| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gausslemma2dlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma 1 for gausslemma2d 27261. (Contributed by AV, 5-Jul-2021.) |
| Ref | Expression |
|---|---|
| gausslemma2d.p | ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) |
| gausslemma2d.h | ⊢ 𝐻 = ((𝑃 − 1) / 2) |
| gausslemma2d.r | ⊢ 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2)))) |
| Ref | Expression |
|---|---|
| gausslemma2dlem1 | ⊢ (𝜑 → (!‘𝐻) = ∏𝑘 ∈ (1...𝐻)(𝑅‘𝑘)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gausslemma2d.p | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) | |
| 2 | gausslemma2d.h | . . . . 5 ⊢ 𝐻 = ((𝑃 − 1) / 2) | |
| 3 | 1, 2 | gausslemma2dlem0b 27244 | . . . 4 ⊢ (𝜑 → 𝐻 ∈ ℕ) |
| 4 | 3 | nnnn0d 12479 | . . 3 ⊢ (𝜑 → 𝐻 ∈ ℕ0) |
| 5 | fprodfac 15915 | . . 3 ⊢ (𝐻 ∈ ℕ0 → (!‘𝐻) = ∏𝑙 ∈ (1...𝐻)𝑙) | |
| 6 | 4, 5 | syl 17 | . 2 ⊢ (𝜑 → (!‘𝐻) = ∏𝑙 ∈ (1...𝐻)𝑙) |
| 7 | id 22 | . . 3 ⊢ (𝑙 = (𝑅‘𝑘) → 𝑙 = (𝑅‘𝑘)) | |
| 8 | fzfid 13914 | . . 3 ⊢ (𝜑 → (1...𝐻) ∈ Fin) | |
| 9 | fzfi 13913 | . . . 4 ⊢ (1...𝐻) ∈ Fin | |
| 10 | ovex 7402 | . . . . . 6 ⊢ (𝑥 · 2) ∈ V | |
| 11 | ovex 7402 | . . . . . 6 ⊢ (𝑃 − (𝑥 · 2)) ∈ V | |
| 12 | 10, 11 | ifex 4535 | . . . . 5 ⊢ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))) ∈ V |
| 13 | gausslemma2d.r | . . . . 5 ⊢ 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2)))) | |
| 14 | 12, 13 | fnmpti 6643 | . . . 4 ⊢ 𝑅 Fn (1...𝐻) |
| 15 | 1, 2, 13 | gausslemma2dlem1a 27252 | . . . 4 ⊢ (𝜑 → ran 𝑅 = (1...𝐻)) |
| 16 | rneqdmfinf1o 9260 | . . . 4 ⊢ (((1...𝐻) ∈ Fin ∧ 𝑅 Fn (1...𝐻) ∧ ran 𝑅 = (1...𝐻)) → 𝑅:(1...𝐻)–1-1-onto→(1...𝐻)) | |
| 17 | 9, 14, 15, 16 | mp3an12i 1467 | . . 3 ⊢ (𝜑 → 𝑅:(1...𝐻)–1-1-onto→(1...𝐻)) |
| 18 | eqidd 2730 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝐻)) → (𝑅‘𝑘) = (𝑅‘𝑘)) | |
| 19 | elfzelz 13461 | . . . . 5 ⊢ (𝑙 ∈ (1...𝐻) → 𝑙 ∈ ℤ) | |
| 20 | 19 | zcnd 12615 | . . . 4 ⊢ (𝑙 ∈ (1...𝐻) → 𝑙 ∈ ℂ) |
| 21 | 20 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑙 ∈ (1...𝐻)) → 𝑙 ∈ ℂ) |
| 22 | 7, 8, 17, 18, 21 | fprodf1o 15888 | . 2 ⊢ (𝜑 → ∏𝑙 ∈ (1...𝐻)𝑙 = ∏𝑘 ∈ (1...𝐻)(𝑅‘𝑘)) |
| 23 | 6, 22 | eqtrd 2764 | 1 ⊢ (𝜑 → (!‘𝐻) = ∏𝑘 ∈ (1...𝐻)(𝑅‘𝑘)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∖ cdif 3908 ifcif 4484 {csn 4585 class class class wbr 5102 ↦ cmpt 5183 ran crn 5632 Fn wfn 6494 –1-1-onto→wf1o 6498 ‘cfv 6499 (class class class)co 7369 Fincfn 8895 ℂcc 11042 1c1 11045 · cmul 11049 < clt 11184 − cmin 11381 / cdiv 11811 2c2 12217 ℕ0cn0 12418 ...cfz 13444 !cfa 14214 ∏cprod 15845 ℙcprime 16617 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9570 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-sup 9369 df-oi 9439 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-n0 12419 df-z 12506 df-uz 12770 df-rp 12928 df-ioo 13286 df-fz 13445 df-fzo 13592 df-seq 13943 df-exp 14003 df-fac 14215 df-hash 14272 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-clim 15430 df-prod 15846 df-dvds 16199 df-prm 16618 |
| This theorem is referenced by: gausslemma2dlem4 27256 |
| Copyright terms: Public domain | W3C validator |