Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > divge0d | Structured version Visualization version GIF version |
Description: The ratio of nonnegative and positive numbers is nonnegative. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
rpgecld.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
rpgecld.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
divge0d.3 | ⊢ (𝜑 → 0 ≤ 𝐴) |
Ref | Expression |
---|---|
divge0d | ⊢ (𝜑 → 0 ≤ (𝐴 / 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpgecld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | divge0d.3 | . 2 ⊢ (𝜑 → 0 ≤ 𝐴) | |
3 | rpgecld.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ+) | |
4 | 3 | rpregt0d 12634 | . 2 ⊢ (𝜑 → (𝐵 ∈ ℝ ∧ 0 < 𝐵)) |
5 | divge0 11701 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 ≤ (𝐴 / 𝐵)) | |
6 | 1, 2, 4, 5 | syl21anc 838 | 1 ⊢ (𝜑 → 0 ≤ (𝐴 / 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∈ wcel 2110 class class class wbr 5053 (class class class)co 7213 ℝcr 10728 0cc0 10729 < clt 10867 ≤ cle 10868 / cdiv 11489 ℝ+crp 12586 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-po 5468 df-so 5469 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-div 11490 df-rp 12587 |
This theorem is referenced by: iseralt 15248 nn0ehalf 15939 nn0oddm1d2 15946 bitsfzo 15994 bitsmod 15995 iserodd 16388 icopnfcnv 23839 logdiflbnd 25877 lgamgulmlem3 25913 chpo1ubb 26362 vmadivsumb 26364 rpvmasumlem 26368 dchrisumlem1 26370 dchrvmasumlem2 26379 rplogsum 26408 dirith2 26409 mulog2sumlem2 26416 vmalogdivsum2 26419 2vmadivsumlem 26421 selbergb 26430 selberg2b 26433 selberg4lem1 26441 pntrlog2bndlem2 26459 pntrlog2bndlem4 26461 pntrlog2bndlem5 26462 pntrlog2bndlem6 26464 pntrlog2bnd 26465 pntibndlem2 26472 ttgcontlem1 26976 sqsscirc1 31572 faclimlem1 33427 knoppndvlem14 34442 itg2addnclem2 35566 geomcau 35654 3lexlogpow5ineq2 39797 aks4d1p1p7 39815 areaquad 40750 sqrtcvallem2 40921 sqrtcvallem4 40923 stirlinglem11 43300 stirlinglem12 43301 fourierdlem26 43349 fourierdlem30 43353 fourierdlem47 43369 sge0ad2en 43644 eenglngeehlnmlem2 45757 |
Copyright terms: Public domain | W3C validator |