MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fundmfibi Structured version   Visualization version   GIF version

Theorem fundmfibi 9220
Description: A function is finite if and only if its domain is finite. (Contributed by AV, 10-Jan-2020.)
Assertion
Ref Expression
fundmfibi (Fun 𝐹 → (𝐹 ∈ Fin ↔ dom 𝐹 ∈ Fin))

Proof of Theorem fundmfibi
StepHypRef Expression
1 dmfi 9219 . 2 (𝐹 ∈ Fin → dom 𝐹 ∈ Fin)
2 funfn 6511 . . . 4 (Fun 𝐹𝐹 Fn dom 𝐹)
3 fnfi 9087 . . . 4 ((𝐹 Fn dom 𝐹 ∧ dom 𝐹 ∈ Fin) → 𝐹 ∈ Fin)
42, 3sylanb 581 . . 3 ((Fun 𝐹 ∧ dom 𝐹 ∈ Fin) → 𝐹 ∈ Fin)
54ex 412 . 2 (Fun 𝐹 → (dom 𝐹 ∈ Fin → 𝐹 ∈ Fin))
61, 5impbid2 226 1 (Fun 𝐹 → (𝐹 ∈ Fin ↔ dom 𝐹 ∈ Fin))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2111  dom cdm 5614  Fun wfun 6475   Fn wfn 6476  Fincfn 8869
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-om 7797  df-1st 7921  df-2nd 7922  df-1o 8385  df-en 8870  df-dom 8871  df-fin 8873
This theorem is referenced by:  f1dmvrnfibi  9225  negfi  12071  hashfundm  14349  vtxdgfusgrf  29476  tfsnfin  43393  fmtnoinf  47575
  Copyright terms: Public domain W3C validator