![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gausslemma2dlem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for gausslemma2d 27433. (Contributed by AV, 5-Jul-2021.) |
Ref | Expression |
---|---|
gausslemma2d.p | ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) |
gausslemma2d.h | ⊢ 𝐻 = ((𝑃 − 1) / 2) |
gausslemma2d.r | ⊢ 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2)))) |
Ref | Expression |
---|---|
gausslemma2dlem1 | ⊢ (𝜑 → (!‘𝐻) = ∏𝑘 ∈ (1...𝐻)(𝑅‘𝑘)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gausslemma2d.p | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) | |
2 | gausslemma2d.h | . . . . 5 ⊢ 𝐻 = ((𝑃 − 1) / 2) | |
3 | 1, 2 | gausslemma2dlem0b 27416 | . . . 4 ⊢ (𝜑 → 𝐻 ∈ ℕ) |
4 | 3 | nnnn0d 12585 | . . 3 ⊢ (𝜑 → 𝐻 ∈ ℕ0) |
5 | fprodfac 16006 | . . 3 ⊢ (𝐻 ∈ ℕ0 → (!‘𝐻) = ∏𝑙 ∈ (1...𝐻)𝑙) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝜑 → (!‘𝐻) = ∏𝑙 ∈ (1...𝐻)𝑙) |
7 | id 22 | . . 3 ⊢ (𝑙 = (𝑅‘𝑘) → 𝑙 = (𝑅‘𝑘)) | |
8 | fzfid 14011 | . . 3 ⊢ (𝜑 → (1...𝐻) ∈ Fin) | |
9 | fzfi 14010 | . . . 4 ⊢ (1...𝐻) ∈ Fin | |
10 | ovex 7464 | . . . . . 6 ⊢ (𝑥 · 2) ∈ V | |
11 | ovex 7464 | . . . . . 6 ⊢ (𝑃 − (𝑥 · 2)) ∈ V | |
12 | 10, 11 | ifex 4581 | . . . . 5 ⊢ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))) ∈ V |
13 | gausslemma2d.r | . . . . 5 ⊢ 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2)))) | |
14 | 12, 13 | fnmpti 6712 | . . . 4 ⊢ 𝑅 Fn (1...𝐻) |
15 | 1, 2, 13 | gausslemma2dlem1a 27424 | . . . 4 ⊢ (𝜑 → ran 𝑅 = (1...𝐻)) |
16 | rneqdmfinf1o 9371 | . . . 4 ⊢ (((1...𝐻) ∈ Fin ∧ 𝑅 Fn (1...𝐻) ∧ ran 𝑅 = (1...𝐻)) → 𝑅:(1...𝐻)–1-1-onto→(1...𝐻)) | |
17 | 9, 14, 15, 16 | mp3an12i 1464 | . . 3 ⊢ (𝜑 → 𝑅:(1...𝐻)–1-1-onto→(1...𝐻)) |
18 | eqidd 2736 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝐻)) → (𝑅‘𝑘) = (𝑅‘𝑘)) | |
19 | elfzelz 13561 | . . . . 5 ⊢ (𝑙 ∈ (1...𝐻) → 𝑙 ∈ ℤ) | |
20 | 19 | zcnd 12721 | . . . 4 ⊢ (𝑙 ∈ (1...𝐻) → 𝑙 ∈ ℂ) |
21 | 20 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑙 ∈ (1...𝐻)) → 𝑙 ∈ ℂ) |
22 | 7, 8, 17, 18, 21 | fprodf1o 15979 | . 2 ⊢ (𝜑 → ∏𝑙 ∈ (1...𝐻)𝑙 = ∏𝑘 ∈ (1...𝐻)(𝑅‘𝑘)) |
23 | 6, 22 | eqtrd 2775 | 1 ⊢ (𝜑 → (!‘𝐻) = ∏𝑘 ∈ (1...𝐻)(𝑅‘𝑘)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∖ cdif 3960 ifcif 4531 {csn 4631 class class class wbr 5148 ↦ cmpt 5231 ran crn 5690 Fn wfn 6558 –1-1-onto→wf1o 6562 ‘cfv 6563 (class class class)co 7431 Fincfn 8984 ℂcc 11151 1c1 11154 · cmul 11158 < clt 11293 − cmin 11490 / cdiv 11918 2c2 12319 ℕ0cn0 12524 ...cfz 13544 !cfa 14309 ∏cprod 15936 ℙcprime 16705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-inf2 9679 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-sup 9480 df-oi 9548 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-n0 12525 df-z 12612 df-uz 12877 df-rp 13033 df-ioo 13388 df-fz 13545 df-fzo 13692 df-seq 14040 df-exp 14100 df-fac 14310 df-hash 14367 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-clim 15521 df-prod 15937 df-dvds 16288 df-prm 16706 |
This theorem is referenced by: gausslemma2dlem4 27428 |
Copyright terms: Public domain | W3C validator |