| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > divge0d | Structured version Visualization version GIF version | ||
| Description: The ratio of nonnegative and positive numbers is nonnegative. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rpgecld.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| rpgecld.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
| divge0d.3 | ⊢ (𝜑 → 0 ≤ 𝐴) |
| Ref | Expression |
|---|---|
| divge0d | ⊢ (𝜑 → 0 ≤ (𝐴 / 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpgecld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | divge0d.3 | . 2 ⊢ (𝜑 → 0 ≤ 𝐴) | |
| 3 | rpgecld.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ+) | |
| 4 | 3 | rpregt0d 12961 | . 2 ⊢ (𝜑 → (𝐵 ∈ ℝ ∧ 0 < 𝐵)) |
| 5 | divge0 12012 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 ≤ (𝐴 / 𝐵)) | |
| 6 | 1, 2, 4, 5 | syl21anc 837 | 1 ⊢ (𝜑 → 0 ≤ (𝐴 / 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 class class class wbr 5095 (class class class)co 7353 ℝcr 11027 0cc0 11028 < clt 11168 ≤ cle 11169 / cdiv 11795 ℝ+crp 12911 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-po 5531 df-so 5532 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-rp 12912 |
| This theorem is referenced by: iseralt 15610 nn0ehalf 16307 nn0oddm1d2 16314 bitsfzo 16364 bitsmod 16365 iserodd 16765 icopnfcnv 24856 logdiflbnd 26921 lgamgulmlem3 26957 chpo1ubb 27408 vmadivsumb 27410 rpvmasumlem 27414 dchrisumlem1 27416 dchrvmasumlem2 27425 rplogsum 27454 dirith2 27455 mulog2sumlem2 27462 vmalogdivsum2 27465 2vmadivsumlem 27467 selbergb 27476 selberg2b 27479 selberg4lem1 27487 pntrlog2bndlem2 27505 pntrlog2bndlem4 27507 pntrlog2bndlem5 27508 pntrlog2bndlem6 27510 pntrlog2bnd 27511 pntibndlem2 27518 ttgcontlem1 28848 constrresqrtcl 33743 sqsscirc1 33874 faclimlem1 35715 knoppndvlem14 36498 itg2addnclem2 37651 geomcau 37738 3lexlogpow5ineq2 42028 aks4d1p1p7 42047 aks6d1c2lem4 42100 aks6d1c7lem1 42153 areaquad 43189 sqrtcvallem2 43610 sqrtcvallem4 43612 stirlinglem11 46066 stirlinglem12 46067 fourierdlem26 46115 fourierdlem30 46119 fourierdlem47 46135 sge0ad2en 46413 eenglngeehlnmlem2 48711 |
| Copyright terms: Public domain | W3C validator |