| Mathbox for Eric Schmidt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xpwf | Structured version Visualization version GIF version | ||
| Description: The Cartesian product of two well-founded sets is well-founded. (Contributed by Eric Schmidt, 12-Sep-2025.) |
| Ref | Expression |
|---|---|
| xpwf | ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ ∪ (𝑅1 “ On)) → (𝐴 × 𝐵) ∈ ∪ (𝑅1 “ On)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unwf 9725 | . . 3 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ ∪ (𝑅1 “ On)) ↔ (𝐴 ∪ 𝐵) ∈ ∪ (𝑅1 “ On)) | |
| 2 | pwwf 9722 | . . 3 ⊢ ((𝐴 ∪ 𝐵) ∈ ∪ (𝑅1 “ On) ↔ 𝒫 (𝐴 ∪ 𝐵) ∈ ∪ (𝑅1 “ On)) | |
| 3 | pwwf 9722 | . . 3 ⊢ (𝒫 (𝐴 ∪ 𝐵) ∈ ∪ (𝑅1 “ On) ↔ 𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ ∪ (𝑅1 “ On)) | |
| 4 | 1, 2, 3 | 3bitri 297 | . 2 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ ∪ (𝑅1 “ On)) ↔ 𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ ∪ (𝑅1 “ On)) |
| 5 | xpsspw 5756 | . . 3 ⊢ (𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝐵) | |
| 6 | sswf 9723 | . . 3 ⊢ ((𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ ∪ (𝑅1 “ On) ∧ (𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝐵)) → (𝐴 × 𝐵) ∈ ∪ (𝑅1 “ On)) | |
| 7 | 5, 6 | mpan2 691 | . 2 ⊢ (𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ ∪ (𝑅1 “ On) → (𝐴 × 𝐵) ∈ ∪ (𝑅1 “ On)) |
| 8 | 4, 7 | sylbi 217 | 1 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ ∪ (𝑅1 “ On)) → (𝐴 × 𝐵) ∈ ∪ (𝑅1 “ On)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∪ cun 3903 ⊆ wss 3905 𝒫 cpw 4553 ∪ cuni 4861 × cxp 5621 “ cima 5626 Oncon0 6311 𝑅1cr1 9677 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-r1 9679 df-rank 9680 |
| This theorem is referenced by: relwf 44941 |
| Copyright terms: Public domain | W3C validator |