| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > divge0d | Structured version Visualization version GIF version | ||
| Description: The ratio of nonnegative and positive numbers is nonnegative. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rpgecld.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| rpgecld.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
| divge0d.3 | ⊢ (𝜑 → 0 ≤ 𝐴) |
| Ref | Expression |
|---|---|
| divge0d | ⊢ (𝜑 → 0 ≤ (𝐴 / 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpgecld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | divge0d.3 | . 2 ⊢ (𝜑 → 0 ≤ 𝐴) | |
| 3 | rpgecld.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ+) | |
| 4 | 3 | rpregt0d 13008 | . 2 ⊢ (𝜑 → (𝐵 ∈ ℝ ∧ 0 < 𝐵)) |
| 5 | divge0 12059 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 ≤ (𝐴 / 𝐵)) | |
| 6 | 1, 2, 4, 5 | syl21anc 837 | 1 ⊢ (𝜑 → 0 ≤ (𝐴 / 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 class class class wbr 5110 (class class class)co 7390 ℝcr 11074 0cc0 11075 < clt 11215 ≤ cle 11216 / cdiv 11842 ℝ+crp 12958 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-rp 12959 |
| This theorem is referenced by: iseralt 15658 nn0ehalf 16355 nn0oddm1d2 16362 bitsfzo 16412 bitsmod 16413 iserodd 16813 icopnfcnv 24847 logdiflbnd 26912 lgamgulmlem3 26948 chpo1ubb 27399 vmadivsumb 27401 rpvmasumlem 27405 dchrisumlem1 27407 dchrvmasumlem2 27416 rplogsum 27445 dirith2 27446 mulog2sumlem2 27453 vmalogdivsum2 27456 2vmadivsumlem 27458 selbergb 27467 selberg2b 27470 selberg4lem1 27478 pntrlog2bndlem2 27496 pntrlog2bndlem4 27498 pntrlog2bndlem5 27499 pntrlog2bndlem6 27501 pntrlog2bnd 27502 pntibndlem2 27509 ttgcontlem1 28819 constrresqrtcl 33774 sqsscirc1 33905 faclimlem1 35737 knoppndvlem14 36520 itg2addnclem2 37673 geomcau 37760 3lexlogpow5ineq2 42050 aks4d1p1p7 42069 aks6d1c2lem4 42122 aks6d1c7lem1 42175 areaquad 43212 sqrtcvallem2 43633 sqrtcvallem4 43635 stirlinglem11 46089 stirlinglem12 46090 fourierdlem26 46138 fourierdlem30 46142 fourierdlem47 46158 sge0ad2en 46436 eenglngeehlnmlem2 48731 |
| Copyright terms: Public domain | W3C validator |