|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > infi | Structured version Visualization version GIF version | ||
| Description: The intersection of two sets is finite if one of them is. (Contributed by Thierry Arnoux, 14-Feb-2017.) | 
| Ref | Expression | 
|---|---|
| infi | ⊢ (𝐴 ∈ Fin → (𝐴 ∩ 𝐵) ∈ Fin) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | inss1 4237 | . 2 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | |
| 2 | ssfi 9213 | . 2 ⊢ ((𝐴 ∈ Fin ∧ (𝐴 ∩ 𝐵) ⊆ 𝐴) → (𝐴 ∩ 𝐵) ∈ Fin) | |
| 3 | 1, 2 | mpan2 691 | 1 ⊢ (𝐴 ∈ Fin → (𝐴 ∩ 𝐵) ∈ Fin) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∈ wcel 2108 ∩ cin 3950 ⊆ wss 3951 Fincfn 8985 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 ax-un 7755 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-om 7888 df-1o 8506 df-en 8986 df-fin 8989 | 
| This theorem is referenced by: rabfi 9303 resfnfinfin 9377 resfifsupp 9437 fin23lem22 10367 pmatcoe1fsupp 22707 trlsegvdeglem6 30244 mptiffisupp 32702 indsumin 32847 gsummptres 33055 eulerpartlemt 34373 ballotlemgun 34527 hgt750lemd 34663 fourierdlem50 46171 fourierdlem71 46192 fourierdlem76 46197 fourierdlem80 46201 fourierdlem103 46224 fourierdlem104 46225 sge0split 46424 | 
| Copyright terms: Public domain | W3C validator |