| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpregt0d | Structured version Visualization version GIF version | ||
| Description: A positive real is real and greater than zero. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| Ref | Expression |
|---|---|
| rpregt0d | ⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpred.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
| 2 | 1 | rpred 12944 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 3 | 1 | rpgt0d 12947 | . 2 ⊢ (𝜑 → 0 < 𝐴) |
| 4 | 2, 3 | jca 511 | 1 ⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2113 class class class wbr 5095 ℝcr 11015 0cc0 11016 < clt 11156 ℝ+crp 12900 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3398 df-v 3440 df-dif 3902 df-un 3904 df-ss 3916 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-rp 12901 |
| This theorem is referenced by: reclt1d 12957 recgt1d 12958 ltrecd 12962 lerecd 12963 ltrec1d 12964 lerec2d 12965 lediv2ad 12966 ltdiv2d 12967 lediv2d 12968 ledivdivd 12969 divge0d 12984 ltmul1d 12985 ltmul2d 12986 lemul1d 12987 lemul2d 12988 ltdiv1d 12989 lediv1d 12990 ltmuldivd 12991 ltmuldiv2d 12992 lemuldivd 12993 lemuldiv2d 12994 ltdivmuld 12995 ltdivmul2d 12996 ledivmuld 12997 ledivmul2d 12998 ltdiv23d 13011 lediv23d 13012 lt2mul2divd 13013 mertenslem1 15801 isprm6 16635 nmoi 24653 icopnfhmeo 24878 nmoleub2lem3 25052 lmnn 25200 ovolscalem1 25451 aaliou2b 26286 birthdaylem3 26900 fsumharmonic 26959 bcmono 27225 chtppilim 27423 dchrisum0lem1a 27434 dchrvmasumiflem1 27449 dchrisum0lem1b 27463 dchrisum0lem1 27464 mulog2sumlem2 27483 selberg3lem1 27505 pntrsumo1 27513 pntibndlem1 27537 pntibndlem3 27540 pntlemr 27550 pntlemj 27551 ostth3 27586 minvecolem3 30867 lnconi 32024 poimirlem29 37699 poimirlem30 37700 poimirlem31 37701 poimirlem32 37702 aks4d1p1p2 42173 stoweidlem14 46126 stoweidlem34 46146 stoweidlem42 46154 stoweidlem51 46163 stoweidlem59 46171 stirlinglem5 46190 elbigolo1 48672 |
| Copyright terms: Public domain | W3C validator |