![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > o1eq | Structured version Visualization version GIF version |
Description: Two functions that are eventually equal to one another are eventually bounded if one of them is. (Contributed by Mario Carneiro, 26-May-2016.) |
Ref | Expression |
---|---|
rlimeq.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) |
rlimeq.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℂ) |
rlimeq.3 | ⊢ (𝜑 → 𝐷 ∈ ℝ) |
rlimeq.4 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝐷 ≤ 𝑥)) → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
o1eq | ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1) ↔ (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝑂(1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rlimeq.1 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) | |
2 | 1 | abscld 14551 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (abs‘𝐵) ∈ ℝ) |
3 | rlimeq.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℂ) | |
4 | 3 | abscld 14551 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (abs‘𝐶) ∈ ℝ) |
5 | rlimeq.3 | . . 3 ⊢ (𝜑 → 𝐷 ∈ ℝ) | |
6 | rlimeq.4 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝐷 ≤ 𝑥)) → 𝐵 = 𝐶) | |
7 | 6 | fveq2d 6436 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝐷 ≤ 𝑥)) → (abs‘𝐵) = (abs‘𝐶)) |
8 | 2, 4, 5, 7 | lo1eq 14675 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ (abs‘𝐵)) ∈ ≤𝑂(1) ↔ (𝑥 ∈ 𝐴 ↦ (abs‘𝐶)) ∈ ≤𝑂(1))) |
9 | 1 | lo1o12 14640 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1) ↔ (𝑥 ∈ 𝐴 ↦ (abs‘𝐵)) ∈ ≤𝑂(1))) |
10 | 3 | lo1o12 14640 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝑂(1) ↔ (𝑥 ∈ 𝐴 ↦ (abs‘𝐶)) ∈ ≤𝑂(1))) |
11 | 8, 9, 10 | 3bitr4d 303 | 1 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1) ↔ (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝑂(1))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1658 ∈ wcel 2166 class class class wbr 4872 ↦ cmpt 4951 ‘cfv 6122 ℂcc 10249 ℝcr 10250 ≤ cle 10391 abscabs 14350 𝑂(1)co1 14593 ≤𝑂(1)clo1 14594 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2390 ax-ext 2802 ax-sep 5004 ax-nul 5012 ax-pow 5064 ax-pr 5126 ax-un 7208 ax-cnex 10307 ax-resscn 10308 ax-1cn 10309 ax-icn 10310 ax-addcl 10311 ax-addrcl 10312 ax-mulcl 10313 ax-mulrcl 10314 ax-mulcom 10315 ax-addass 10316 ax-mulass 10317 ax-distr 10318 ax-i2m1 10319 ax-1ne0 10320 ax-1rid 10321 ax-rnegex 10322 ax-rrecex 10323 ax-cnre 10324 ax-pre-lttri 10325 ax-pre-lttrn 10326 ax-pre-ltadd 10327 ax-pre-mulgt0 10328 ax-pre-sup 10329 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2604 df-eu 2639 df-clab 2811 df-cleq 2817 df-clel 2820 df-nfc 2957 df-ne 2999 df-nel 3102 df-ral 3121 df-rex 3122 df-reu 3123 df-rmo 3124 df-rab 3125 df-v 3415 df-sbc 3662 df-csb 3757 df-dif 3800 df-un 3802 df-in 3804 df-ss 3811 df-pss 3813 df-nul 4144 df-if 4306 df-pw 4379 df-sn 4397 df-pr 4399 df-tp 4401 df-op 4403 df-uni 4658 df-iun 4741 df-br 4873 df-opab 4935 df-mpt 4952 df-tr 4975 df-id 5249 df-eprel 5254 df-po 5262 df-so 5263 df-fr 5300 df-we 5302 df-xp 5347 df-rel 5348 df-cnv 5349 df-co 5350 df-dm 5351 df-rn 5352 df-res 5353 df-ima 5354 df-pred 5919 df-ord 5965 df-on 5966 df-lim 5967 df-suc 5968 df-iota 6085 df-fun 6124 df-fn 6125 df-f 6126 df-f1 6127 df-fo 6128 df-f1o 6129 df-fv 6130 df-riota 6865 df-ov 6907 df-oprab 6908 df-mpt2 6909 df-om 7326 df-2nd 7428 df-wrecs 7671 df-recs 7733 df-rdg 7771 df-er 8008 df-pm 8124 df-en 8222 df-dom 8223 df-sdom 8224 df-sup 8616 df-pnf 10392 df-mnf 10393 df-xr 10394 df-ltxr 10395 df-le 10396 df-sub 10586 df-neg 10587 df-div 11009 df-nn 11350 df-2 11413 df-3 11414 df-n0 11618 df-z 11704 df-uz 11968 df-rp 12112 df-ico 12468 df-seq 13095 df-exp 13154 df-cj 14215 df-re 14216 df-im 14217 df-sqrt 14351 df-abs 14352 df-o1 14597 df-lo1 14598 |
This theorem is referenced by: mulogsum 25633 |
Copyright terms: Public domain | W3C validator |