MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntibndlem1 Structured version   Visualization version   GIF version

Theorem pntibndlem1 26786
Description: Lemma for pntibnd 26790. (Contributed by Mario Carneiro, 10-Apr-2016.)
Hypotheses
Ref Expression
pntibnd.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntibndlem1.1 (𝜑𝐴 ∈ ℝ+)
pntibndlem1.l 𝐿 = ((1 / 4) / (𝐴 + 3))
Assertion
Ref Expression
pntibndlem1 (𝜑𝐿 ∈ (0(,)1))

Proof of Theorem pntibndlem1
StepHypRef Expression
1 pntibndlem1.l . . . 4 𝐿 = ((1 / 4) / (𝐴 + 3))
2 4nn 12106 . . . . . 6 4 ∈ ℕ
3 nnrp 12791 . . . . . 6 (4 ∈ ℕ → 4 ∈ ℝ+)
4 rpreccl 12806 . . . . . 6 (4 ∈ ℝ+ → (1 / 4) ∈ ℝ+)
52, 3, 4mp2b 10 . . . . 5 (1 / 4) ∈ ℝ+
6 pntibndlem1.1 . . . . . 6 (𝜑𝐴 ∈ ℝ+)
7 3rp 12786 . . . . . 6 3 ∈ ℝ+
8 rpaddcl 12802 . . . . . 6 ((𝐴 ∈ ℝ+ ∧ 3 ∈ ℝ+) → (𝐴 + 3) ∈ ℝ+)
96, 7, 8sylancl 587 . . . . 5 (𝜑 → (𝐴 + 3) ∈ ℝ+)
10 rpdivcl 12805 . . . . 5 (((1 / 4) ∈ ℝ+ ∧ (𝐴 + 3) ∈ ℝ+) → ((1 / 4) / (𝐴 + 3)) ∈ ℝ+)
115, 9, 10sylancr 588 . . . 4 (𝜑 → ((1 / 4) / (𝐴 + 3)) ∈ ℝ+)
121, 11eqeltrid 2841 . . 3 (𝜑𝐿 ∈ ℝ+)
1312rpred 12822 . 2 (𝜑𝐿 ∈ ℝ)
1412rpgt0d 12825 . 2 (𝜑 → 0 < 𝐿)
15 rpcn 12790 . . . . . . 7 ((1 / 4) ∈ ℝ+ → (1 / 4) ∈ ℂ)
165, 15ax-mp 5 . . . . . 6 (1 / 4) ∈ ℂ
1716div1i 11753 . . . . 5 ((1 / 4) / 1) = (1 / 4)
18 rpre 12788 . . . . . . 7 ((1 / 4) ∈ ℝ+ → (1 / 4) ∈ ℝ)
195, 18mp1i 13 . . . . . 6 (𝜑 → (1 / 4) ∈ ℝ)
20 3re 12103 . . . . . . 7 3 ∈ ℝ
2120a1i 11 . . . . . 6 (𝜑 → 3 ∈ ℝ)
229rpred 12822 . . . . . 6 (𝜑 → (𝐴 + 3) ∈ ℝ)
23 1lt4 12199 . . . . . . . . 9 1 < 4
24 4re 12107 . . . . . . . . . 10 4 ∈ ℝ
25 4pos 12130 . . . . . . . . . 10 0 < 4
26 recgt1 11921 . . . . . . . . . 10 ((4 ∈ ℝ ∧ 0 < 4) → (1 < 4 ↔ (1 / 4) < 1))
2724, 25, 26mp2an 690 . . . . . . . . 9 (1 < 4 ↔ (1 / 4) < 1)
2823, 27mpbi 229 . . . . . . . 8 (1 / 4) < 1
29 1lt3 12196 . . . . . . . 8 1 < 3
305, 18ax-mp 5 . . . . . . . . 9 (1 / 4) ∈ ℝ
31 1re 11025 . . . . . . . . 9 1 ∈ ℝ
3230, 31, 20lttri 11151 . . . . . . . 8 (((1 / 4) < 1 ∧ 1 < 3) → (1 / 4) < 3)
3328, 29, 32mp2an 690 . . . . . . 7 (1 / 4) < 3
3433a1i 11 . . . . . 6 (𝜑 → (1 / 4) < 3)
35 ltaddrp 12817 . . . . . . . 8 ((3 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → 3 < (3 + 𝐴))
3620, 6, 35sylancr 588 . . . . . . 7 (𝜑 → 3 < (3 + 𝐴))
37 3cn 12104 . . . . . . . 8 3 ∈ ℂ
386rpcnd 12824 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
39 addcom 11211 . . . . . . . 8 ((3 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (3 + 𝐴) = (𝐴 + 3))
4037, 38, 39sylancr 588 . . . . . . 7 (𝜑 → (3 + 𝐴) = (𝐴 + 3))
4136, 40breqtrd 5107 . . . . . 6 (𝜑 → 3 < (𝐴 + 3))
4219, 21, 22, 34, 41lttrd 11186 . . . . 5 (𝜑 → (1 / 4) < (𝐴 + 3))
4317, 42eqbrtrid 5116 . . . 4 (𝜑 → ((1 / 4) / 1) < (𝐴 + 3))
4431a1i 11 . . . . 5 (𝜑 → 1 ∈ ℝ)
45 0lt1 11547 . . . . . 6 0 < 1
4645a1i 11 . . . . 5 (𝜑 → 0 < 1)
479rpregt0d 12828 . . . . 5 (𝜑 → ((𝐴 + 3) ∈ ℝ ∧ 0 < (𝐴 + 3)))
48 ltdiv23 11916 . . . . 5 (((1 / 4) ∈ ℝ ∧ (1 ∈ ℝ ∧ 0 < 1) ∧ ((𝐴 + 3) ∈ ℝ ∧ 0 < (𝐴 + 3))) → (((1 / 4) / 1) < (𝐴 + 3) ↔ ((1 / 4) / (𝐴 + 3)) < 1))
4919, 44, 46, 47, 48syl121anc 1375 . . . 4 (𝜑 → (((1 / 4) / 1) < (𝐴 + 3) ↔ ((1 / 4) / (𝐴 + 3)) < 1))
5043, 49mpbid 231 . . 3 (𝜑 → ((1 / 4) / (𝐴 + 3)) < 1)
511, 50eqbrtrid 5116 . 2 (𝜑𝐿 < 1)
52 0xr 11072 . . 3 0 ∈ ℝ*
53 1xr 11084 . . 3 1 ∈ ℝ*
54 elioo2 13170 . . 3 ((0 ∈ ℝ* ∧ 1 ∈ ℝ*) → (𝐿 ∈ (0(,)1) ↔ (𝐿 ∈ ℝ ∧ 0 < 𝐿𝐿 < 1)))
5552, 53, 54mp2an 690 . 2 (𝐿 ∈ (0(,)1) ↔ (𝐿 ∈ ℝ ∧ 0 < 𝐿𝐿 < 1))
5613, 14, 51, 55syl3anbrc 1343 1 (𝜑𝐿 ∈ (0(,)1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1087   = wceq 1539  wcel 2104   class class class wbr 5081  cmpt 5164  cfv 6458  (class class class)co 7307  cc 10919  cr 10920  0cc0 10921  1c1 10922   + caddc 10924  *cxr 11058   < clt 11059  cmin 11255   / cdiv 11682  cn 12023  3c3 12079  4c4 12080  +crp 12780  (,)cioo 13129  ψcchp 26291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-cnex 10977  ax-resscn 10978  ax-1cn 10979  ax-icn 10980  ax-addcl 10981  ax-addrcl 10982  ax-mulcl 10983  ax-mulrcl 10984  ax-mulcom 10985  ax-addass 10986  ax-mulass 10987  ax-distr 10988  ax-i2m1 10989  ax-1ne0 10990  ax-1rid 10991  ax-rnegex 10992  ax-rrecex 10993  ax-cnre 10994  ax-pre-lttri 10995  ax-pre-lttrn 10996  ax-pre-ltadd 10997  ax-pre-mulgt0 10998
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3304  df-reu 3305  df-rab 3306  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-om 7745  df-1st 7863  df-2nd 7864  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-er 8529  df-en 8765  df-dom 8766  df-sdom 8767  df-pnf 11061  df-mnf 11062  df-xr 11063  df-ltxr 11064  df-le 11065  df-sub 11257  df-neg 11258  df-div 11683  df-nn 12024  df-2 12086  df-3 12087  df-4 12088  df-rp 12781  df-ioo 13133
This theorem is referenced by:  pntibndlem2a  26787  pntibndlem2  26788  pntibnd  26790
  Copyright terms: Public domain W3C validator