| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > divge0d | Structured version Visualization version GIF version | ||
| Description: The ratio of nonnegative and positive numbers is nonnegative. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rpgecld.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| rpgecld.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
| divge0d.3 | ⊢ (𝜑 → 0 ≤ 𝐴) |
| Ref | Expression |
|---|---|
| divge0d | ⊢ (𝜑 → 0 ≤ (𝐴 / 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpgecld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | divge0d.3 | . 2 ⊢ (𝜑 → 0 ≤ 𝐴) | |
| 3 | rpgecld.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ+) | |
| 4 | 3 | rpregt0d 13065 | . 2 ⊢ (𝜑 → (𝐵 ∈ ℝ ∧ 0 < 𝐵)) |
| 5 | divge0 12119 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 ≤ (𝐴 / 𝐵)) | |
| 6 | 1, 2, 4, 5 | syl21anc 837 | 1 ⊢ (𝜑 → 0 ≤ (𝐴 / 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2107 class class class wbr 5123 (class class class)co 7413 ℝcr 11136 0cc0 11137 < clt 11277 ≤ cle 11278 / cdiv 11902 ℝ+crp 13016 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-po 5572 df-so 5573 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-div 11903 df-rp 13017 |
| This theorem is referenced by: iseralt 15704 nn0ehalf 16398 nn0oddm1d2 16405 bitsfzo 16455 bitsmod 16456 iserodd 16856 icopnfcnv 24910 logdiflbnd 26975 lgamgulmlem3 27011 chpo1ubb 27462 vmadivsumb 27464 rpvmasumlem 27468 dchrisumlem1 27470 dchrvmasumlem2 27479 rplogsum 27508 dirith2 27509 mulog2sumlem2 27516 vmalogdivsum2 27519 2vmadivsumlem 27521 selbergb 27530 selberg2b 27533 selberg4lem1 27541 pntrlog2bndlem2 27559 pntrlog2bndlem4 27561 pntrlog2bndlem5 27562 pntrlog2bndlem6 27564 pntrlog2bnd 27565 pntibndlem2 27572 ttgcontlem1 28831 constrresqrtcl 33762 sqsscirc1 33882 faclimlem1 35718 knoppndvlem14 36501 itg2addnclem2 37654 geomcau 37741 3lexlogpow5ineq2 42031 aks4d1p1p7 42050 aks6d1c2lem4 42103 aks6d1c7lem1 42156 areaquad 43206 sqrtcvallem2 43627 sqrtcvallem4 43629 stirlinglem11 46071 stirlinglem12 46072 fourierdlem26 46120 fourierdlem30 46124 fourierdlem47 46140 sge0ad2en 46418 eenglngeehlnmlem2 48632 |
| Copyright terms: Public domain | W3C validator |