MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntibndlem1 Structured version   Visualization version   GIF version

Theorem pntibndlem1 27633
Description: Lemma for pntibnd 27637. (Contributed by Mario Carneiro, 10-Apr-2016.)
Hypotheses
Ref Expression
pntibnd.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntibndlem1.1 (𝜑𝐴 ∈ ℝ+)
pntibndlem1.l 𝐿 = ((1 / 4) / (𝐴 + 3))
Assertion
Ref Expression
pntibndlem1 (𝜑𝐿 ∈ (0(,)1))

Proof of Theorem pntibndlem1
StepHypRef Expression
1 pntibndlem1.l . . . 4 𝐿 = ((1 / 4) / (𝐴 + 3))
2 4nn 12349 . . . . . 6 4 ∈ ℕ
3 nnrp 13046 . . . . . 6 (4 ∈ ℕ → 4 ∈ ℝ+)
4 rpreccl 13061 . . . . . 6 (4 ∈ ℝ+ → (1 / 4) ∈ ℝ+)
52, 3, 4mp2b 10 . . . . 5 (1 / 4) ∈ ℝ+
6 pntibndlem1.1 . . . . . 6 (𝜑𝐴 ∈ ℝ+)
7 3rp 13040 . . . . . 6 3 ∈ ℝ+
8 rpaddcl 13057 . . . . . 6 ((𝐴 ∈ ℝ+ ∧ 3 ∈ ℝ+) → (𝐴 + 3) ∈ ℝ+)
96, 7, 8sylancl 586 . . . . 5 (𝜑 → (𝐴 + 3) ∈ ℝ+)
10 rpdivcl 13060 . . . . 5 (((1 / 4) ∈ ℝ+ ∧ (𝐴 + 3) ∈ ℝ+) → ((1 / 4) / (𝐴 + 3)) ∈ ℝ+)
115, 9, 10sylancr 587 . . . 4 (𝜑 → ((1 / 4) / (𝐴 + 3)) ∈ ℝ+)
121, 11eqeltrid 2845 . . 3 (𝜑𝐿 ∈ ℝ+)
1312rpred 13077 . 2 (𝜑𝐿 ∈ ℝ)
1412rpgt0d 13080 . 2 (𝜑 → 0 < 𝐿)
15 rpcn 13045 . . . . . . 7 ((1 / 4) ∈ ℝ+ → (1 / 4) ∈ ℂ)
165, 15ax-mp 5 . . . . . 6 (1 / 4) ∈ ℂ
1716div1i 11995 . . . . 5 ((1 / 4) / 1) = (1 / 4)
18 rpre 13043 . . . . . . 7 ((1 / 4) ∈ ℝ+ → (1 / 4) ∈ ℝ)
195, 18mp1i 13 . . . . . 6 (𝜑 → (1 / 4) ∈ ℝ)
20 3re 12346 . . . . . . 7 3 ∈ ℝ
2120a1i 11 . . . . . 6 (𝜑 → 3 ∈ ℝ)
229rpred 13077 . . . . . 6 (𝜑 → (𝐴 + 3) ∈ ℝ)
23 1lt4 12442 . . . . . . . . 9 1 < 4
24 4re 12350 . . . . . . . . . 10 4 ∈ ℝ
25 4pos 12373 . . . . . . . . . 10 0 < 4
26 recgt1 12164 . . . . . . . . . 10 ((4 ∈ ℝ ∧ 0 < 4) → (1 < 4 ↔ (1 / 4) < 1))
2724, 25, 26mp2an 692 . . . . . . . . 9 (1 < 4 ↔ (1 / 4) < 1)
2823, 27mpbi 230 . . . . . . . 8 (1 / 4) < 1
29 1lt3 12439 . . . . . . . 8 1 < 3
305, 18ax-mp 5 . . . . . . . . 9 (1 / 4) ∈ ℝ
31 1re 11261 . . . . . . . . 9 1 ∈ ℝ
3230, 31, 20lttri 11387 . . . . . . . 8 (((1 / 4) < 1 ∧ 1 < 3) → (1 / 4) < 3)
3328, 29, 32mp2an 692 . . . . . . 7 (1 / 4) < 3
3433a1i 11 . . . . . 6 (𝜑 → (1 / 4) < 3)
35 ltaddrp 13072 . . . . . . . 8 ((3 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → 3 < (3 + 𝐴))
3620, 6, 35sylancr 587 . . . . . . 7 (𝜑 → 3 < (3 + 𝐴))
37 3cn 12347 . . . . . . . 8 3 ∈ ℂ
386rpcnd 13079 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
39 addcom 11447 . . . . . . . 8 ((3 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (3 + 𝐴) = (𝐴 + 3))
4037, 38, 39sylancr 587 . . . . . . 7 (𝜑 → (3 + 𝐴) = (𝐴 + 3))
4136, 40breqtrd 5169 . . . . . 6 (𝜑 → 3 < (𝐴 + 3))
4219, 21, 22, 34, 41lttrd 11422 . . . . 5 (𝜑 → (1 / 4) < (𝐴 + 3))
4317, 42eqbrtrid 5178 . . . 4 (𝜑 → ((1 / 4) / 1) < (𝐴 + 3))
4431a1i 11 . . . . 5 (𝜑 → 1 ∈ ℝ)
45 0lt1 11785 . . . . . 6 0 < 1
4645a1i 11 . . . . 5 (𝜑 → 0 < 1)
479rpregt0d 13083 . . . . 5 (𝜑 → ((𝐴 + 3) ∈ ℝ ∧ 0 < (𝐴 + 3)))
48 ltdiv23 12159 . . . . 5 (((1 / 4) ∈ ℝ ∧ (1 ∈ ℝ ∧ 0 < 1) ∧ ((𝐴 + 3) ∈ ℝ ∧ 0 < (𝐴 + 3))) → (((1 / 4) / 1) < (𝐴 + 3) ↔ ((1 / 4) / (𝐴 + 3)) < 1))
4919, 44, 46, 47, 48syl121anc 1377 . . . 4 (𝜑 → (((1 / 4) / 1) < (𝐴 + 3) ↔ ((1 / 4) / (𝐴 + 3)) < 1))
5043, 49mpbid 232 . . 3 (𝜑 → ((1 / 4) / (𝐴 + 3)) < 1)
511, 50eqbrtrid 5178 . 2 (𝜑𝐿 < 1)
52 0xr 11308 . . 3 0 ∈ ℝ*
53 1xr 11320 . . 3 1 ∈ ℝ*
54 elioo2 13428 . . 3 ((0 ∈ ℝ* ∧ 1 ∈ ℝ*) → (𝐿 ∈ (0(,)1) ↔ (𝐿 ∈ ℝ ∧ 0 < 𝐿𝐿 < 1)))
5552, 53, 54mp2an 692 . 2 (𝐿 ∈ (0(,)1) ↔ (𝐿 ∈ ℝ ∧ 0 < 𝐿𝐿 < 1))
5613, 14, 51, 55syl3anbrc 1344 1 (𝜑𝐿 ∈ (0(,)1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108   class class class wbr 5143  cmpt 5225  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155  1c1 11156   + caddc 11158  *cxr 11294   < clt 11295  cmin 11492   / cdiv 11920  cn 12266  3c3 12322  4c4 12323  +crp 13034  (,)cioo 13387  ψcchp 27136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-rp 13035  df-ioo 13391
This theorem is referenced by:  pntibndlem2a  27634  pntibndlem2  27635  pntibnd  27637
  Copyright terms: Public domain W3C validator