ·ih 𝑥) = 0 ↔ 𝐴 = 0ℎ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 = wceq 1507 ∈ wcel 2050 ∀wral 3082 (class class class)co 6970 0cc0 10329 ℋchba 28469 ·ih csp 28472 0ℎc0v 28474 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2744 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 ax-resscn 10386 ax-1cn 10387 ax-icn 10388 ax-addcl 10389 ax-addrcl 10390 ax-mulcl 10391 ax-mulrcl 10392 ax-mulcom 10393 ax-addass 10394 ax-mulass 10395 ax-distr 10396 ax-i2m1 10397 ax-1ne0 10398 ax-1rid 10399 ax-rnegex 10400 ax-rrecex 10401 ax-cnre 10402 ax-pre-lttri 10403 ax-pre-lttrn 10404 ax-pre-ltadd 10405 ax-hv0cl 28553 ax-hvmul0 28560 ax-hfi 28629 ax-his3 28634 ax-his4 28635 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2753 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-nel 3068 df-ral 3087 df-rex 3088 df-rab 3091 df-v 3411 df-sbc 3676 df-csb 3781 df-dif 3826 df-un 3828 df-in 3830 df-ss 3837 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-op 4442 df-uni 4707 df-iun 4788 df-br 4924 df-opab 4986 df-mpt 5003 df-id 5306 df-po 5320 df-so 5321 df-xp 5407 df-rel 5408 df-cnv 5409 df-co 5410 df-dm 5411 df-rn 5412 df-res 5413 df-ima 5414 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-ov 6973 df-er 8083 df-en 8301 df-dom 8302 df-sdom 8303 df-pnf 10470 df-mnf 10471 df-ltxr 10473 |
This theorem is referenced by: choc1 28879 ho01i 29380 ho02i 29381 |
Copyright terms: Public domain | W3C validator |