MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntibndlem1 Structured version   Visualization version   GIF version

Theorem pntibndlem1 26257
Description: Lemma for pntibnd 26261. (Contributed by Mario Carneiro, 10-Apr-2016.)
Hypotheses
Ref Expression
pntibnd.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntibndlem1.1 (𝜑𝐴 ∈ ℝ+)
pntibndlem1.l 𝐿 = ((1 / 4) / (𝐴 + 3))
Assertion
Ref Expression
pntibndlem1 (𝜑𝐿 ∈ (0(,)1))

Proof of Theorem pntibndlem1
StepHypRef Expression
1 pntibndlem1.l . . . 4 𝐿 = ((1 / 4) / (𝐴 + 3))
2 4nn 11742 . . . . . 6 4 ∈ ℕ
3 nnrp 12426 . . . . . 6 (4 ∈ ℕ → 4 ∈ ℝ+)
4 rpreccl 12441 . . . . . 6 (4 ∈ ℝ+ → (1 / 4) ∈ ℝ+)
52, 3, 4mp2b 10 . . . . 5 (1 / 4) ∈ ℝ+
6 pntibndlem1.1 . . . . . 6 (𝜑𝐴 ∈ ℝ+)
7 3rp 12421 . . . . . 6 3 ∈ ℝ+
8 rpaddcl 12437 . . . . . 6 ((𝐴 ∈ ℝ+ ∧ 3 ∈ ℝ+) → (𝐴 + 3) ∈ ℝ+)
96, 7, 8sylancl 590 . . . . 5 (𝜑 → (𝐴 + 3) ∈ ℝ+)
10 rpdivcl 12440 . . . . 5 (((1 / 4) ∈ ℝ+ ∧ (𝐴 + 3) ∈ ℝ+) → ((1 / 4) / (𝐴 + 3)) ∈ ℝ+)
115, 9, 10sylancr 591 . . . 4 (𝜑 → ((1 / 4) / (𝐴 + 3)) ∈ ℝ+)
121, 11eqeltrid 2855 . . 3 (𝜑𝐿 ∈ ℝ+)
1312rpred 12457 . 2 (𝜑𝐿 ∈ ℝ)
1412rpgt0d 12460 . 2 (𝜑 → 0 < 𝐿)
15 rpcn 12425 . . . . . . 7 ((1 / 4) ∈ ℝ+ → (1 / 4) ∈ ℂ)
165, 15ax-mp 5 . . . . . 6 (1 / 4) ∈ ℂ
1716div1i 11391 . . . . 5 ((1 / 4) / 1) = (1 / 4)
18 rpre 12423 . . . . . . 7 ((1 / 4) ∈ ℝ+ → (1 / 4) ∈ ℝ)
195, 18mp1i 13 . . . . . 6 (𝜑 → (1 / 4) ∈ ℝ)
20 3re 11739 . . . . . . 7 3 ∈ ℝ
2120a1i 11 . . . . . 6 (𝜑 → 3 ∈ ℝ)
229rpred 12457 . . . . . 6 (𝜑 → (𝐴 + 3) ∈ ℝ)
23 1lt4 11835 . . . . . . . . 9 1 < 4
24 4re 11743 . . . . . . . . . 10 4 ∈ ℝ
25 4pos 11766 . . . . . . . . . 10 0 < 4
26 recgt1 11559 . . . . . . . . . 10 ((4 ∈ ℝ ∧ 0 < 4) → (1 < 4 ↔ (1 / 4) < 1))
2724, 25, 26mp2an 692 . . . . . . . . 9 (1 < 4 ↔ (1 / 4) < 1)
2823, 27mpbi 233 . . . . . . . 8 (1 / 4) < 1
29 1lt3 11832 . . . . . . . 8 1 < 3
305, 18ax-mp 5 . . . . . . . . 9 (1 / 4) ∈ ℝ
31 1re 10664 . . . . . . . . 9 1 ∈ ℝ
3230, 31, 20lttri 10789 . . . . . . . 8 (((1 / 4) < 1 ∧ 1 < 3) → (1 / 4) < 3)
3328, 29, 32mp2an 692 . . . . . . 7 (1 / 4) < 3
3433a1i 11 . . . . . 6 (𝜑 → (1 / 4) < 3)
35 ltaddrp 12452 . . . . . . . 8 ((3 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → 3 < (3 + 𝐴))
3620, 6, 35sylancr 591 . . . . . . 7 (𝜑 → 3 < (3 + 𝐴))
37 3cn 11740 . . . . . . . 8 3 ∈ ℂ
386rpcnd 12459 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
39 addcom 10849 . . . . . . . 8 ((3 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (3 + 𝐴) = (𝐴 + 3))
4037, 38, 39sylancr 591 . . . . . . 7 (𝜑 → (3 + 𝐴) = (𝐴 + 3))
4136, 40breqtrd 5051 . . . . . 6 (𝜑 → 3 < (𝐴 + 3))
4219, 21, 22, 34, 41lttrd 10824 . . . . 5 (𝜑 → (1 / 4) < (𝐴 + 3))
4317, 42eqbrtrid 5060 . . . 4 (𝜑 → ((1 / 4) / 1) < (𝐴 + 3))
4431a1i 11 . . . . 5 (𝜑 → 1 ∈ ℝ)
45 0lt1 11185 . . . . . 6 0 < 1
4645a1i 11 . . . . 5 (𝜑 → 0 < 1)
479rpregt0d 12463 . . . . 5 (𝜑 → ((𝐴 + 3) ∈ ℝ ∧ 0 < (𝐴 + 3)))
48 ltdiv23 11554 . . . . 5 (((1 / 4) ∈ ℝ ∧ (1 ∈ ℝ ∧ 0 < 1) ∧ ((𝐴 + 3) ∈ ℝ ∧ 0 < (𝐴 + 3))) → (((1 / 4) / 1) < (𝐴 + 3) ↔ ((1 / 4) / (𝐴 + 3)) < 1))
4919, 44, 46, 47, 48syl121anc 1373 . . . 4 (𝜑 → (((1 / 4) / 1) < (𝐴 + 3) ↔ ((1 / 4) / (𝐴 + 3)) < 1))
5043, 49mpbid 235 . . 3 (𝜑 → ((1 / 4) / (𝐴 + 3)) < 1)
511, 50eqbrtrid 5060 . 2 (𝜑𝐿 < 1)
52 0xr 10711 . . 3 0 ∈ ℝ*
53 1xr 10723 . . 3 1 ∈ ℝ*
54 elioo2 12805 . . 3 ((0 ∈ ℝ* ∧ 1 ∈ ℝ*) → (𝐿 ∈ (0(,)1) ↔ (𝐿 ∈ ℝ ∧ 0 < 𝐿𝐿 < 1)))
5552, 53, 54mp2an 692 . 2 (𝐿 ∈ (0(,)1) ↔ (𝐿 ∈ ℝ ∧ 0 < 𝐿𝐿 < 1))
5613, 14, 51, 55syl3anbrc 1341 1 (𝜑𝐿 ∈ (0(,)1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 400  w3a 1085   = wceq 1539  wcel 2112   class class class wbr 5025  cmpt 5105  cfv 6328  (class class class)co 7143  cc 10558  cr 10559  0cc0 10560  1c1 10561   + caddc 10563  *cxr 10697   < clt 10698  cmin 10893   / cdiv 11320  cn 11659  3c3 11715  4c4 11716  +crp 12415  (,)cioo 12764  ψcchp 25762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5162  ax-nul 5169  ax-pow 5227  ax-pr 5291  ax-un 7452  ax-cnex 10616  ax-resscn 10617  ax-1cn 10618  ax-icn 10619  ax-addcl 10620  ax-addrcl 10621  ax-mulcl 10622  ax-mulrcl 10623  ax-mulcom 10624  ax-addass 10625  ax-mulass 10626  ax-distr 10627  ax-i2m1 10628  ax-1ne0 10629  ax-1rid 10630  ax-rnegex 10631  ax-rrecex 10632  ax-cnre 10633  ax-pre-lttri 10634  ax-pre-lttrn 10635  ax-pre-ltadd 10636  ax-pre-mulgt0 10637
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2899  df-ne 2950  df-nel 3054  df-ral 3073  df-rex 3074  df-reu 3075  df-rmo 3076  df-rab 3077  df-v 3409  df-sbc 3694  df-csb 3802  df-dif 3857  df-un 3859  df-in 3861  df-ss 3871  df-pss 3873  df-nul 4222  df-if 4414  df-pw 4489  df-sn 4516  df-pr 4518  df-tp 4520  df-op 4522  df-uni 4792  df-iun 4878  df-br 5026  df-opab 5088  df-mpt 5106  df-tr 5132  df-id 5423  df-eprel 5428  df-po 5436  df-so 5437  df-fr 5476  df-we 5478  df-xp 5523  df-rel 5524  df-cnv 5525  df-co 5526  df-dm 5527  df-rn 5528  df-res 5529  df-ima 5530  df-pred 6119  df-ord 6165  df-on 6166  df-lim 6167  df-suc 6168  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7101  df-ov 7146  df-oprab 7147  df-mpo 7148  df-om 7573  df-1st 7686  df-2nd 7687  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-en 8521  df-dom 8522  df-sdom 8523  df-pnf 10700  df-mnf 10701  df-xr 10702  df-ltxr 10703  df-le 10704  df-sub 10895  df-neg 10896  df-div 11321  df-nn 11660  df-2 11722  df-3 11723  df-4 11724  df-rp 12416  df-ioo 12768
This theorem is referenced by:  pntibndlem2a  26258  pntibndlem2  26259  pntibnd  26261
  Copyright terms: Public domain W3C validator