MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divge0d Structured version   Visualization version   GIF version

Theorem divge0d 12984
Description: The ratio of nonnegative and positive numbers is nonnegative. (Contributed by Mario Carneiro, 28-May-2016.)
Hypotheses
Ref Expression
rpgecld.1 (𝜑𝐴 ∈ ℝ)
rpgecld.2 (𝜑𝐵 ∈ ℝ+)
divge0d.3 (𝜑 → 0 ≤ 𝐴)
Assertion
Ref Expression
divge0d (𝜑 → 0 ≤ (𝐴 / 𝐵))

Proof of Theorem divge0d
StepHypRef Expression
1 rpgecld.1 . 2 (𝜑𝐴 ∈ ℝ)
2 divge0d.3 . 2 (𝜑 → 0 ≤ 𝐴)
3 rpgecld.2 . . 3 (𝜑𝐵 ∈ ℝ+)
43rpregt0d 12950 . 2 (𝜑 → (𝐵 ∈ ℝ ∧ 0 < 𝐵))
5 divge0 12001 . 2 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 ≤ (𝐴 / 𝐵))
61, 2, 4, 5syl21anc 837 1 (𝜑 → 0 ≤ (𝐴 / 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2113   class class class wbr 5095  (class class class)co 7355  cr 11015  0cc0 11016   < clt 11156  cle 11157   / cdiv 11784  +crp 12900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092  ax-pre-mulgt0 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-po 5529  df-so 5530  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-er 8631  df-en 8879  df-dom 8880  df-sdom 8881  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-sub 11356  df-neg 11357  df-div 11785  df-rp 12901
This theorem is referenced by:  iseralt  15602  nn0ehalf  16299  nn0oddm1d2  16306  bitsfzo  16356  bitsmod  16357  iserodd  16757  icopnfcnv  24877  logdiflbnd  26942  lgamgulmlem3  26978  chpo1ubb  27429  vmadivsumb  27431  rpvmasumlem  27435  dchrisumlem1  27437  dchrvmasumlem2  27446  rplogsum  27475  dirith2  27476  mulog2sumlem2  27483  vmalogdivsum2  27486  2vmadivsumlem  27488  selbergb  27497  selberg2b  27500  selberg4lem1  27508  pntrlog2bndlem2  27526  pntrlog2bndlem4  27528  pntrlog2bndlem5  27529  pntrlog2bndlem6  27531  pntrlog2bnd  27532  pntibndlem2  27539  ttgcontlem1  28873  constrresqrtcl  33801  sqsscirc1  33932  faclimlem1  35798  knoppndvlem14  36580  itg2addnclem2  37722  geomcau  37809  3lexlogpow5ineq2  42158  aks4d1p1p7  42177  aks6d1c2lem4  42230  aks6d1c7lem1  42283  areaquad  43323  sqrtcvallem2  43744  sqrtcvallem4  43746  stirlinglem11  46196  stirlinglem12  46197  fourierdlem26  46245  fourierdlem30  46249  fourierdlem47  46265  sge0ad2en  46543  eenglngeehlnmlem2  48853
  Copyright terms: Public domain W3C validator