![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rpregt0d | Structured version Visualization version GIF version |
Description: A positive real is real and greater than zero. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
Ref | Expression |
---|---|
rpregt0d | ⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpred.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
2 | 1 | rpred 13099 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
3 | 1 | rpgt0d 13102 | . 2 ⊢ (𝜑 → 0 < 𝐴) |
4 | 2, 3 | jca 511 | 1 ⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 class class class wbr 5166 ℝcr 11183 0cc0 11184 < clt 11324 ℝ+crp 13057 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-rp 13058 |
This theorem is referenced by: reclt1d 13112 recgt1d 13113 ltrecd 13117 lerecd 13118 ltrec1d 13119 lerec2d 13120 lediv2ad 13121 ltdiv2d 13122 lediv2d 13123 ledivdivd 13124 divge0d 13139 ltmul1d 13140 ltmul2d 13141 lemul1d 13142 lemul2d 13143 ltdiv1d 13144 lediv1d 13145 ltmuldivd 13146 ltmuldiv2d 13147 lemuldivd 13148 lemuldiv2d 13149 ltdivmuld 13150 ltdivmul2d 13151 ledivmuld 13152 ledivmul2d 13153 ltdiv23d 13166 lediv23d 13167 lt2mul2divd 13168 mertenslem1 15932 isprm6 16761 nmoi 24770 icopnfhmeo 24993 nmoleub2lem3 25167 lmnn 25316 ovolscalem1 25567 aaliou2b 26401 birthdaylem3 27014 fsumharmonic 27073 bcmono 27339 chtppilim 27537 dchrisum0lem1a 27548 dchrvmasumiflem1 27563 dchrisum0lem1b 27577 dchrisum0lem1 27578 mulog2sumlem2 27597 selberg3lem1 27619 pntrsumo1 27627 pntibndlem1 27651 pntibndlem3 27654 pntlemr 27664 pntlemj 27665 ostth3 27700 minvecolem3 30908 lnconi 32065 poimirlem29 37609 poimirlem30 37610 poimirlem31 37611 poimirlem32 37612 aks4d1p1p2 42027 stoweidlem14 45935 stoweidlem34 45955 stoweidlem42 45963 stoweidlem51 45972 stoweidlem59 45980 stirlinglem5 45999 elbigolo1 48291 |
Copyright terms: Public domain | W3C validator |