MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntibndlem1 Structured version   Visualization version   GIF version

Theorem pntibndlem1 26718
Description: Lemma for pntibnd 26722. (Contributed by Mario Carneiro, 10-Apr-2016.)
Hypotheses
Ref Expression
pntibnd.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntibndlem1.1 (𝜑𝐴 ∈ ℝ+)
pntibndlem1.l 𝐿 = ((1 / 4) / (𝐴 + 3))
Assertion
Ref Expression
pntibndlem1 (𝜑𝐿 ∈ (0(,)1))

Proof of Theorem pntibndlem1
StepHypRef Expression
1 pntibndlem1.l . . . 4 𝐿 = ((1 / 4) / (𝐴 + 3))
2 4nn 12039 . . . . . 6 4 ∈ ℕ
3 nnrp 12723 . . . . . 6 (4 ∈ ℕ → 4 ∈ ℝ+)
4 rpreccl 12738 . . . . . 6 (4 ∈ ℝ+ → (1 / 4) ∈ ℝ+)
52, 3, 4mp2b 10 . . . . 5 (1 / 4) ∈ ℝ+
6 pntibndlem1.1 . . . . . 6 (𝜑𝐴 ∈ ℝ+)
7 3rp 12718 . . . . . 6 3 ∈ ℝ+
8 rpaddcl 12734 . . . . . 6 ((𝐴 ∈ ℝ+ ∧ 3 ∈ ℝ+) → (𝐴 + 3) ∈ ℝ+)
96, 7, 8sylancl 585 . . . . 5 (𝜑 → (𝐴 + 3) ∈ ℝ+)
10 rpdivcl 12737 . . . . 5 (((1 / 4) ∈ ℝ+ ∧ (𝐴 + 3) ∈ ℝ+) → ((1 / 4) / (𝐴 + 3)) ∈ ℝ+)
115, 9, 10sylancr 586 . . . 4 (𝜑 → ((1 / 4) / (𝐴 + 3)) ∈ ℝ+)
121, 11eqeltrid 2844 . . 3 (𝜑𝐿 ∈ ℝ+)
1312rpred 12754 . 2 (𝜑𝐿 ∈ ℝ)
1412rpgt0d 12757 . 2 (𝜑 → 0 < 𝐿)
15 rpcn 12722 . . . . . . 7 ((1 / 4) ∈ ℝ+ → (1 / 4) ∈ ℂ)
165, 15ax-mp 5 . . . . . 6 (1 / 4) ∈ ℂ
1716div1i 11686 . . . . 5 ((1 / 4) / 1) = (1 / 4)
18 rpre 12720 . . . . . . 7 ((1 / 4) ∈ ℝ+ → (1 / 4) ∈ ℝ)
195, 18mp1i 13 . . . . . 6 (𝜑 → (1 / 4) ∈ ℝ)
20 3re 12036 . . . . . . 7 3 ∈ ℝ
2120a1i 11 . . . . . 6 (𝜑 → 3 ∈ ℝ)
229rpred 12754 . . . . . 6 (𝜑 → (𝐴 + 3) ∈ ℝ)
23 1lt4 12132 . . . . . . . . 9 1 < 4
24 4re 12040 . . . . . . . . . 10 4 ∈ ℝ
25 4pos 12063 . . . . . . . . . 10 0 < 4
26 recgt1 11854 . . . . . . . . . 10 ((4 ∈ ℝ ∧ 0 < 4) → (1 < 4 ↔ (1 / 4) < 1))
2724, 25, 26mp2an 688 . . . . . . . . 9 (1 < 4 ↔ (1 / 4) < 1)
2823, 27mpbi 229 . . . . . . . 8 (1 / 4) < 1
29 1lt3 12129 . . . . . . . 8 1 < 3
305, 18ax-mp 5 . . . . . . . . 9 (1 / 4) ∈ ℝ
31 1re 10959 . . . . . . . . 9 1 ∈ ℝ
3230, 31, 20lttri 11084 . . . . . . . 8 (((1 / 4) < 1 ∧ 1 < 3) → (1 / 4) < 3)
3328, 29, 32mp2an 688 . . . . . . 7 (1 / 4) < 3
3433a1i 11 . . . . . 6 (𝜑 → (1 / 4) < 3)
35 ltaddrp 12749 . . . . . . . 8 ((3 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → 3 < (3 + 𝐴))
3620, 6, 35sylancr 586 . . . . . . 7 (𝜑 → 3 < (3 + 𝐴))
37 3cn 12037 . . . . . . . 8 3 ∈ ℂ
386rpcnd 12756 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
39 addcom 11144 . . . . . . . 8 ((3 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (3 + 𝐴) = (𝐴 + 3))
4037, 38, 39sylancr 586 . . . . . . 7 (𝜑 → (3 + 𝐴) = (𝐴 + 3))
4136, 40breqtrd 5104 . . . . . 6 (𝜑 → 3 < (𝐴 + 3))
4219, 21, 22, 34, 41lttrd 11119 . . . . 5 (𝜑 → (1 / 4) < (𝐴 + 3))
4317, 42eqbrtrid 5113 . . . 4 (𝜑 → ((1 / 4) / 1) < (𝐴 + 3))
4431a1i 11 . . . . 5 (𝜑 → 1 ∈ ℝ)
45 0lt1 11480 . . . . . 6 0 < 1
4645a1i 11 . . . . 5 (𝜑 → 0 < 1)
479rpregt0d 12760 . . . . 5 (𝜑 → ((𝐴 + 3) ∈ ℝ ∧ 0 < (𝐴 + 3)))
48 ltdiv23 11849 . . . . 5 (((1 / 4) ∈ ℝ ∧ (1 ∈ ℝ ∧ 0 < 1) ∧ ((𝐴 + 3) ∈ ℝ ∧ 0 < (𝐴 + 3))) → (((1 / 4) / 1) < (𝐴 + 3) ↔ ((1 / 4) / (𝐴 + 3)) < 1))
4919, 44, 46, 47, 48syl121anc 1373 . . . 4 (𝜑 → (((1 / 4) / 1) < (𝐴 + 3) ↔ ((1 / 4) / (𝐴 + 3)) < 1))
5043, 49mpbid 231 . . 3 (𝜑 → ((1 / 4) / (𝐴 + 3)) < 1)
511, 50eqbrtrid 5113 . 2 (𝜑𝐿 < 1)
52 0xr 11006 . . 3 0 ∈ ℝ*
53 1xr 11018 . . 3 1 ∈ ℝ*
54 elioo2 13102 . . 3 ((0 ∈ ℝ* ∧ 1 ∈ ℝ*) → (𝐿 ∈ (0(,)1) ↔ (𝐿 ∈ ℝ ∧ 0 < 𝐿𝐿 < 1)))
5552, 53, 54mp2an 688 . 2 (𝐿 ∈ (0(,)1) ↔ (𝐿 ∈ ℝ ∧ 0 < 𝐿𝐿 < 1))
5613, 14, 51, 55syl3anbrc 1341 1 (𝜑𝐿 ∈ (0(,)1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1541  wcel 2109   class class class wbr 5078  cmpt 5161  cfv 6430  (class class class)co 7268  cc 10853  cr 10854  0cc0 10855  1c1 10856   + caddc 10858  *cxr 10992   < clt 10993  cmin 11188   / cdiv 11615  cn 11956  3c3 12012  4c4 12013  +crp 12712  (,)cioo 13061  ψcchp 26223
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-1st 7817  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-er 8472  df-en 8708  df-dom 8709  df-sdom 8710  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-div 11616  df-nn 11957  df-2 12019  df-3 12020  df-4 12021  df-rp 12713  df-ioo 13065
This theorem is referenced by:  pntibndlem2a  26719  pntibndlem2  26720  pntibnd  26722
  Copyright terms: Public domain W3C validator