| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpregt0d | Structured version Visualization version GIF version | ||
| Description: A positive real is real and greater than zero. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| Ref | Expression |
|---|---|
| rpregt0d | ⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpred.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
| 2 | 1 | rpred 13002 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 3 | 1 | rpgt0d 13005 | . 2 ⊢ (𝜑 → 0 < 𝐴) |
| 4 | 2, 3 | jca 511 | 1 ⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 class class class wbr 5110 ℝcr 11074 0cc0 11075 < clt 11215 ℝ+crp 12958 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-rp 12959 |
| This theorem is referenced by: reclt1d 13015 recgt1d 13016 ltrecd 13020 lerecd 13021 ltrec1d 13022 lerec2d 13023 lediv2ad 13024 ltdiv2d 13025 lediv2d 13026 ledivdivd 13027 divge0d 13042 ltmul1d 13043 ltmul2d 13044 lemul1d 13045 lemul2d 13046 ltdiv1d 13047 lediv1d 13048 ltmuldivd 13049 ltmuldiv2d 13050 lemuldivd 13051 lemuldiv2d 13052 ltdivmuld 13053 ltdivmul2d 13054 ledivmuld 13055 ledivmul2d 13056 ltdiv23d 13069 lediv23d 13070 lt2mul2divd 13071 mertenslem1 15857 isprm6 16691 nmoi 24623 icopnfhmeo 24848 nmoleub2lem3 25022 lmnn 25170 ovolscalem1 25421 aaliou2b 26256 birthdaylem3 26870 fsumharmonic 26929 bcmono 27195 chtppilim 27393 dchrisum0lem1a 27404 dchrvmasumiflem1 27419 dchrisum0lem1b 27433 dchrisum0lem1 27434 mulog2sumlem2 27453 selberg3lem1 27475 pntrsumo1 27483 pntibndlem1 27507 pntibndlem3 27510 pntlemr 27520 pntlemj 27521 ostth3 27556 minvecolem3 30812 lnconi 31969 poimirlem29 37650 poimirlem30 37651 poimirlem31 37652 poimirlem32 37653 aks4d1p1p2 42065 stoweidlem14 46019 stoweidlem34 46039 stoweidlem42 46047 stoweidlem51 46056 stoweidlem59 46064 stirlinglem5 46083 elbigolo1 48550 |
| Copyright terms: Public domain | W3C validator |