| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > divge0d | Structured version Visualization version GIF version | ||
| Description: The ratio of nonnegative and positive numbers is nonnegative. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rpgecld.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| rpgecld.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
| divge0d.3 | ⊢ (𝜑 → 0 ≤ 𝐴) |
| Ref | Expression |
|---|---|
| divge0d | ⊢ (𝜑 → 0 ≤ (𝐴 / 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpgecld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | divge0d.3 | . 2 ⊢ (𝜑 → 0 ≤ 𝐴) | |
| 3 | rpgecld.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ+) | |
| 4 | 3 | rpregt0d 12950 | . 2 ⊢ (𝜑 → (𝐵 ∈ ℝ ∧ 0 < 𝐵)) |
| 5 | divge0 12001 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 ≤ (𝐴 / 𝐵)) | |
| 6 | 1, 2, 4, 5 | syl21anc 837 | 1 ⊢ (𝜑 → 0 ≤ (𝐴 / 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2113 class class class wbr 5095 (class class class)co 7355 ℝcr 11015 0cc0 11016 < clt 11156 ≤ cle 11157 / cdiv 11784 ℝ+crp 12900 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-mulcom 11080 ax-addass 11081 ax-mulass 11082 ax-distr 11083 ax-i2m1 11084 ax-1ne0 11085 ax-1rid 11086 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 ax-pre-ltadd 11092 ax-pre-mulgt0 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-po 5529 df-so 5530 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-er 8631 df-en 8879 df-dom 8880 df-sdom 8881 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 df-sub 11356 df-neg 11357 df-div 11785 df-rp 12901 |
| This theorem is referenced by: iseralt 15602 nn0ehalf 16299 nn0oddm1d2 16306 bitsfzo 16356 bitsmod 16357 iserodd 16757 icopnfcnv 24877 logdiflbnd 26942 lgamgulmlem3 26978 chpo1ubb 27429 vmadivsumb 27431 rpvmasumlem 27435 dchrisumlem1 27437 dchrvmasumlem2 27446 rplogsum 27475 dirith2 27476 mulog2sumlem2 27483 vmalogdivsum2 27486 2vmadivsumlem 27488 selbergb 27497 selberg2b 27500 selberg4lem1 27508 pntrlog2bndlem2 27526 pntrlog2bndlem4 27528 pntrlog2bndlem5 27529 pntrlog2bndlem6 27531 pntrlog2bnd 27532 pntibndlem2 27539 ttgcontlem1 28873 constrresqrtcl 33801 sqsscirc1 33932 faclimlem1 35798 knoppndvlem14 36580 itg2addnclem2 37722 geomcau 37809 3lexlogpow5ineq2 42158 aks4d1p1p7 42177 aks6d1c2lem4 42230 aks6d1c7lem1 42283 areaquad 43323 sqrtcvallem2 43744 sqrtcvallem4 43746 stirlinglem11 46196 stirlinglem12 46197 fourierdlem26 46245 fourierdlem30 46249 fourierdlem47 46265 sge0ad2en 46543 eenglngeehlnmlem2 48853 |
| Copyright terms: Public domain | W3C validator |