Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > infi | Structured version Visualization version GIF version |
Description: The intersection of two sets is finite if one of them is. (Contributed by Thierry Arnoux, 14-Feb-2017.) |
Ref | Expression |
---|---|
infi | ⊢ (𝐴 ∈ Fin → (𝐴 ∩ 𝐵) ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inss1 4168 | . 2 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | |
2 | ssfi 8938 | . 2 ⊢ ((𝐴 ∈ Fin ∧ (𝐴 ∩ 𝐵) ⊆ 𝐴) → (𝐴 ∩ 𝐵) ∈ Fin) | |
3 | 1, 2 | mpan2 688 | 1 ⊢ (𝐴 ∈ Fin → (𝐴 ∩ 𝐵) ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2110 ∩ cin 3891 ⊆ wss 3892 Fincfn 8716 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 ax-un 7582 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-om 7707 df-1o 8288 df-en 8717 df-fin 8720 |
This theorem is referenced by: rabfi 9022 resfnfinfin 9077 resfifsupp 9134 fin23lem22 10084 pmatcoe1fsupp 21848 trlsegvdeglem6 28585 gsummptres 31308 indsumin 31986 eulerpartlemt 32334 ballotlemgun 32487 hgt750lemd 32624 fourierdlem50 43668 fourierdlem71 43689 fourierdlem76 43694 fourierdlem80 43698 fourierdlem103 43721 fourierdlem104 43722 sge0split 43918 |
Copyright terms: Public domain | W3C validator |