MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankwflem Structured version   Visualization version   GIF version

Theorem rankwflem 9431
Description: Every set is well-founded, assuming the Axiom of Regularity. Proposition 9.13 of [TakeutiZaring] p. 78. This variant of tz9.13g 9408 is useful in proofs of theorems about the rank function. (Contributed by NM, 4-Oct-2003.)
Assertion
Ref Expression
rankwflem (𝐴𝑉 → ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘suc 𝑥))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem rankwflem
StepHypRef Expression
1 elex 3426 . . 3 (𝐴𝑉𝐴 ∈ V)
2 unir1 9429 . . 3 (𝑅1 “ On) = V
31, 2eleqtrrdi 2849 . 2 (𝐴𝑉𝐴 (𝑅1 “ On))
4 rankwflemb 9409 . 2 (𝐴 (𝑅1 “ On) ↔ ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘suc 𝑥))
53, 4sylib 221 1 (𝐴𝑉 → ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘suc 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2110  wrex 3062  Vcvv 3408   cuni 4819  cima 5554  Oncon0 6213  suc csuc 6215  cfv 6380  𝑅1cr1 9378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-reg 9208  ax-inf2 9256
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-om 7645  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-r1 9380
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator