MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntibndlem1 Structured version   Visualization version   GIF version

Theorem pntibndlem1 27651
Description: Lemma for pntibnd 27655. (Contributed by Mario Carneiro, 10-Apr-2016.)
Hypotheses
Ref Expression
pntibnd.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntibndlem1.1 (𝜑𝐴 ∈ ℝ+)
pntibndlem1.l 𝐿 = ((1 / 4) / (𝐴 + 3))
Assertion
Ref Expression
pntibndlem1 (𝜑𝐿 ∈ (0(,)1))

Proof of Theorem pntibndlem1
StepHypRef Expression
1 pntibndlem1.l . . . 4 𝐿 = ((1 / 4) / (𝐴 + 3))
2 4nn 12376 . . . . . 6 4 ∈ ℕ
3 nnrp 13068 . . . . . 6 (4 ∈ ℕ → 4 ∈ ℝ+)
4 rpreccl 13083 . . . . . 6 (4 ∈ ℝ+ → (1 / 4) ∈ ℝ+)
52, 3, 4mp2b 10 . . . . 5 (1 / 4) ∈ ℝ+
6 pntibndlem1.1 . . . . . 6 (𝜑𝐴 ∈ ℝ+)
7 3rp 13063 . . . . . 6 3 ∈ ℝ+
8 rpaddcl 13079 . . . . . 6 ((𝐴 ∈ ℝ+ ∧ 3 ∈ ℝ+) → (𝐴 + 3) ∈ ℝ+)
96, 7, 8sylancl 585 . . . . 5 (𝜑 → (𝐴 + 3) ∈ ℝ+)
10 rpdivcl 13082 . . . . 5 (((1 / 4) ∈ ℝ+ ∧ (𝐴 + 3) ∈ ℝ+) → ((1 / 4) / (𝐴 + 3)) ∈ ℝ+)
115, 9, 10sylancr 586 . . . 4 (𝜑 → ((1 / 4) / (𝐴 + 3)) ∈ ℝ+)
121, 11eqeltrid 2848 . . 3 (𝜑𝐿 ∈ ℝ+)
1312rpred 13099 . 2 (𝜑𝐿 ∈ ℝ)
1412rpgt0d 13102 . 2 (𝜑 → 0 < 𝐿)
15 rpcn 13067 . . . . . . 7 ((1 / 4) ∈ ℝ+ → (1 / 4) ∈ ℂ)
165, 15ax-mp 5 . . . . . 6 (1 / 4) ∈ ℂ
1716div1i 12022 . . . . 5 ((1 / 4) / 1) = (1 / 4)
18 rpre 13065 . . . . . . 7 ((1 / 4) ∈ ℝ+ → (1 / 4) ∈ ℝ)
195, 18mp1i 13 . . . . . 6 (𝜑 → (1 / 4) ∈ ℝ)
20 3re 12373 . . . . . . 7 3 ∈ ℝ
2120a1i 11 . . . . . 6 (𝜑 → 3 ∈ ℝ)
229rpred 13099 . . . . . 6 (𝜑 → (𝐴 + 3) ∈ ℝ)
23 1lt4 12469 . . . . . . . . 9 1 < 4
24 4re 12377 . . . . . . . . . 10 4 ∈ ℝ
25 4pos 12400 . . . . . . . . . 10 0 < 4
26 recgt1 12191 . . . . . . . . . 10 ((4 ∈ ℝ ∧ 0 < 4) → (1 < 4 ↔ (1 / 4) < 1))
2724, 25, 26mp2an 691 . . . . . . . . 9 (1 < 4 ↔ (1 / 4) < 1)
2823, 27mpbi 230 . . . . . . . 8 (1 / 4) < 1
29 1lt3 12466 . . . . . . . 8 1 < 3
305, 18ax-mp 5 . . . . . . . . 9 (1 / 4) ∈ ℝ
31 1re 11290 . . . . . . . . 9 1 ∈ ℝ
3230, 31, 20lttri 11416 . . . . . . . 8 (((1 / 4) < 1 ∧ 1 < 3) → (1 / 4) < 3)
3328, 29, 32mp2an 691 . . . . . . 7 (1 / 4) < 3
3433a1i 11 . . . . . 6 (𝜑 → (1 / 4) < 3)
35 ltaddrp 13094 . . . . . . . 8 ((3 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → 3 < (3 + 𝐴))
3620, 6, 35sylancr 586 . . . . . . 7 (𝜑 → 3 < (3 + 𝐴))
37 3cn 12374 . . . . . . . 8 3 ∈ ℂ
386rpcnd 13101 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
39 addcom 11476 . . . . . . . 8 ((3 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (3 + 𝐴) = (𝐴 + 3))
4037, 38, 39sylancr 586 . . . . . . 7 (𝜑 → (3 + 𝐴) = (𝐴 + 3))
4136, 40breqtrd 5192 . . . . . 6 (𝜑 → 3 < (𝐴 + 3))
4219, 21, 22, 34, 41lttrd 11451 . . . . 5 (𝜑 → (1 / 4) < (𝐴 + 3))
4317, 42eqbrtrid 5201 . . . 4 (𝜑 → ((1 / 4) / 1) < (𝐴 + 3))
4431a1i 11 . . . . 5 (𝜑 → 1 ∈ ℝ)
45 0lt1 11812 . . . . . 6 0 < 1
4645a1i 11 . . . . 5 (𝜑 → 0 < 1)
479rpregt0d 13105 . . . . 5 (𝜑 → ((𝐴 + 3) ∈ ℝ ∧ 0 < (𝐴 + 3)))
48 ltdiv23 12186 . . . . 5 (((1 / 4) ∈ ℝ ∧ (1 ∈ ℝ ∧ 0 < 1) ∧ ((𝐴 + 3) ∈ ℝ ∧ 0 < (𝐴 + 3))) → (((1 / 4) / 1) < (𝐴 + 3) ↔ ((1 / 4) / (𝐴 + 3)) < 1))
4919, 44, 46, 47, 48syl121anc 1375 . . . 4 (𝜑 → (((1 / 4) / 1) < (𝐴 + 3) ↔ ((1 / 4) / (𝐴 + 3)) < 1))
5043, 49mpbid 232 . . 3 (𝜑 → ((1 / 4) / (𝐴 + 3)) < 1)
511, 50eqbrtrid 5201 . 2 (𝜑𝐿 < 1)
52 0xr 11337 . . 3 0 ∈ ℝ*
53 1xr 11349 . . 3 1 ∈ ℝ*
54 elioo2 13448 . . 3 ((0 ∈ ℝ* ∧ 1 ∈ ℝ*) → (𝐿 ∈ (0(,)1) ↔ (𝐿 ∈ ℝ ∧ 0 < 𝐿𝐿 < 1)))
5552, 53, 54mp2an 691 . 2 (𝐿 ∈ (0(,)1) ↔ (𝐿 ∈ ℝ ∧ 0 < 𝐿𝐿 < 1))
5613, 14, 51, 55syl3anbrc 1343 1 (𝜑𝐿 ∈ (0(,)1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108   class class class wbr 5166  cmpt 5249  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187  *cxr 11323   < clt 11324  cmin 11520   / cdiv 11947  cn 12293  3c3 12349  4c4 12350  +crp 13057  (,)cioo 13407  ψcchp 27154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-rp 13058  df-ioo 13411
This theorem is referenced by:  pntibndlem2a  27652  pntibndlem2  27653  pntibnd  27655
  Copyright terms: Public domain W3C validator