Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rpregt0d | Structured version Visualization version GIF version |
Description: A positive real is real and greater than zero. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
Ref | Expression |
---|---|
rpregt0d | ⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpred.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
2 | 1 | rpred 12701 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
3 | 1 | rpgt0d 12704 | . 2 ⊢ (𝜑 → 0 < 𝐴) |
4 | 2, 3 | jca 511 | 1 ⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 class class class wbr 5070 ℝcr 10801 0cc0 10802 < clt 10940 ℝ+crp 12659 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-rp 12660 |
This theorem is referenced by: reclt1d 12714 recgt1d 12715 ltrecd 12719 lerecd 12720 ltrec1d 12721 lerec2d 12722 lediv2ad 12723 ltdiv2d 12724 lediv2d 12725 ledivdivd 12726 divge0d 12741 ltmul1d 12742 ltmul2d 12743 lemul1d 12744 lemul2d 12745 ltdiv1d 12746 lediv1d 12747 ltmuldivd 12748 ltmuldiv2d 12749 lemuldivd 12750 lemuldiv2d 12751 ltdivmuld 12752 ltdivmul2d 12753 ledivmuld 12754 ledivmul2d 12755 ltdiv23d 12768 lediv23d 12769 lt2mul2divd 12770 mertenslem1 15524 isprm6 16347 nmoi 23798 icopnfhmeo 24012 nmoleub2lem3 24184 lmnn 24332 ovolscalem1 24582 aaliou2b 25406 birthdaylem3 26008 fsumharmonic 26066 bcmono 26330 chtppilim 26528 dchrisum0lem1a 26539 dchrvmasumiflem1 26554 dchrisum0lem1b 26568 dchrisum0lem1 26569 mulog2sumlem2 26588 selberg3lem1 26610 pntrsumo1 26618 pntibndlem1 26642 pntibndlem3 26645 pntlemr 26655 pntlemj 26656 ostth3 26691 minvecolem3 29139 lnconi 30296 poimirlem29 35733 poimirlem30 35734 poimirlem31 35735 poimirlem32 35736 aks4d1p1p2 40006 stoweidlem14 43445 stoweidlem34 43465 stoweidlem42 43473 stoweidlem51 43482 stoweidlem59 43490 stirlinglem5 43509 elbigolo1 45791 |
Copyright terms: Public domain | W3C validator |