Proof of Theorem pntibndlem1
Step | Hyp | Ref
| Expression |
1 | | pntibndlem1.l |
. . . 4
⊢ 𝐿 = ((1 / 4) / (𝐴 + 3)) |
2 | | 4nn 12106 |
. . . . . 6
⊢ 4 ∈
ℕ |
3 | | nnrp 12791 |
. . . . . 6
⊢ (4 ∈
ℕ → 4 ∈ ℝ+) |
4 | | rpreccl 12806 |
. . . . . 6
⊢ (4 ∈
ℝ+ → (1 / 4) ∈ ℝ+) |
5 | 2, 3, 4 | mp2b 10 |
. . . . 5
⊢ (1 / 4)
∈ ℝ+ |
6 | | pntibndlem1.1 |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈
ℝ+) |
7 | | 3rp 12786 |
. . . . . 6
⊢ 3 ∈
ℝ+ |
8 | | rpaddcl 12802 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ+
∧ 3 ∈ ℝ+) → (𝐴 + 3) ∈
ℝ+) |
9 | 6, 7, 8 | sylancl 587 |
. . . . 5
⊢ (𝜑 → (𝐴 + 3) ∈
ℝ+) |
10 | | rpdivcl 12805 |
. . . . 5
⊢ (((1 / 4)
∈ ℝ+ ∧ (𝐴 + 3) ∈ ℝ+) → ((1
/ 4) / (𝐴 + 3)) ∈
ℝ+) |
11 | 5, 9, 10 | sylancr 588 |
. . . 4
⊢ (𝜑 → ((1 / 4) / (𝐴 + 3)) ∈
ℝ+) |
12 | 1, 11 | eqeltrid 2841 |
. . 3
⊢ (𝜑 → 𝐿 ∈
ℝ+) |
13 | 12 | rpred 12822 |
. 2
⊢ (𝜑 → 𝐿 ∈ ℝ) |
14 | 12 | rpgt0d 12825 |
. 2
⊢ (𝜑 → 0 < 𝐿) |
15 | | rpcn 12790 |
. . . . . . 7
⊢ ((1 / 4)
∈ ℝ+ → (1 / 4) ∈ ℂ) |
16 | 5, 15 | ax-mp 5 |
. . . . . 6
⊢ (1 / 4)
∈ ℂ |
17 | 16 | div1i 11753 |
. . . . 5
⊢ ((1 / 4)
/ 1) = (1 / 4) |
18 | | rpre 12788 |
. . . . . . 7
⊢ ((1 / 4)
∈ ℝ+ → (1 / 4) ∈ ℝ) |
19 | 5, 18 | mp1i 13 |
. . . . . 6
⊢ (𝜑 → (1 / 4) ∈
ℝ) |
20 | | 3re 12103 |
. . . . . . 7
⊢ 3 ∈
ℝ |
21 | 20 | a1i 11 |
. . . . . 6
⊢ (𝜑 → 3 ∈
ℝ) |
22 | 9 | rpred 12822 |
. . . . . 6
⊢ (𝜑 → (𝐴 + 3) ∈ ℝ) |
23 | | 1lt4 12199 |
. . . . . . . . 9
⊢ 1 <
4 |
24 | | 4re 12107 |
. . . . . . . . . 10
⊢ 4 ∈
ℝ |
25 | | 4pos 12130 |
. . . . . . . . . 10
⊢ 0 <
4 |
26 | | recgt1 11921 |
. . . . . . . . . 10
⊢ ((4
∈ ℝ ∧ 0 < 4) → (1 < 4 ↔ (1 / 4) <
1)) |
27 | 24, 25, 26 | mp2an 690 |
. . . . . . . . 9
⊢ (1 < 4
↔ (1 / 4) < 1) |
28 | 23, 27 | mpbi 229 |
. . . . . . . 8
⊢ (1 / 4)
< 1 |
29 | | 1lt3 12196 |
. . . . . . . 8
⊢ 1 <
3 |
30 | 5, 18 | ax-mp 5 |
. . . . . . . . 9
⊢ (1 / 4)
∈ ℝ |
31 | | 1re 11025 |
. . . . . . . . 9
⊢ 1 ∈
ℝ |
32 | 30, 31, 20 | lttri 11151 |
. . . . . . . 8
⊢ (((1 / 4)
< 1 ∧ 1 < 3) → (1 / 4) < 3) |
33 | 28, 29, 32 | mp2an 690 |
. . . . . . 7
⊢ (1 / 4)
< 3 |
34 | 33 | a1i 11 |
. . . . . 6
⊢ (𝜑 → (1 / 4) <
3) |
35 | | ltaddrp 12817 |
. . . . . . . 8
⊢ ((3
∈ ℝ ∧ 𝐴
∈ ℝ+) → 3 < (3 + 𝐴)) |
36 | 20, 6, 35 | sylancr 588 |
. . . . . . 7
⊢ (𝜑 → 3 < (3 + 𝐴)) |
37 | | 3cn 12104 |
. . . . . . . 8
⊢ 3 ∈
ℂ |
38 | 6 | rpcnd 12824 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ ℂ) |
39 | | addcom 11211 |
. . . . . . . 8
⊢ ((3
∈ ℂ ∧ 𝐴
∈ ℂ) → (3 + 𝐴) = (𝐴 + 3)) |
40 | 37, 38, 39 | sylancr 588 |
. . . . . . 7
⊢ (𝜑 → (3 + 𝐴) = (𝐴 + 3)) |
41 | 36, 40 | breqtrd 5107 |
. . . . . 6
⊢ (𝜑 → 3 < (𝐴 + 3)) |
42 | 19, 21, 22, 34, 41 | lttrd 11186 |
. . . . 5
⊢ (𝜑 → (1 / 4) < (𝐴 + 3)) |
43 | 17, 42 | eqbrtrid 5116 |
. . . 4
⊢ (𝜑 → ((1 / 4) / 1) < (𝐴 + 3)) |
44 | 31 | a1i 11 |
. . . . 5
⊢ (𝜑 → 1 ∈
ℝ) |
45 | | 0lt1 11547 |
. . . . . 6
⊢ 0 <
1 |
46 | 45 | a1i 11 |
. . . . 5
⊢ (𝜑 → 0 < 1) |
47 | 9 | rpregt0d 12828 |
. . . . 5
⊢ (𝜑 → ((𝐴 + 3) ∈ ℝ ∧ 0 < (𝐴 + 3))) |
48 | | ltdiv23 11916 |
. . . . 5
⊢ (((1 / 4)
∈ ℝ ∧ (1 ∈ ℝ ∧ 0 < 1) ∧ ((𝐴 + 3) ∈ ℝ ∧ 0
< (𝐴 + 3))) → (((1
/ 4) / 1) < (𝐴 + 3)
↔ ((1 / 4) / (𝐴 + 3))
< 1)) |
49 | 19, 44, 46, 47, 48 | syl121anc 1375 |
. . . 4
⊢ (𝜑 → (((1 / 4) / 1) < (𝐴 + 3) ↔ ((1 / 4) / (𝐴 + 3)) < 1)) |
50 | 43, 49 | mpbid 231 |
. . 3
⊢ (𝜑 → ((1 / 4) / (𝐴 + 3)) < 1) |
51 | 1, 50 | eqbrtrid 5116 |
. 2
⊢ (𝜑 → 𝐿 < 1) |
52 | | 0xr 11072 |
. . 3
⊢ 0 ∈
ℝ* |
53 | | 1xr 11084 |
. . 3
⊢ 1 ∈
ℝ* |
54 | | elioo2 13170 |
. . 3
⊢ ((0
∈ ℝ* ∧ 1 ∈ ℝ*) → (𝐿 ∈ (0(,)1) ↔ (𝐿 ∈ ℝ ∧ 0 <
𝐿 ∧ 𝐿 < 1))) |
55 | 52, 53, 54 | mp2an 690 |
. 2
⊢ (𝐿 ∈ (0(,)1) ↔ (𝐿 ∈ ℝ ∧ 0 <
𝐿 ∧ 𝐿 < 1)) |
56 | 13, 14, 51, 55 | syl3anbrc 1343 |
1
⊢ (𝜑 → 𝐿 ∈ (0(,)1)) |