| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpregt0d | Structured version Visualization version GIF version | ||
| Description: A positive real is real and greater than zero. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| Ref | Expression |
|---|---|
| rpregt0d | ⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpred.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
| 2 | 1 | rpred 12926 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 3 | 1 | rpgt0d 12929 | . 2 ⊢ (𝜑 → 0 < 𝐴) |
| 4 | 2, 3 | jca 511 | 1 ⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2110 class class class wbr 5089 ℝcr 10997 0cc0 10998 < clt 11138 ℝ+crp 12882 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-br 5090 df-rp 12883 |
| This theorem is referenced by: reclt1d 12939 recgt1d 12940 ltrecd 12944 lerecd 12945 ltrec1d 12946 lerec2d 12947 lediv2ad 12948 ltdiv2d 12949 lediv2d 12950 ledivdivd 12951 divge0d 12966 ltmul1d 12967 ltmul2d 12968 lemul1d 12969 lemul2d 12970 ltdiv1d 12971 lediv1d 12972 ltmuldivd 12973 ltmuldiv2d 12974 lemuldivd 12975 lemuldiv2d 12976 ltdivmuld 12977 ltdivmul2d 12978 ledivmuld 12979 ledivmul2d 12980 ltdiv23d 12993 lediv23d 12994 lt2mul2divd 12995 mertenslem1 15783 isprm6 16617 nmoi 24636 icopnfhmeo 24861 nmoleub2lem3 25035 lmnn 25183 ovolscalem1 25434 aaliou2b 26269 birthdaylem3 26883 fsumharmonic 26942 bcmono 27208 chtppilim 27406 dchrisum0lem1a 27417 dchrvmasumiflem1 27432 dchrisum0lem1b 27446 dchrisum0lem1 27447 mulog2sumlem2 27466 selberg3lem1 27488 pntrsumo1 27496 pntibndlem1 27520 pntibndlem3 27523 pntlemr 27533 pntlemj 27534 ostth3 27569 minvecolem3 30846 lnconi 32003 poimirlem29 37668 poimirlem30 37669 poimirlem31 37670 poimirlem32 37671 aks4d1p1p2 42082 stoweidlem14 46031 stoweidlem34 46051 stoweidlem42 46059 stoweidlem51 46068 stoweidlem59 46076 stirlinglem5 46095 elbigolo1 48568 |
| Copyright terms: Public domain | W3C validator |