| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lt2mul2divd | Structured version Visualization version GIF version | ||
| Description: The ratio of nonnegative and positive numbers is nonnegative. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| lt2mul2divd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| lt2mul2divd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
| lt2mul2divd.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| lt2mul2divd.4 | ⊢ (𝜑 → 𝐷 ∈ ℝ+) |
| Ref | Expression |
|---|---|
| lt2mul2divd | ⊢ (𝜑 → ((𝐴 · 𝐵) < (𝐶 · 𝐷) ↔ (𝐴 / 𝐷) < (𝐶 / 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lt2mul2divd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | lt2mul2divd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ+) | |
| 3 | 2 | rpregt0d 12937 | . 2 ⊢ (𝜑 → (𝐵 ∈ ℝ ∧ 0 < 𝐵)) |
| 4 | lt2mul2divd.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
| 5 | lt2mul2divd.4 | . . 3 ⊢ (𝜑 → 𝐷 ∈ ℝ+) | |
| 6 | 5 | rpregt0d 12937 | . 2 ⊢ (𝜑 → (𝐷 ∈ ℝ ∧ 0 < 𝐷)) |
| 7 | lt2mul2div 11997 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 < 𝐷))) → ((𝐴 · 𝐵) < (𝐶 · 𝐷) ↔ (𝐴 / 𝐷) < (𝐶 / 𝐵))) | |
| 8 | 1, 3, 4, 6, 7 | syl22anc 838 | 1 ⊢ (𝜑 → ((𝐴 · 𝐵) < (𝐶 · 𝐷) ↔ (𝐴 / 𝐷) < (𝐶 / 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2111 class class class wbr 5091 (class class class)co 7346 ℝcr 11002 0cc0 11003 · cmul 11008 < clt 11143 / cdiv 11771 ℝ+crp 12887 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-po 5524 df-so 5525 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-div 11772 df-rp 12888 |
| This theorem is referenced by: efcllem 15981 |
| Copyright terms: Public domain | W3C validator |