| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpregt0d | Structured version Visualization version GIF version | ||
| Description: A positive real is real and greater than zero. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| Ref | Expression |
|---|---|
| rpregt0d | ⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpred.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
| 2 | 1 | rpred 13056 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 3 | 1 | rpgt0d 13059 | . 2 ⊢ (𝜑 → 0 < 𝐴) |
| 4 | 2, 3 | jca 511 | 1 ⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 class class class wbr 5124 ℝcr 11133 0cc0 11134 < clt 11274 ℝ+crp 13013 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-rp 13014 |
| This theorem is referenced by: reclt1d 13069 recgt1d 13070 ltrecd 13074 lerecd 13075 ltrec1d 13076 lerec2d 13077 lediv2ad 13078 ltdiv2d 13079 lediv2d 13080 ledivdivd 13081 divge0d 13096 ltmul1d 13097 ltmul2d 13098 lemul1d 13099 lemul2d 13100 ltdiv1d 13101 lediv1d 13102 ltmuldivd 13103 ltmuldiv2d 13104 lemuldivd 13105 lemuldiv2d 13106 ltdivmuld 13107 ltdivmul2d 13108 ledivmuld 13109 ledivmul2d 13110 ltdiv23d 13123 lediv23d 13124 lt2mul2divd 13125 mertenslem1 15905 isprm6 16738 nmoi 24672 icopnfhmeo 24897 nmoleub2lem3 25071 lmnn 25220 ovolscalem1 25471 aaliou2b 26306 birthdaylem3 26920 fsumharmonic 26979 bcmono 27245 chtppilim 27443 dchrisum0lem1a 27454 dchrvmasumiflem1 27469 dchrisum0lem1b 27483 dchrisum0lem1 27484 mulog2sumlem2 27503 selberg3lem1 27525 pntrsumo1 27533 pntibndlem1 27557 pntibndlem3 27560 pntlemr 27570 pntlemj 27571 ostth3 27606 minvecolem3 30862 lnconi 32019 poimirlem29 37678 poimirlem30 37679 poimirlem31 37680 poimirlem32 37681 aks4d1p1p2 42088 stoweidlem14 46010 stoweidlem34 46030 stoweidlem42 46038 stoweidlem51 46047 stoweidlem59 46055 stirlinglem5 46074 elbigolo1 48504 |
| Copyright terms: Public domain | W3C validator |