| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpregt0d | Structured version Visualization version GIF version | ||
| Description: A positive real is real and greater than zero. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| Ref | Expression |
|---|---|
| rpregt0d | ⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpred.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
| 2 | 1 | rpred 12955 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 3 | 1 | rpgt0d 12958 | . 2 ⊢ (𝜑 → 0 < 𝐴) |
| 4 | 2, 3 | jca 511 | 1 ⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 class class class wbr 5095 ℝcr 11027 0cc0 11028 < clt 11168 ℝ+crp 12911 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-rp 12912 |
| This theorem is referenced by: reclt1d 12968 recgt1d 12969 ltrecd 12973 lerecd 12974 ltrec1d 12975 lerec2d 12976 lediv2ad 12977 ltdiv2d 12978 lediv2d 12979 ledivdivd 12980 divge0d 12995 ltmul1d 12996 ltmul2d 12997 lemul1d 12998 lemul2d 12999 ltdiv1d 13000 lediv1d 13001 ltmuldivd 13002 ltmuldiv2d 13003 lemuldivd 13004 lemuldiv2d 13005 ltdivmuld 13006 ltdivmul2d 13007 ledivmuld 13008 ledivmul2d 13009 ltdiv23d 13022 lediv23d 13023 lt2mul2divd 13024 mertenslem1 15809 isprm6 16643 nmoi 24632 icopnfhmeo 24857 nmoleub2lem3 25031 lmnn 25179 ovolscalem1 25430 aaliou2b 26265 birthdaylem3 26879 fsumharmonic 26938 bcmono 27204 chtppilim 27402 dchrisum0lem1a 27413 dchrvmasumiflem1 27428 dchrisum0lem1b 27442 dchrisum0lem1 27443 mulog2sumlem2 27462 selberg3lem1 27484 pntrsumo1 27492 pntibndlem1 27516 pntibndlem3 27519 pntlemr 27529 pntlemj 27530 ostth3 27565 minvecolem3 30838 lnconi 31995 poimirlem29 37628 poimirlem30 37629 poimirlem31 37630 poimirlem32 37631 aks4d1p1p2 42043 stoweidlem14 45996 stoweidlem34 46016 stoweidlem42 46024 stoweidlem51 46033 stoweidlem59 46041 stirlinglem5 46060 elbigolo1 48530 |
| Copyright terms: Public domain | W3C validator |