MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infi Structured version   Visualization version   GIF version

Theorem infi 9303
Description: The intersection of two sets is finite if one of them is. (Contributed by Thierry Arnoux, 14-Feb-2017.)
Assertion
Ref Expression
infi (𝐴 ∈ Fin → (𝐴𝐵) ∈ Fin)

Proof of Theorem infi
StepHypRef Expression
1 inss1 4236 . 2 (𝐴𝐵) ⊆ 𝐴
2 ssfi 9214 . 2 ((𝐴 ∈ Fin ∧ (𝐴𝐵) ⊆ 𝐴) → (𝐴𝐵) ∈ Fin)
31, 2mpan2 691 1 (𝐴 ∈ Fin → (𝐴𝐵) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  cin 3949  wss 3950  Fincfn 8986
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-om 7889  df-1o 8507  df-en 8987  df-fin 8990
This theorem is referenced by:  rabfi  9304  resfnfinfin  9378  resfifsupp  9438  fin23lem22  10368  pmatcoe1fsupp  22708  trlsegvdeglem6  30245  mptiffisupp  32703  indsumin  32848  gsummptres  33056  eulerpartlemt  34374  ballotlemgun  34528  hgt750lemd  34664  fourierdlem50  46176  fourierdlem71  46197  fourierdlem76  46202  fourierdlem80  46206  fourierdlem103  46229  fourierdlem104  46230  sge0split  46429
  Copyright terms: Public domain W3C validator