MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gausslemma2dlem1 Structured version   Visualization version   GIF version

Theorem gausslemma2dlem1 27253
Description: Lemma 1 for gausslemma2d 27261. (Contributed by AV, 5-Jul-2021.)
Hypotheses
Ref Expression
gausslemma2d.p (𝜑𝑃 ∈ (ℙ ∖ {2}))
gausslemma2d.h 𝐻 = ((𝑃 − 1) / 2)
gausslemma2d.r 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))
Assertion
Ref Expression
gausslemma2dlem1 (𝜑 → (!‘𝐻) = ∏𝑘 ∈ (1...𝐻)(𝑅𝑘))
Distinct variable groups:   𝑥,𝐻   𝑥,𝑃   𝜑,𝑥   𝑘,𝐻   𝑅,𝑘   𝜑,𝑘
Allowed substitution hints:   𝑃(𝑘)   𝑅(𝑥)

Proof of Theorem gausslemma2dlem1
Dummy variable 𝑙 is distinct from all other variables.
StepHypRef Expression
1 gausslemma2d.p . . . . 5 (𝜑𝑃 ∈ (ℙ ∖ {2}))
2 gausslemma2d.h . . . . 5 𝐻 = ((𝑃 − 1) / 2)
31, 2gausslemma2dlem0b 27244 . . . 4 (𝜑𝐻 ∈ ℕ)
43nnnn0d 12479 . . 3 (𝜑𝐻 ∈ ℕ0)
5 fprodfac 15915 . . 3 (𝐻 ∈ ℕ0 → (!‘𝐻) = ∏𝑙 ∈ (1...𝐻)𝑙)
64, 5syl 17 . 2 (𝜑 → (!‘𝐻) = ∏𝑙 ∈ (1...𝐻)𝑙)
7 id 22 . . 3 (𝑙 = (𝑅𝑘) → 𝑙 = (𝑅𝑘))
8 fzfid 13914 . . 3 (𝜑 → (1...𝐻) ∈ Fin)
9 fzfi 13913 . . . 4 (1...𝐻) ∈ Fin
10 ovex 7402 . . . . . 6 (𝑥 · 2) ∈ V
11 ovex 7402 . . . . . 6 (𝑃 − (𝑥 · 2)) ∈ V
1210, 11ifex 4535 . . . . 5 if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))) ∈ V
13 gausslemma2d.r . . . . 5 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))
1412, 13fnmpti 6643 . . . 4 𝑅 Fn (1...𝐻)
151, 2, 13gausslemma2dlem1a 27252 . . . 4 (𝜑 → ran 𝑅 = (1...𝐻))
16 rneqdmfinf1o 9260 . . . 4 (((1...𝐻) ∈ Fin ∧ 𝑅 Fn (1...𝐻) ∧ ran 𝑅 = (1...𝐻)) → 𝑅:(1...𝐻)–1-1-onto→(1...𝐻))
179, 14, 15, 16mp3an12i 1467 . . 3 (𝜑𝑅:(1...𝐻)–1-1-onto→(1...𝐻))
18 eqidd 2730 . . 3 ((𝜑𝑘 ∈ (1...𝐻)) → (𝑅𝑘) = (𝑅𝑘))
19 elfzelz 13461 . . . . 5 (𝑙 ∈ (1...𝐻) → 𝑙 ∈ ℤ)
2019zcnd 12615 . . . 4 (𝑙 ∈ (1...𝐻) → 𝑙 ∈ ℂ)
2120adantl 481 . . 3 ((𝜑𝑙 ∈ (1...𝐻)) → 𝑙 ∈ ℂ)
227, 8, 17, 18, 21fprodf1o 15888 . 2 (𝜑 → ∏𝑙 ∈ (1...𝐻)𝑙 = ∏𝑘 ∈ (1...𝐻)(𝑅𝑘))
236, 22eqtrd 2764 1 (𝜑 → (!‘𝐻) = ∏𝑘 ∈ (1...𝐻)(𝑅𝑘))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cdif 3908  ifcif 4484  {csn 4585   class class class wbr 5102  cmpt 5183  ran crn 5632   Fn wfn 6494  1-1-ontowf1o 6498  cfv 6499  (class class class)co 7369  Fincfn 8895  cc 11042  1c1 11045   · cmul 11049   < clt 11184  cmin 11381   / cdiv 11811  2c2 12217  0cn0 12418  ...cfz 13444  !cfa 14214  cprod 15845  cprime 16617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-ioo 13286  df-fz 13445  df-fzo 13592  df-seq 13943  df-exp 14003  df-fac 14215  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-prod 15846  df-dvds 16199  df-prm 16618
This theorem is referenced by:  gausslemma2dlem4  27256
  Copyright terms: Public domain W3C validator