MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankop Structured version   Visualization version   GIF version

Theorem rankop 9474
Description: The rank of an ordered pair. Part of Exercise 4 of [Kunen] p. 107. (Contributed by NM, 13-Sep-2006.) (Revised by Mario Carneiro, 17-Nov-2014.)
Hypotheses
Ref Expression
ranksn.1 𝐴 ∈ V
rankun.2 𝐵 ∈ V
Assertion
Ref Expression
rankop (rank‘⟨𝐴, 𝐵⟩) = suc suc ((rank‘𝐴) ∪ (rank‘𝐵))

Proof of Theorem rankop
StepHypRef Expression
1 ranksn.1 . . 3 𝐴 ∈ V
2 unir1 9429 . . 3 (𝑅1 “ On) = V
31, 2eleqtrri 2837 . 2 𝐴 (𝑅1 “ On)
4 rankun.2 . . 3 𝐵 ∈ V
54, 2eleqtrri 2837 . 2 𝐵 (𝑅1 “ On)
6 rankopb 9468 . 2 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (rank‘⟨𝐴, 𝐵⟩) = suc suc ((rank‘𝐴) ∪ (rank‘𝐵)))
73, 5, 6mp2an 692 1 (rank‘⟨𝐴, 𝐵⟩) = suc suc ((rank‘𝐴) ∪ (rank‘𝐵))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1543  wcel 2110  Vcvv 3408  cun 3864  cop 4547   cuni 4819  cima 5554  Oncon0 6213  suc csuc 6215  cfv 6380  𝑅1cr1 9378  rankcrnk 9379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-reg 9208  ax-inf2 9256
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-om 7645  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-r1 9380  df-rank 9381
This theorem is referenced by:  rankelop  9490
  Copyright terms: Public domain W3C validator