MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divge0d Structured version   Visualization version   GIF version

Theorem divge0d 13099
Description: The ratio of nonnegative and positive numbers is nonnegative. (Contributed by Mario Carneiro, 28-May-2016.)
Hypotheses
Ref Expression
rpgecld.1 (𝜑𝐴 ∈ ℝ)
rpgecld.2 (𝜑𝐵 ∈ ℝ+)
divge0d.3 (𝜑 → 0 ≤ 𝐴)
Assertion
Ref Expression
divge0d (𝜑 → 0 ≤ (𝐴 / 𝐵))

Proof of Theorem divge0d
StepHypRef Expression
1 rpgecld.1 . 2 (𝜑𝐴 ∈ ℝ)
2 divge0d.3 . 2 (𝜑 → 0 ≤ 𝐴)
3 rpgecld.2 . . 3 (𝜑𝐵 ∈ ℝ+)
43rpregt0d 13065 . 2 (𝜑 → (𝐵 ∈ ℝ ∧ 0 < 𝐵))
5 divge0 12119 . 2 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 ≤ (𝐴 / 𝐵))
61, 2, 4, 5syl21anc 837 1 (𝜑 → 0 ≤ (𝐴 / 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2107   class class class wbr 5123  (class class class)co 7413  cr 11136  0cc0 11137   < clt 11277  cle 11278   / cdiv 11902  +crp 13016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-po 5572  df-so 5573  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-er 8727  df-en 8968  df-dom 8969  df-sdom 8970  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-div 11903  df-rp 13017
This theorem is referenced by:  iseralt  15704  nn0ehalf  16398  nn0oddm1d2  16405  bitsfzo  16455  bitsmod  16456  iserodd  16856  icopnfcnv  24910  logdiflbnd  26975  lgamgulmlem3  27011  chpo1ubb  27462  vmadivsumb  27464  rpvmasumlem  27468  dchrisumlem1  27470  dchrvmasumlem2  27479  rplogsum  27508  dirith2  27509  mulog2sumlem2  27516  vmalogdivsum2  27519  2vmadivsumlem  27521  selbergb  27530  selberg2b  27533  selberg4lem1  27541  pntrlog2bndlem2  27559  pntrlog2bndlem4  27561  pntrlog2bndlem5  27562  pntrlog2bndlem6  27564  pntrlog2bnd  27565  pntibndlem2  27572  ttgcontlem1  28831  constrresqrtcl  33762  sqsscirc1  33882  faclimlem1  35718  knoppndvlem14  36501  itg2addnclem2  37654  geomcau  37741  3lexlogpow5ineq2  42031  aks4d1p1p7  42050  aks6d1c2lem4  42103  aks6d1c7lem1  42156  areaquad  43206  sqrtcvallem2  43627  sqrtcvallem4  43629  stirlinglem11  46071  stirlinglem12  46072  fourierdlem26  46120  fourierdlem30  46124  fourierdlem47  46140  sge0ad2en  46418  eenglngeehlnmlem2  48632
  Copyright terms: Public domain W3C validator