Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rpregt0d | Structured version Visualization version GIF version |
Description: A positive real is real and greater than zero. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
Ref | Expression |
---|---|
rpregt0d | ⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpred.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
2 | 1 | rpred 12781 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
3 | 1 | rpgt0d 12784 | . 2 ⊢ (𝜑 → 0 < 𝐴) |
4 | 2, 3 | jca 512 | 1 ⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2107 class class class wbr 5075 ℝcr 10879 0cc0 10880 < clt 11018 ℝ+crp 12739 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2069 df-clab 2717 df-cleq 2731 df-clel 2817 df-rab 3074 df-v 3435 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4258 df-if 4461 df-sn 4563 df-pr 4565 df-op 4569 df-br 5076 df-rp 12740 |
This theorem is referenced by: reclt1d 12794 recgt1d 12795 ltrecd 12799 lerecd 12800 ltrec1d 12801 lerec2d 12802 lediv2ad 12803 ltdiv2d 12804 lediv2d 12805 ledivdivd 12806 divge0d 12821 ltmul1d 12822 ltmul2d 12823 lemul1d 12824 lemul2d 12825 ltdiv1d 12826 lediv1d 12827 ltmuldivd 12828 ltmuldiv2d 12829 lemuldivd 12830 lemuldiv2d 12831 ltdivmuld 12832 ltdivmul2d 12833 ledivmuld 12834 ledivmul2d 12835 ltdiv23d 12848 lediv23d 12849 lt2mul2divd 12850 mertenslem1 15605 isprm6 16428 nmoi 23901 icopnfhmeo 24115 nmoleub2lem3 24287 lmnn 24436 ovolscalem1 24686 aaliou2b 25510 birthdaylem3 26112 fsumharmonic 26170 bcmono 26434 chtppilim 26632 dchrisum0lem1a 26643 dchrvmasumiflem1 26658 dchrisum0lem1b 26672 dchrisum0lem1 26673 mulog2sumlem2 26692 selberg3lem1 26714 pntrsumo1 26722 pntibndlem1 26746 pntibndlem3 26749 pntlemr 26759 pntlemj 26760 ostth3 26795 minvecolem3 29247 lnconi 30404 poimirlem29 35815 poimirlem30 35816 poimirlem31 35817 poimirlem32 35818 aks4d1p1p2 40085 stoweidlem14 43562 stoweidlem34 43582 stoweidlem42 43590 stoweidlem51 43599 stoweidlem59 43607 stirlinglem5 43626 elbigolo1 45914 |
Copyright terms: Public domain | W3C validator |