| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > divge0d | Structured version Visualization version GIF version | ||
| Description: The ratio of nonnegative and positive numbers is nonnegative. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rpgecld.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| rpgecld.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
| divge0d.3 | ⊢ (𝜑 → 0 ≤ 𝐴) |
| Ref | Expression |
|---|---|
| divge0d | ⊢ (𝜑 → 0 ≤ (𝐴 / 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpgecld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | divge0d.3 | . 2 ⊢ (𝜑 → 0 ≤ 𝐴) | |
| 3 | rpgecld.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ+) | |
| 4 | 3 | rpregt0d 12932 | . 2 ⊢ (𝜑 → (𝐵 ∈ ℝ ∧ 0 < 𝐵)) |
| 5 | divge0 11983 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 ≤ (𝐴 / 𝐵)) | |
| 6 | 1, 2, 4, 5 | syl21anc 837 | 1 ⊢ (𝜑 → 0 ≤ (𝐴 / 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2110 class class class wbr 5089 (class class class)co 7341 ℝcr 10997 0cc0 10998 < clt 11138 ≤ cle 11139 / cdiv 11766 ℝ+crp 12882 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-po 5522 df-so 5523 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-div 11767 df-rp 12883 |
| This theorem is referenced by: iseralt 15584 nn0ehalf 16281 nn0oddm1d2 16288 bitsfzo 16338 bitsmod 16339 iserodd 16739 icopnfcnv 24860 logdiflbnd 26925 lgamgulmlem3 26961 chpo1ubb 27412 vmadivsumb 27414 rpvmasumlem 27418 dchrisumlem1 27420 dchrvmasumlem2 27429 rplogsum 27458 dirith2 27459 mulog2sumlem2 27466 vmalogdivsum2 27469 2vmadivsumlem 27471 selbergb 27480 selberg2b 27483 selberg4lem1 27491 pntrlog2bndlem2 27509 pntrlog2bndlem4 27511 pntrlog2bndlem5 27512 pntrlog2bndlem6 27514 pntrlog2bnd 27515 pntibndlem2 27522 ttgcontlem1 28856 constrresqrtcl 33780 sqsscirc1 33911 faclimlem1 35755 knoppndvlem14 36538 itg2addnclem2 37691 geomcau 37778 3lexlogpow5ineq2 42067 aks4d1p1p7 42086 aks6d1c2lem4 42139 aks6d1c7lem1 42192 areaquad 43228 sqrtcvallem2 43649 sqrtcvallem4 43651 stirlinglem11 46101 stirlinglem12 46102 fourierdlem26 46150 fourierdlem30 46154 fourierdlem47 46170 sge0ad2en 46448 eenglngeehlnmlem2 48749 |
| Copyright terms: Public domain | W3C validator |