MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infi Structured version   Visualization version   GIF version

Theorem infi 8734
Description: The intersection of two sets is finite if one of them is. (Contributed by Thierry Arnoux, 14-Feb-2017.)
Assertion
Ref Expression
infi (𝐴 ∈ Fin → (𝐴𝐵) ∈ Fin)

Proof of Theorem infi
StepHypRef Expression
1 inss1 4203 . 2 (𝐴𝐵) ⊆ 𝐴
2 ssfi 8730 . 2 ((𝐴 ∈ Fin ∧ (𝐴𝐵) ⊆ 𝐴) → (𝐴𝐵) ∈ Fin)
31, 2mpan2 689 1 (𝐴 ∈ Fin → (𝐴𝐵) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  cin 3933  wss 3934  Fincfn 8501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-rab 3145  df-v 3495  df-sbc 3771  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-br 5058  df-opab 5120  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-om 7573  df-er 8281  df-en 8502  df-fin 8505
This theorem is referenced by:  rabfi  8735  resfnfinfin  8796  resfifsupp  8853  fin23lem22  9741  pmatcoe1fsupp  21301  trlsegvdeglem6  27996  gsummptres  30683  indsumin  31274  eulerpartlemt  31622  ballotlemgun  31775  hgt750lemd  31912  fourierdlem50  42431  fourierdlem71  42452  fourierdlem76  42457  fourierdlem80  42461  fourierdlem103  42484  fourierdlem104  42485  sge0split  42681
  Copyright terms: Public domain W3C validator