| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpregt0d | Structured version Visualization version GIF version | ||
| Description: A positive real is real and greater than zero. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| Ref | Expression |
|---|---|
| rpregt0d | ⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpred.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
| 2 | 1 | rpred 12995 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 3 | 1 | rpgt0d 12998 | . 2 ⊢ (𝜑 → 0 < 𝐴) |
| 4 | 2, 3 | jca 511 | 1 ⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 class class class wbr 5107 ℝcr 11067 0cc0 11068 < clt 11208 ℝ+crp 12951 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-rp 12952 |
| This theorem is referenced by: reclt1d 13008 recgt1d 13009 ltrecd 13013 lerecd 13014 ltrec1d 13015 lerec2d 13016 lediv2ad 13017 ltdiv2d 13018 lediv2d 13019 ledivdivd 13020 divge0d 13035 ltmul1d 13036 ltmul2d 13037 lemul1d 13038 lemul2d 13039 ltdiv1d 13040 lediv1d 13041 ltmuldivd 13042 ltmuldiv2d 13043 lemuldivd 13044 lemuldiv2d 13045 ltdivmuld 13046 ltdivmul2d 13047 ledivmuld 13048 ledivmul2d 13049 ltdiv23d 13062 lediv23d 13063 lt2mul2divd 13064 mertenslem1 15850 isprm6 16684 nmoi 24616 icopnfhmeo 24841 nmoleub2lem3 25015 lmnn 25163 ovolscalem1 25414 aaliou2b 26249 birthdaylem3 26863 fsumharmonic 26922 bcmono 27188 chtppilim 27386 dchrisum0lem1a 27397 dchrvmasumiflem1 27412 dchrisum0lem1b 27426 dchrisum0lem1 27427 mulog2sumlem2 27446 selberg3lem1 27468 pntrsumo1 27476 pntibndlem1 27500 pntibndlem3 27503 pntlemr 27513 pntlemj 27514 ostth3 27549 minvecolem3 30805 lnconi 31962 poimirlem29 37643 poimirlem30 37644 poimirlem31 37645 poimirlem32 37646 aks4d1p1p2 42058 stoweidlem14 46012 stoweidlem34 46032 stoweidlem42 46040 stoweidlem51 46049 stoweidlem59 46057 stirlinglem5 46076 elbigolo1 48546 |
| Copyright terms: Public domain | W3C validator |