MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlemj Structured version   Visualization version   GIF version

Theorem pntlemj 27665
Description: Lemma for pnt 27676. The induction step. Using pntibnd 27655, we find an interval in 𝐾𝐽...𝐾↑(𝐽 + 1) which is sufficiently large and has a much smaller value, 𝑅(𝑧) / 𝑧𝐸 (instead of our original bound 𝑅(𝑧) / 𝑧𝑈). (Contributed by Mario Carneiro, 13-Apr-2016.)
Hypotheses
Ref Expression
pntlem1.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntlem1.a (𝜑𝐴 ∈ ℝ+)
pntlem1.b (𝜑𝐵 ∈ ℝ+)
pntlem1.l (𝜑𝐿 ∈ (0(,)1))
pntlem1.d 𝐷 = (𝐴 + 1)
pntlem1.f 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
pntlem1.u (𝜑𝑈 ∈ ℝ+)
pntlem1.u2 (𝜑𝑈𝐴)
pntlem1.e 𝐸 = (𝑈 / 𝐷)
pntlem1.k 𝐾 = (exp‘(𝐵 / 𝐸))
pntlem1.y (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
pntlem1.x (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
pntlem1.c (𝜑𝐶 ∈ ℝ+)
pntlem1.w 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
pntlem1.z (𝜑𝑍 ∈ (𝑊[,)+∞))
pntlem1.m 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1)
pntlem1.n 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2))
pntlem1.U (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑈)
pntlem1.K (𝜑 → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
pntlem1.o 𝑂 = (((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝐽))))
pntlem1.v (𝜑𝑉 ∈ ℝ+)
pntlem1.V (𝜑 → (((𝐾𝐽) < 𝑉 ∧ ((1 + (𝐿 · 𝐸)) · 𝑉) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑉[,]((1 + (𝐿 · 𝐸)) · 𝑉))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
pntlem1.j (𝜑𝐽 ∈ (𝑀..^𝑁))
pntlem1.i 𝐼 = (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)...(⌊‘(𝑍 / 𝑉)))
Assertion
Ref Expression
pntlemj (𝜑 → ((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ≤ Σ𝑛𝑂 (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
Distinct variable groups:   𝑧,𝐶   𝑛,𝐼   𝑦,𝑛,𝑧,𝐽   𝑢,𝑛,𝐿,𝑦,𝑧   𝑛,𝐾,𝑦,𝑧   𝑛,𝑀,𝑧   𝑛,𝑂,𝑧   𝜑,𝑛   𝑛,𝑁,𝑧   𝑅,𝑛,𝑢,𝑦,𝑧   𝑛,𝑉,𝑢   𝑈,𝑛,𝑧   𝑛,𝑊,𝑧   𝑛,𝑋,𝑦,𝑧   𝑛,𝑌,𝑧   𝑛,𝑎,𝑢,𝑦,𝑧,𝐸   𝑛,𝑍,𝑢,𝑧
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑢,𝑎)   𝐴(𝑦,𝑧,𝑢,𝑛,𝑎)   𝐵(𝑦,𝑧,𝑢,𝑛,𝑎)   𝐶(𝑦,𝑢,𝑛,𝑎)   𝐷(𝑦,𝑧,𝑢,𝑛,𝑎)   𝑅(𝑎)   𝑈(𝑦,𝑢,𝑎)   𝐹(𝑦,𝑧,𝑢,𝑛,𝑎)   𝐼(𝑦,𝑧,𝑢,𝑎)   𝐽(𝑢,𝑎)   𝐾(𝑢,𝑎)   𝐿(𝑎)   𝑀(𝑦,𝑢,𝑎)   𝑁(𝑦,𝑢,𝑎)   𝑂(𝑦,𝑢,𝑎)   𝑉(𝑦,𝑧,𝑎)   𝑊(𝑦,𝑢,𝑎)   𝑋(𝑢,𝑎)   𝑌(𝑦,𝑢,𝑎)   𝑍(𝑦,𝑎)

Proof of Theorem pntlemj
StepHypRef Expression
1 pntlem1.r . . . . . . 7 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
2 pntlem1.a . . . . . . 7 (𝜑𝐴 ∈ ℝ+)
3 pntlem1.b . . . . . . 7 (𝜑𝐵 ∈ ℝ+)
4 pntlem1.l . . . . . . 7 (𝜑𝐿 ∈ (0(,)1))
5 pntlem1.d . . . . . . 7 𝐷 = (𝐴 + 1)
6 pntlem1.f . . . . . . 7 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
7 pntlem1.u . . . . . . 7 (𝜑𝑈 ∈ ℝ+)
8 pntlem1.u2 . . . . . . 7 (𝜑𝑈𝐴)
9 pntlem1.e . . . . . . 7 𝐸 = (𝑈 / 𝐷)
10 pntlem1.k . . . . . . 7 𝐾 = (exp‘(𝐵 / 𝐸))
111, 2, 3, 4, 5, 6, 7, 8, 9, 10pntlemc 27657 . . . . . 6 (𝜑 → (𝐸 ∈ ℝ+𝐾 ∈ ℝ+ ∧ (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+)))
1211simp3d 1144 . . . . 5 (𝜑 → (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+))
1312simp3d 1144 . . . 4 (𝜑 → (𝑈𝐸) ∈ ℝ+)
141, 2, 3, 4, 5, 6pntlemd 27656 . . . . . . . 8 (𝜑 → (𝐿 ∈ ℝ+𝐷 ∈ ℝ+𝐹 ∈ ℝ+))
1514simp1d 1142 . . . . . . 7 (𝜑𝐿 ∈ ℝ+)
1611simp1d 1142 . . . . . . 7 (𝜑𝐸 ∈ ℝ+)
1715, 16rpmulcld 13115 . . . . . 6 (𝜑 → (𝐿 · 𝐸) ∈ ℝ+)
18 8nn 12388 . . . . . . 7 8 ∈ ℕ
19 nnrp 13068 . . . . . . 7 (8 ∈ ℕ → 8 ∈ ℝ+)
2018, 19ax-mp 5 . . . . . 6 8 ∈ ℝ+
21 rpdivcl 13082 . . . . . 6 (((𝐿 · 𝐸) ∈ ℝ+ ∧ 8 ∈ ℝ+) → ((𝐿 · 𝐸) / 8) ∈ ℝ+)
2217, 20, 21sylancl 585 . . . . 5 (𝜑 → ((𝐿 · 𝐸) / 8) ∈ ℝ+)
23 pntlem1.y . . . . . . . . 9 (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
24 pntlem1.x . . . . . . . . 9 (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
25 pntlem1.c . . . . . . . . 9 (𝜑𝐶 ∈ ℝ+)
26 pntlem1.w . . . . . . . . 9 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
27 pntlem1.z . . . . . . . . 9 (𝜑𝑍 ∈ (𝑊[,)+∞))
281, 2, 3, 4, 5, 6, 7, 8, 9, 10, 23, 24, 25, 26, 27pntlemb 27659 . . . . . . . 8 (𝜑 → (𝑍 ∈ ℝ+ ∧ (1 < 𝑍 ∧ e ≤ (√‘𝑍) ∧ (√‘𝑍) ≤ (𝑍 / 𝑌)) ∧ ((4 / (𝐿 · 𝐸)) ≤ (√‘𝑍) ∧ (((log‘𝑋) / (log‘𝐾)) + 2) ≤ (((log‘𝑍) / (log‘𝐾)) / 4) ∧ ((𝑈 · 3) + 𝐶) ≤ (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))))
2928simp1d 1142 . . . . . . 7 (𝜑𝑍 ∈ ℝ+)
3029rpred 13099 . . . . . 6 (𝜑𝑍 ∈ ℝ)
3128simp2d 1143 . . . . . . 7 (𝜑 → (1 < 𝑍 ∧ e ≤ (√‘𝑍) ∧ (√‘𝑍) ≤ (𝑍 / 𝑌)))
3231simp1d 1142 . . . . . 6 (𝜑 → 1 < 𝑍)
3330, 32rplogcld 26689 . . . . 5 (𝜑 → (log‘𝑍) ∈ ℝ+)
3422, 33rpmulcld 13115 . . . 4 (𝜑 → (((𝐿 · 𝐸) / 8) · (log‘𝑍)) ∈ ℝ+)
3513, 34rpmulcld 13115 . . 3 (𝜑 → ((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ∈ ℝ+)
3635rpred 13099 . 2 (𝜑 → ((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ∈ ℝ)
37 pntlem1.i . . . . . 6 𝐼 = (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)...(⌊‘(𝑍 / 𝑉)))
38 fzfid 14024 . . . . . 6 (𝜑 → (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)...(⌊‘(𝑍 / 𝑉))) ∈ Fin)
3937, 38eqeltrid 2848 . . . . 5 (𝜑𝐼 ∈ Fin)
40 hashcl 14405 . . . . 5 (𝐼 ∈ Fin → (♯‘𝐼) ∈ ℕ0)
4139, 40syl 17 . . . 4 (𝜑 → (♯‘𝐼) ∈ ℕ0)
4241nn0red 12614 . . 3 (𝜑 → (♯‘𝐼) ∈ ℝ)
4313rpred 13099 . . . 4 (𝜑 → (𝑈𝐸) ∈ ℝ)
44 pntlem1.v . . . . . . 7 (𝜑𝑉 ∈ ℝ+)
4529, 44rpdivcld 13116 . . . . . 6 (𝜑 → (𝑍 / 𝑉) ∈ ℝ+)
4645relogcld 26683 . . . . 5 (𝜑 → (log‘(𝑍 / 𝑉)) ∈ ℝ)
4746, 45rerpdivcld 13130 . . . 4 (𝜑 → ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)) ∈ ℝ)
4843, 47remulcld 11320 . . 3 (𝜑 → ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) ∈ ℝ)
4942, 48remulcld 11320 . 2 (𝜑 → ((♯‘𝐼) · ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)))) ∈ ℝ)
50 pntlem1.o . . . 4 𝑂 = (((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝐽))))
51 fzfid 14024 . . . 4 (𝜑 → (((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝐽)))) ∈ Fin)
5250, 51eqeltrid 2848 . . 3 (𝜑𝑂 ∈ Fin)
537rpred 13099 . . . . . . 7 (𝜑𝑈 ∈ ℝ)
5453adantr 480 . . . . . 6 ((𝜑𝑛𝑂) → 𝑈 ∈ ℝ)
5511simp2d 1143 . . . . . . . . . . 11 (𝜑𝐾 ∈ ℝ+)
56 pntlem1.j . . . . . . . . . . . . 13 (𝜑𝐽 ∈ (𝑀..^𝑁))
57 elfzoelz 13716 . . . . . . . . . . . . 13 (𝐽 ∈ (𝑀..^𝑁) → 𝐽 ∈ ℤ)
5856, 57syl 17 . . . . . . . . . . . 12 (𝜑𝐽 ∈ ℤ)
5958peano2zd 12750 . . . . . . . . . . 11 (𝜑 → (𝐽 + 1) ∈ ℤ)
6055, 59rpexpcld 14296 . . . . . . . . . 10 (𝜑 → (𝐾↑(𝐽 + 1)) ∈ ℝ+)
6129, 60rpdivcld 13116 . . . . . . . . 9 (𝜑 → (𝑍 / (𝐾↑(𝐽 + 1))) ∈ ℝ+)
6261rprege0d 13106 . . . . . . . 8 (𝜑 → ((𝑍 / (𝐾↑(𝐽 + 1))) ∈ ℝ ∧ 0 ≤ (𝑍 / (𝐾↑(𝐽 + 1)))))
63 flge0nn0 13871 . . . . . . . 8 (((𝑍 / (𝐾↑(𝐽 + 1))) ∈ ℝ ∧ 0 ≤ (𝑍 / (𝐾↑(𝐽 + 1)))) → (⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) ∈ ℕ0)
64 nn0p1nn 12592 . . . . . . . 8 ((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) ∈ ℕ0 → ((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1) ∈ ℕ)
6562, 63, 643syl 18 . . . . . . 7 (𝜑 → ((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1) ∈ ℕ)
66 elfzuz 13580 . . . . . . . 8 (𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝐽)))) → 𝑛 ∈ (ℤ‘((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)))
6766, 50eleq2s 2862 . . . . . . 7 (𝑛𝑂𝑛 ∈ (ℤ‘((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)))
68 eluznn 12983 . . . . . . 7 ((((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1) ∈ ℕ ∧ 𝑛 ∈ (ℤ‘((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1))) → 𝑛 ∈ ℕ)
6965, 67, 68syl2an 595 . . . . . 6 ((𝜑𝑛𝑂) → 𝑛 ∈ ℕ)
7054, 69nndivred 12347 . . . . 5 ((𝜑𝑛𝑂) → (𝑈 / 𝑛) ∈ ℝ)
7129adantr 480 . . . . . . . . . 10 ((𝜑𝑛𝑂) → 𝑍 ∈ ℝ+)
7269nnrpd 13097 . . . . . . . . . 10 ((𝜑𝑛𝑂) → 𝑛 ∈ ℝ+)
7371, 72rpdivcld 13116 . . . . . . . . 9 ((𝜑𝑛𝑂) → (𝑍 / 𝑛) ∈ ℝ+)
741pntrf 27625 . . . . . . . . . 10 𝑅:ℝ+⟶ℝ
7574ffvelcdmi 7117 . . . . . . . . 9 ((𝑍 / 𝑛) ∈ ℝ+ → (𝑅‘(𝑍 / 𝑛)) ∈ ℝ)
7673, 75syl 17 . . . . . . . 8 ((𝜑𝑛𝑂) → (𝑅‘(𝑍 / 𝑛)) ∈ ℝ)
7776, 71rerpdivcld 13130 . . . . . . 7 ((𝜑𝑛𝑂) → ((𝑅‘(𝑍 / 𝑛)) / 𝑍) ∈ ℝ)
7877recnd 11318 . . . . . 6 ((𝜑𝑛𝑂) → ((𝑅‘(𝑍 / 𝑛)) / 𝑍) ∈ ℂ)
7978abscld 15485 . . . . 5 ((𝜑𝑛𝑂) → (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) ∈ ℝ)
8070, 79resubcld 11718 . . . 4 ((𝜑𝑛𝑂) → ((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) ∈ ℝ)
8172relogcld 26683 . . . 4 ((𝜑𝑛𝑂) → (log‘𝑛) ∈ ℝ)
8280, 81remulcld 11320 . . 3 ((𝜑𝑛𝑂) → (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∈ ℝ)
8352, 82fsumrecl 15782 . 2 (𝜑 → Σ𝑛𝑂 (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∈ ℝ)
84 pntlem1.m . . 3 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1)
85 pntlem1.n . . 3 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2))
86 pntlem1.U . . 3 (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑈)
87 pntlem1.K . . 3 (𝜑 → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
88 pntlem1.V . . 3 (𝜑 → (((𝐾𝐽) < 𝑉 ∧ ((1 + (𝐿 · 𝐸)) · 𝑉) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑉[,]((1 + (𝐿 · 𝐸)) · 𝑉))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
891, 2, 3, 4, 5, 6, 7, 8, 9, 10, 23, 24, 25, 26, 27, 84, 85, 86, 87, 50, 44, 88, 56, 37pntlemr 27664 . 2 (𝜑 → ((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ≤ ((♯‘𝐼) · ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)))))
9048recnd 11318 . . . . 5 (𝜑 → ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) ∈ ℂ)
91 fsumconst 15838 . . . . 5 ((𝐼 ∈ Fin ∧ ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) ∈ ℂ) → Σ𝑛𝐼 ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) = ((♯‘𝐼) · ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)))))
9239, 90, 91syl2anc 583 . . . 4 (𝜑 → Σ𝑛𝐼 ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) = ((♯‘𝐼) · ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)))))
931, 2, 3, 4, 5, 6, 7, 8, 9, 10, 23, 24, 25, 26, 27, 84, 85, 86, 87, 50, 44, 88, 56, 37pntlemq 27663 . . . . 5 (𝜑𝐼𝑂)
9490ralrimivw 3156 . . . . 5 (𝜑 → ∀𝑛𝐼 ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) ∈ ℂ)
9552olcd 873 . . . . 5 (𝜑 → (𝑂 ⊆ (ℤ‘1) ∨ 𝑂 ∈ Fin))
96 sumss2 15774 . . . . 5 (((𝐼𝑂 ∧ ∀𝑛𝐼 ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) ∈ ℂ) ∧ (𝑂 ⊆ (ℤ‘1) ∨ 𝑂 ∈ Fin)) → Σ𝑛𝐼 ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) = Σ𝑛𝑂 if(𝑛𝐼, ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))), 0))
9793, 94, 95, 96syl21anc 837 . . . 4 (𝜑 → Σ𝑛𝐼 ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) = Σ𝑛𝑂 if(𝑛𝐼, ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))), 0))
9892, 97eqtr3d 2782 . . 3 (𝜑 → ((♯‘𝐼) · ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)))) = Σ𝑛𝑂 if(𝑛𝐼, ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))), 0))
9948adantr 480 . . . . . 6 ((𝜑𝑛𝐼) → ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) ∈ ℝ)
10099adantlr 714 . . . . 5 (((𝜑𝑛𝑂) ∧ 𝑛𝐼) → ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) ∈ ℝ)
101 0red 11293 . . . . 5 (((𝜑𝑛𝑂) ∧ ¬ 𝑛𝐼) → 0 ∈ ℝ)
102100, 101ifclda 4583 . . . 4 ((𝜑𝑛𝑂) → if(𝑛𝐼, ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))), 0) ∈ ℝ)
103 breq1 5169 . . . . 5 (((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) = if(𝑛𝐼, ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))), 0) → (((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) ≤ (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ↔ if(𝑛𝐼, ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))), 0) ≤ (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))))
104 breq1 5169 . . . . 5 (0 = if(𝑛𝐼, ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))), 0) → (0 ≤ (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ↔ if(𝑛𝐼, ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))), 0) ≤ (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))))
10513rpregt0d 13105 . . . . . . . . . 10 (𝜑 → ((𝑈𝐸) ∈ ℝ ∧ 0 < (𝑈𝐸)))
106105adantr 480 . . . . . . . . 9 ((𝜑𝑛𝐼) → ((𝑈𝐸) ∈ ℝ ∧ 0 < (𝑈𝐸)))
107106simpld 494 . . . . . . . 8 ((𝜑𝑛𝐼) → (𝑈𝐸) ∈ ℝ)
108 1rp 13061 . . . . . . . . . . . . . . . . 17 1 ∈ ℝ+
109 rpaddcl 13079 . . . . . . . . . . . . . . . . 17 ((1 ∈ ℝ+ ∧ (𝐿 · 𝐸) ∈ ℝ+) → (1 + (𝐿 · 𝐸)) ∈ ℝ+)
110108, 17, 109sylancr 586 . . . . . . . . . . . . . . . 16 (𝜑 → (1 + (𝐿 · 𝐸)) ∈ ℝ+)
111110, 44rpmulcld 13115 . . . . . . . . . . . . . . 15 (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑉) ∈ ℝ+)
11229, 111rpdivcld 13116 . . . . . . . . . . . . . 14 (𝜑 → (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ∈ ℝ+)
113112rprege0d 13106 . . . . . . . . . . . . 13 (𝜑 → ((𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ∈ ℝ ∧ 0 ≤ (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))))
114 flge0nn0 13871 . . . . . . . . . . . . 13 (((𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ∈ ℝ ∧ 0 ≤ (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) → (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) ∈ ℕ0)
115 nn0p1nn 12592 . . . . . . . . . . . . 13 ((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) ∈ ℕ0 → ((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1) ∈ ℕ)
116113, 114, 1153syl 18 . . . . . . . . . . . 12 (𝜑 → ((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1) ∈ ℕ)
117 elfzuz 13580 . . . . . . . . . . . . 13 (𝑛 ∈ (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)...(⌊‘(𝑍 / 𝑉))) → 𝑛 ∈ (ℤ‘((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)))
118117, 37eleq2s 2862 . . . . . . . . . . . 12 (𝑛𝐼𝑛 ∈ (ℤ‘((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)))
119 eluznn 12983 . . . . . . . . . . . 12 ((((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1) ∈ ℕ ∧ 𝑛 ∈ (ℤ‘((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1))) → 𝑛 ∈ ℕ)
120116, 118, 119syl2an 595 . . . . . . . . . . 11 ((𝜑𝑛𝐼) → 𝑛 ∈ ℕ)
121120nnrpd 13097 . . . . . . . . . 10 ((𝜑𝑛𝐼) → 𝑛 ∈ ℝ+)
122121relogcld 26683 . . . . . . . . 9 ((𝜑𝑛𝐼) → (log‘𝑛) ∈ ℝ)
123122, 120nndivred 12347 . . . . . . . 8 ((𝜑𝑛𝐼) → ((log‘𝑛) / 𝑛) ∈ ℝ)
124107, 123remulcld 11320 . . . . . . 7 ((𝜑𝑛𝐼) → ((𝑈𝐸) · ((log‘𝑛) / 𝑛)) ∈ ℝ)
12593sselda 4008 . . . . . . . 8 ((𝜑𝑛𝐼) → 𝑛𝑂)
126125, 82syldan 590 . . . . . . 7 ((𝜑𝑛𝐼) → (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∈ ℝ)
127 simpr 484 . . . . . . . . . . . 12 ((𝜑𝑛𝐼) → 𝑛𝐼)
128127, 37eleqtrdi 2854 . . . . . . . . . . 11 ((𝜑𝑛𝐼) → 𝑛 ∈ (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)...(⌊‘(𝑍 / 𝑉))))
129 elfzle2 13588 . . . . . . . . . . 11 (𝑛 ∈ (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)...(⌊‘(𝑍 / 𝑉))) → 𝑛 ≤ (⌊‘(𝑍 / 𝑉)))
130128, 129syl 17 . . . . . . . . . 10 ((𝜑𝑛𝐼) → 𝑛 ≤ (⌊‘(𝑍 / 𝑉)))
13145rpred 13099 . . . . . . . . . . . 12 (𝜑 → (𝑍 / 𝑉) ∈ ℝ)
132131adantr 480 . . . . . . . . . . 11 ((𝜑𝑛𝐼) → (𝑍 / 𝑉) ∈ ℝ)
133128elfzelzd 13585 . . . . . . . . . . 11 ((𝜑𝑛𝐼) → 𝑛 ∈ ℤ)
134 flge 13856 . . . . . . . . . . 11 (((𝑍 / 𝑉) ∈ ℝ ∧ 𝑛 ∈ ℤ) → (𝑛 ≤ (𝑍 / 𝑉) ↔ 𝑛 ≤ (⌊‘(𝑍 / 𝑉))))
135132, 133, 134syl2anc 583 . . . . . . . . . 10 ((𝜑𝑛𝐼) → (𝑛 ≤ (𝑍 / 𝑉) ↔ 𝑛 ≤ (⌊‘(𝑍 / 𝑉))))
136130, 135mpbird 257 . . . . . . . . 9 ((𝜑𝑛𝐼) → 𝑛 ≤ (𝑍 / 𝑉))
137120nnred 12308 . . . . . . . . . 10 ((𝜑𝑛𝐼) → 𝑛 ∈ ℝ)
138 ere 16137 . . . . . . . . . . . 12 e ∈ ℝ
139138a1i 11 . . . . . . . . . . 11 ((𝜑𝑛𝐼) → e ∈ ℝ)
140112rpred 13099 . . . . . . . . . . . 12 (𝜑 → (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ∈ ℝ)
141140adantr 480 . . . . . . . . . . 11 ((𝜑𝑛𝐼) → (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ∈ ℝ)
142138a1i 11 . . . . . . . . . . . . 13 (𝜑 → e ∈ ℝ)
14329rpsqrtcld 15460 . . . . . . . . . . . . . 14 (𝜑 → (√‘𝑍) ∈ ℝ+)
144143rpred 13099 . . . . . . . . . . . . 13 (𝜑 → (√‘𝑍) ∈ ℝ)
14531simp2d 1143 . . . . . . . . . . . . 13 (𝜑 → e ≤ (√‘𝑍))
146111rpred 13099 . . . . . . . . . . . . . . . . 17 (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑉) ∈ ℝ)
14760rpred 13099 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐾↑(𝐽 + 1)) ∈ ℝ)
14888simpld 494 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝐾𝐽) < 𝑉 ∧ ((1 + (𝐿 · 𝐸)) · 𝑉) < (𝐾 · (𝐾𝐽))))
149148simprd 495 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑉) < (𝐾 · (𝐾𝐽)))
15055rpcnd 13101 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐾 ∈ ℂ)
15155, 58rpexpcld 14296 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝐾𝐽) ∈ ℝ+)
152151rpcnd 13101 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐾𝐽) ∈ ℂ)
153150, 152mulcomd 11311 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐾 · (𝐾𝐽)) = ((𝐾𝐽) · 𝐾))
1541, 2, 3, 4, 5, 6, 7, 8, 9, 10, 23, 24, 25, 26, 27, 84, 85pntlemg 27660 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ𝑀) ∧ (((log‘𝑍) / (log‘𝐾)) / 4) ≤ (𝑁𝑀)))
155154simp1d 1142 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑀 ∈ ℕ)
156 elfzouz 13720 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐽 ∈ (𝑀..^𝑁) → 𝐽 ∈ (ℤ𝑀))
15756, 156syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐽 ∈ (ℤ𝑀))
158 eluznn 12983 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑀 ∈ ℕ ∧ 𝐽 ∈ (ℤ𝑀)) → 𝐽 ∈ ℕ)
159155, 157, 158syl2anc 583 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐽 ∈ ℕ)
160159nnnn0d 12613 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐽 ∈ ℕ0)
161150, 160expp1d 14197 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐾↑(𝐽 + 1)) = ((𝐾𝐽) · 𝐾))
162153, 161eqtr4d 2783 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐾 · (𝐾𝐽)) = (𝐾↑(𝐽 + 1)))
163149, 162breqtrd 5192 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑉) < (𝐾↑(𝐽 + 1)))
164146, 147, 163ltled 11438 . . . . . . . . . . . . . . . . 17 (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑉) ≤ (𝐾↑(𝐽 + 1)))
165 fzofzp1 13814 . . . . . . . . . . . . . . . . . . . 20 (𝐽 ∈ (𝑀..^𝑁) → (𝐽 + 1) ∈ (𝑀...𝑁))
16656, 165syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐽 + 1) ∈ (𝑀...𝑁))
1671, 2, 3, 4, 5, 6, 7, 8, 9, 10, 23, 24, 25, 26, 27, 84, 85pntlemh 27661 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝐽 + 1) ∈ (𝑀...𝑁)) → (𝑋 < (𝐾↑(𝐽 + 1)) ∧ (𝐾↑(𝐽 + 1)) ≤ (√‘𝑍)))
168166, 167mpdan 686 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑋 < (𝐾↑(𝐽 + 1)) ∧ (𝐾↑(𝐽 + 1)) ≤ (√‘𝑍)))
169168simprd 495 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐾↑(𝐽 + 1)) ≤ (√‘𝑍))
170146, 147, 144, 164, 169letrd 11447 . . . . . . . . . . . . . . . 16 (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑉) ≤ (√‘𝑍))
171146, 144, 143lemul2d 13143 . . . . . . . . . . . . . . . 16 (𝜑 → (((1 + (𝐿 · 𝐸)) · 𝑉) ≤ (√‘𝑍) ↔ ((√‘𝑍) · ((1 + (𝐿 · 𝐸)) · 𝑉)) ≤ ((√‘𝑍) · (√‘𝑍))))
172170, 171mpbid 232 . . . . . . . . . . . . . . 15 (𝜑 → ((√‘𝑍) · ((1 + (𝐿 · 𝐸)) · 𝑉)) ≤ ((√‘𝑍) · (√‘𝑍)))
17329rprege0d 13106 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑍 ∈ ℝ ∧ 0 ≤ 𝑍))
174 remsqsqrt 15305 . . . . . . . . . . . . . . . 16 ((𝑍 ∈ ℝ ∧ 0 ≤ 𝑍) → ((√‘𝑍) · (√‘𝑍)) = 𝑍)
175173, 174syl 17 . . . . . . . . . . . . . . 15 (𝜑 → ((√‘𝑍) · (√‘𝑍)) = 𝑍)
176172, 175breqtrd 5192 . . . . . . . . . . . . . 14 (𝜑 → ((√‘𝑍) · ((1 + (𝐿 · 𝐸)) · 𝑉)) ≤ 𝑍)
177144, 30, 111lemuldivd 13148 . . . . . . . . . . . . . 14 (𝜑 → (((√‘𝑍) · ((1 + (𝐿 · 𝐸)) · 𝑉)) ≤ 𝑍 ↔ (√‘𝑍) ≤ (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))))
178176, 177mpbid 232 . . . . . . . . . . . . 13 (𝜑 → (√‘𝑍) ≤ (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))
179142, 144, 140, 145, 178letrd 11447 . . . . . . . . . . . 12 (𝜑 → e ≤ (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))
180179adantr 480 . . . . . . . . . . 11 ((𝜑𝑛𝐼) → e ≤ (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))
181 reflcl 13847 . . . . . . . . . . . . . 14 ((𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ∈ ℝ → (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) ∈ ℝ)
182 peano2re 11463 . . . . . . . . . . . . . 14 ((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) ∈ ℝ → ((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1) ∈ ℝ)
183140, 181, 1823syl 18 . . . . . . . . . . . . 13 (𝜑 → ((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1) ∈ ℝ)
184183adantr 480 . . . . . . . . . . . 12 ((𝜑𝑛𝐼) → ((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1) ∈ ℝ)
185 fllep1 13852 . . . . . . . . . . . . 13 ((𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ∈ ℝ → (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ≤ ((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1))
186141, 185syl 17 . . . . . . . . . . . 12 ((𝜑𝑛𝐼) → (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ≤ ((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1))
187 elfzle1 13587 . . . . . . . . . . . . 13 (𝑛 ∈ (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)...(⌊‘(𝑍 / 𝑉))) → ((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1) ≤ 𝑛)
188128, 187syl 17 . . . . . . . . . . . 12 ((𝜑𝑛𝐼) → ((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1) ≤ 𝑛)
189141, 184, 137, 186, 188letrd 11447 . . . . . . . . . . 11 ((𝜑𝑛𝐼) → (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ≤ 𝑛)
190139, 141, 137, 180, 189letrd 11447 . . . . . . . . . 10 ((𝜑𝑛𝐼) → e ≤ 𝑛)
191139, 137, 132, 190, 136letrd 11447 . . . . . . . . . 10 ((𝜑𝑛𝐼) → e ≤ (𝑍 / 𝑉))
192 logdivle 26682 . . . . . . . . . 10 (((𝑛 ∈ ℝ ∧ e ≤ 𝑛) ∧ ((𝑍 / 𝑉) ∈ ℝ ∧ e ≤ (𝑍 / 𝑉))) → (𝑛 ≤ (𝑍 / 𝑉) ↔ ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)) ≤ ((log‘𝑛) / 𝑛)))
193137, 190, 132, 191, 192syl22anc 838 . . . . . . . . 9 ((𝜑𝑛𝐼) → (𝑛 ≤ (𝑍 / 𝑉) ↔ ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)) ≤ ((log‘𝑛) / 𝑛)))
194136, 193mpbid 232 . . . . . . . 8 ((𝜑𝑛𝐼) → ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)) ≤ ((log‘𝑛) / 𝑛))
19547adantr 480 . . . . . . . . 9 ((𝜑𝑛𝐼) → ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)) ∈ ℝ)
196 lemul2 12147 . . . . . . . . 9 ((((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)) ∈ ℝ ∧ ((log‘𝑛) / 𝑛) ∈ ℝ ∧ ((𝑈𝐸) ∈ ℝ ∧ 0 < (𝑈𝐸))) → (((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)) ≤ ((log‘𝑛) / 𝑛) ↔ ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) ≤ ((𝑈𝐸) · ((log‘𝑛) / 𝑛))))
197195, 123, 106, 196syl3anc 1371 . . . . . . . 8 ((𝜑𝑛𝐼) → (((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)) ≤ ((log‘𝑛) / 𝑛) ↔ ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) ≤ ((𝑈𝐸) · ((log‘𝑛) / 𝑛))))
198194, 197mpbid 232 . . . . . . 7 ((𝜑𝑛𝐼) → ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) ≤ ((𝑈𝐸) · ((log‘𝑛) / 𝑛)))
19913rpcnd 13101 . . . . . . . . . . 11 (𝜑 → (𝑈𝐸) ∈ ℂ)
200199adantr 480 . . . . . . . . . 10 ((𝜑𝑛𝐼) → (𝑈𝐸) ∈ ℂ)
201122recnd 11318 . . . . . . . . . 10 ((𝜑𝑛𝐼) → (log‘𝑛) ∈ ℂ)
202121rpcnne0d 13108 . . . . . . . . . 10 ((𝜑𝑛𝐼) → (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0))
203 div23 11968 . . . . . . . . . 10 (((𝑈𝐸) ∈ ℂ ∧ (log‘𝑛) ∈ ℂ ∧ (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0)) → (((𝑈𝐸) · (log‘𝑛)) / 𝑛) = (((𝑈𝐸) / 𝑛) · (log‘𝑛)))
204200, 201, 202, 203syl3anc 1371 . . . . . . . . 9 ((𝜑𝑛𝐼) → (((𝑈𝐸) · (log‘𝑛)) / 𝑛) = (((𝑈𝐸) / 𝑛) · (log‘𝑛)))
205 divass 11967 . . . . . . . . . 10 (((𝑈𝐸) ∈ ℂ ∧ (log‘𝑛) ∈ ℂ ∧ (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0)) → (((𝑈𝐸) · (log‘𝑛)) / 𝑛) = ((𝑈𝐸) · ((log‘𝑛) / 𝑛)))
206200, 201, 202, 205syl3anc 1371 . . . . . . . . 9 ((𝜑𝑛𝐼) → (((𝑈𝐸) · (log‘𝑛)) / 𝑛) = ((𝑈𝐸) · ((log‘𝑛) / 𝑛)))
207204, 206eqtr3d 2782 . . . . . . . 8 ((𝜑𝑛𝐼) → (((𝑈𝐸) / 𝑛) · (log‘𝑛)) = ((𝑈𝐸) · ((log‘𝑛) / 𝑛)))
20843adantr 480 . . . . . . . . . 10 ((𝜑𝑛𝐼) → (𝑈𝐸) ∈ ℝ)
209208, 120nndivred 12347 . . . . . . . . 9 ((𝜑𝑛𝐼) → ((𝑈𝐸) / 𝑛) ∈ ℝ)
210125, 80syldan 590 . . . . . . . . 9 ((𝜑𝑛𝐼) → ((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) ∈ ℝ)
211 log1 26645 . . . . . . . . . 10 (log‘1) = 0
212120nnge1d 12341 . . . . . . . . . . 11 ((𝜑𝑛𝐼) → 1 ≤ 𝑛)
213 logleb 26663 . . . . . . . . . . . 12 ((1 ∈ ℝ+𝑛 ∈ ℝ+) → (1 ≤ 𝑛 ↔ (log‘1) ≤ (log‘𝑛)))
214108, 121, 213sylancr 586 . . . . . . . . . . 11 ((𝜑𝑛𝐼) → (1 ≤ 𝑛 ↔ (log‘1) ≤ (log‘𝑛)))
215212, 214mpbid 232 . . . . . . . . . 10 ((𝜑𝑛𝐼) → (log‘1) ≤ (log‘𝑛))
216211, 215eqbrtrrid 5202 . . . . . . . . 9 ((𝜑𝑛𝐼) → 0 ≤ (log‘𝑛))
2177rpcnd 13101 . . . . . . . . . . . 12 (𝜑𝑈 ∈ ℂ)
218217adantr 480 . . . . . . . . . . 11 ((𝜑𝑛𝐼) → 𝑈 ∈ ℂ)
21916rpred 13099 . . . . . . . . . . . . 13 (𝜑𝐸 ∈ ℝ)
220219adantr 480 . . . . . . . . . . . 12 ((𝜑𝑛𝐼) → 𝐸 ∈ ℝ)
221220recnd 11318 . . . . . . . . . . 11 ((𝜑𝑛𝐼) → 𝐸 ∈ ℂ)
222 divsubdir 11988 . . . . . . . . . . 11 ((𝑈 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0)) → ((𝑈𝐸) / 𝑛) = ((𝑈 / 𝑛) − (𝐸 / 𝑛)))
223218, 221, 202, 222syl3anc 1371 . . . . . . . . . 10 ((𝜑𝑛𝐼) → ((𝑈𝐸) / 𝑛) = ((𝑈 / 𝑛) − (𝐸 / 𝑛)))
224125, 79syldan 590 . . . . . . . . . . 11 ((𝜑𝑛𝐼) → (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) ∈ ℝ)
225220, 120nndivred 12347 . . . . . . . . . . 11 ((𝜑𝑛𝐼) → (𝐸 / 𝑛) ∈ ℝ)
226125, 70syldan 590 . . . . . . . . . . 11 ((𝜑𝑛𝐼) → (𝑈 / 𝑛) ∈ ℝ)
227125, 76syldan 590 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛𝐼) → (𝑅‘(𝑍 / 𝑛)) ∈ ℝ)
228227recnd 11318 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛𝐼) → (𝑅‘(𝑍 / 𝑛)) ∈ ℂ)
22929adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛𝐼) → 𝑍 ∈ ℝ+)
230229rpcnne0d 13108 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛𝐼) → (𝑍 ∈ ℂ ∧ 𝑍 ≠ 0))
231 divdiv2 12006 . . . . . . . . . . . . . . . . 17 (((𝑅‘(𝑍 / 𝑛)) ∈ ℂ ∧ (𝑍 ∈ ℂ ∧ 𝑍 ≠ 0) ∧ (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0)) → ((𝑅‘(𝑍 / 𝑛)) / (𝑍 / 𝑛)) = (((𝑅‘(𝑍 / 𝑛)) · 𝑛) / 𝑍))
232228, 230, 202, 231syl3anc 1371 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝐼) → ((𝑅‘(𝑍 / 𝑛)) / (𝑍 / 𝑛)) = (((𝑅‘(𝑍 / 𝑛)) · 𝑛) / 𝑍))
233121rpcnd 13101 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛𝐼) → 𝑛 ∈ ℂ)
234 div23 11968 . . . . . . . . . . . . . . . . 17 (((𝑅‘(𝑍 / 𝑛)) ∈ ℂ ∧ 𝑛 ∈ ℂ ∧ (𝑍 ∈ ℂ ∧ 𝑍 ≠ 0)) → (((𝑅‘(𝑍 / 𝑛)) · 𝑛) / 𝑍) = (((𝑅‘(𝑍 / 𝑛)) / 𝑍) · 𝑛))
235228, 233, 230, 234syl3anc 1371 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝐼) → (((𝑅‘(𝑍 / 𝑛)) · 𝑛) / 𝑍) = (((𝑅‘(𝑍 / 𝑛)) / 𝑍) · 𝑛))
236232, 235eqtrd 2780 . . . . . . . . . . . . . . 15 ((𝜑𝑛𝐼) → ((𝑅‘(𝑍 / 𝑛)) / (𝑍 / 𝑛)) = (((𝑅‘(𝑍 / 𝑛)) / 𝑍) · 𝑛))
237236fveq2d 6924 . . . . . . . . . . . . . 14 ((𝜑𝑛𝐼) → (abs‘((𝑅‘(𝑍 / 𝑛)) / (𝑍 / 𝑛))) = (abs‘(((𝑅‘(𝑍 / 𝑛)) / 𝑍) · 𝑛)))
238125, 78syldan 590 . . . . . . . . . . . . . . 15 ((𝜑𝑛𝐼) → ((𝑅‘(𝑍 / 𝑛)) / 𝑍) ∈ ℂ)
239238, 233absmuld 15503 . . . . . . . . . . . . . 14 ((𝜑𝑛𝐼) → (abs‘(((𝑅‘(𝑍 / 𝑛)) / 𝑍) · 𝑛)) = ((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (abs‘𝑛)))
240121rprege0d 13106 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝐼) → (𝑛 ∈ ℝ ∧ 0 ≤ 𝑛))
241 absid 15345 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℝ ∧ 0 ≤ 𝑛) → (abs‘𝑛) = 𝑛)
242240, 241syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑛𝐼) → (abs‘𝑛) = 𝑛)
243242oveq2d 7464 . . . . . . . . . . . . . 14 ((𝜑𝑛𝐼) → ((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (abs‘𝑛)) = ((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · 𝑛))
244237, 239, 2433eqtrd 2784 . . . . . . . . . . . . 13 ((𝜑𝑛𝐼) → (abs‘((𝑅‘(𝑍 / 𝑛)) / (𝑍 / 𝑛))) = ((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · 𝑛))
245 fveq2 6920 . . . . . . . . . . . . . . . . 17 (𝑢 = (𝑍 / 𝑛) → (𝑅𝑢) = (𝑅‘(𝑍 / 𝑛)))
246 id 22 . . . . . . . . . . . . . . . . 17 (𝑢 = (𝑍 / 𝑛) → 𝑢 = (𝑍 / 𝑛))
247245, 246oveq12d 7466 . . . . . . . . . . . . . . . 16 (𝑢 = (𝑍 / 𝑛) → ((𝑅𝑢) / 𝑢) = ((𝑅‘(𝑍 / 𝑛)) / (𝑍 / 𝑛)))
248247fveq2d 6924 . . . . . . . . . . . . . . 15 (𝑢 = (𝑍 / 𝑛) → (abs‘((𝑅𝑢) / 𝑢)) = (abs‘((𝑅‘(𝑍 / 𝑛)) / (𝑍 / 𝑛))))
249248breq1d 5176 . . . . . . . . . . . . . 14 (𝑢 = (𝑍 / 𝑛) → ((abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸 ↔ (abs‘((𝑅‘(𝑍 / 𝑛)) / (𝑍 / 𝑛))) ≤ 𝐸))
25088simprd 495 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑢 ∈ (𝑉[,]((1 + (𝐿 · 𝐸)) · 𝑉))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)
251250adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑛𝐼) → ∀𝑢 ∈ (𝑉[,]((1 + (𝐿 · 𝐸)) · 𝑉))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)
25230adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝐼) → 𝑍 ∈ ℝ)
253252, 120nndivred 12347 . . . . . . . . . . . . . . 15 ((𝜑𝑛𝐼) → (𝑍 / 𝑛) ∈ ℝ)
25444rpregt0d 13105 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑉 ∈ ℝ ∧ 0 < 𝑉))
255254adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛𝐼) → (𝑉 ∈ ℝ ∧ 0 < 𝑉))
256 lemuldiv2 12176 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℝ ∧ 𝑍 ∈ ℝ ∧ (𝑉 ∈ ℝ ∧ 0 < 𝑉)) → ((𝑉 · 𝑛) ≤ 𝑍𝑛 ≤ (𝑍 / 𝑉)))
257137, 252, 255, 256syl3anc 1371 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛𝐼) → ((𝑉 · 𝑛) ≤ 𝑍𝑛 ≤ (𝑍 / 𝑉)))
258136, 257mpbird 257 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝐼) → (𝑉 · 𝑛) ≤ 𝑍)
259255simpld 494 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛𝐼) → 𝑉 ∈ ℝ)
260259, 252, 121lemuldivd 13148 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝐼) → ((𝑉 · 𝑛) ≤ 𝑍𝑉 ≤ (𝑍 / 𝑛)))
261258, 260mpbid 232 . . . . . . . . . . . . . . 15 ((𝜑𝑛𝐼) → 𝑉 ≤ (𝑍 / 𝑛))
262111rpregt0d 13105 . . . . . . . . . . . . . . . . . 18 (𝜑 → (((1 + (𝐿 · 𝐸)) · 𝑉) ∈ ℝ ∧ 0 < ((1 + (𝐿 · 𝐸)) · 𝑉)))
263262adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛𝐼) → (((1 + (𝐿 · 𝐸)) · 𝑉) ∈ ℝ ∧ 0 < ((1 + (𝐿 · 𝐸)) · 𝑉)))
264121rpregt0d 13105 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛𝐼) → (𝑛 ∈ ℝ ∧ 0 < 𝑛))
265 lediv23 12187 . . . . . . . . . . . . . . . . 17 ((𝑍 ∈ ℝ ∧ (((1 + (𝐿 · 𝐸)) · 𝑉) ∈ ℝ ∧ 0 < ((1 + (𝐿 · 𝐸)) · 𝑉)) ∧ (𝑛 ∈ ℝ ∧ 0 < 𝑛)) → ((𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ≤ 𝑛 ↔ (𝑍 / 𝑛) ≤ ((1 + (𝐿 · 𝐸)) · 𝑉)))
266252, 263, 264, 265syl3anc 1371 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝐼) → ((𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ≤ 𝑛 ↔ (𝑍 / 𝑛) ≤ ((1 + (𝐿 · 𝐸)) · 𝑉)))
267189, 266mpbid 232 . . . . . . . . . . . . . . 15 ((𝜑𝑛𝐼) → (𝑍 / 𝑛) ≤ ((1 + (𝐿 · 𝐸)) · 𝑉))
26844rpred 13099 . . . . . . . . . . . . . . . . 17 (𝜑𝑉 ∈ ℝ)
269268adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝐼) → 𝑉 ∈ ℝ)
270146adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝐼) → ((1 + (𝐿 · 𝐸)) · 𝑉) ∈ ℝ)
271 elicc2 13472 . . . . . . . . . . . . . . . 16 ((𝑉 ∈ ℝ ∧ ((1 + (𝐿 · 𝐸)) · 𝑉) ∈ ℝ) → ((𝑍 / 𝑛) ∈ (𝑉[,]((1 + (𝐿 · 𝐸)) · 𝑉)) ↔ ((𝑍 / 𝑛) ∈ ℝ ∧ 𝑉 ≤ (𝑍 / 𝑛) ∧ (𝑍 / 𝑛) ≤ ((1 + (𝐿 · 𝐸)) · 𝑉))))
272269, 270, 271syl2anc 583 . . . . . . . . . . . . . . 15 ((𝜑𝑛𝐼) → ((𝑍 / 𝑛) ∈ (𝑉[,]((1 + (𝐿 · 𝐸)) · 𝑉)) ↔ ((𝑍 / 𝑛) ∈ ℝ ∧ 𝑉 ≤ (𝑍 / 𝑛) ∧ (𝑍 / 𝑛) ≤ ((1 + (𝐿 · 𝐸)) · 𝑉))))
273253, 261, 267, 272mpbir3and 1342 . . . . . . . . . . . . . 14 ((𝜑𝑛𝐼) → (𝑍 / 𝑛) ∈ (𝑉[,]((1 + (𝐿 · 𝐸)) · 𝑉)))
274249, 251, 273rspcdva 3636 . . . . . . . . . . . . 13 ((𝜑𝑛𝐼) → (abs‘((𝑅‘(𝑍 / 𝑛)) / (𝑍 / 𝑛))) ≤ 𝐸)
275244, 274eqbrtrrd 5190 . . . . . . . . . . . 12 ((𝜑𝑛𝐼) → ((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · 𝑛) ≤ 𝐸)
276224, 220, 121lemuldivd 13148 . . . . . . . . . . . 12 ((𝜑𝑛𝐼) → (((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · 𝑛) ≤ 𝐸 ↔ (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) ≤ (𝐸 / 𝑛)))
277275, 276mpbid 232 . . . . . . . . . . 11 ((𝜑𝑛𝐼) → (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) ≤ (𝐸 / 𝑛))
278224, 225, 226, 277lesub2dd 11907 . . . . . . . . . 10 ((𝜑𝑛𝐼) → ((𝑈 / 𝑛) − (𝐸 / 𝑛)) ≤ ((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))))
279223, 278eqbrtrd 5188 . . . . . . . . 9 ((𝜑𝑛𝐼) → ((𝑈𝐸) / 𝑛) ≤ ((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))))
280209, 210, 122, 216, 279lemul1ad 12234 . . . . . . . 8 ((𝜑𝑛𝐼) → (((𝑈𝐸) / 𝑛) · (log‘𝑛)) ≤ (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
281207, 280eqbrtrrd 5190 . . . . . . 7 ((𝜑𝑛𝐼) → ((𝑈𝐸) · ((log‘𝑛) / 𝑛)) ≤ (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
28299, 124, 126, 198, 281letrd 11447 . . . . . 6 ((𝜑𝑛𝐼) → ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) ≤ (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
283282adantlr 714 . . . . 5 (((𝜑𝑛𝑂) ∧ 𝑛𝐼) → ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) ≤ (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
28469nnred 12308 . . . . . . . . 9 ((𝜑𝑛𝑂) → 𝑛 ∈ ℝ)
28529, 151rpdivcld 13116 . . . . . . . . . . 11 (𝜑 → (𝑍 / (𝐾𝐽)) ∈ ℝ+)
286285rpred 13099 . . . . . . . . . 10 (𝜑 → (𝑍 / (𝐾𝐽)) ∈ ℝ)
287286adantr 480 . . . . . . . . 9 ((𝜑𝑛𝑂) → (𝑍 / (𝐾𝐽)) ∈ ℝ)
28823simpld 494 . . . . . . . . . . . 12 (𝜑𝑌 ∈ ℝ+)
28929, 288rpdivcld 13116 . . . . . . . . . . 11 (𝜑 → (𝑍 / 𝑌) ∈ ℝ+)
290289rpred 13099 . . . . . . . . . 10 (𝜑 → (𝑍 / 𝑌) ∈ ℝ)
291290adantr 480 . . . . . . . . 9 ((𝜑𝑛𝑂) → (𝑍 / 𝑌) ∈ ℝ)
292 simpr 484 . . . . . . . . . . . 12 ((𝜑𝑛𝑂) → 𝑛𝑂)
293292, 50eleqtrdi 2854 . . . . . . . . . . 11 ((𝜑𝑛𝑂) → 𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝐽)))))
294 elfzle2 13588 . . . . . . . . . . 11 (𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝐽)))) → 𝑛 ≤ (⌊‘(𝑍 / (𝐾𝐽))))
295293, 294syl 17 . . . . . . . . . 10 ((𝜑𝑛𝑂) → 𝑛 ≤ (⌊‘(𝑍 / (𝐾𝐽))))
29669nnzd 12666 . . . . . . . . . . 11 ((𝜑𝑛𝑂) → 𝑛 ∈ ℤ)
297 flge 13856 . . . . . . . . . . 11 (((𝑍 / (𝐾𝐽)) ∈ ℝ ∧ 𝑛 ∈ ℤ) → (𝑛 ≤ (𝑍 / (𝐾𝐽)) ↔ 𝑛 ≤ (⌊‘(𝑍 / (𝐾𝐽)))))
298287, 296, 297syl2anc 583 . . . . . . . . . 10 ((𝜑𝑛𝑂) → (𝑛 ≤ (𝑍 / (𝐾𝐽)) ↔ 𝑛 ≤ (⌊‘(𝑍 / (𝐾𝐽)))))
299295, 298mpbird 257 . . . . . . . . 9 ((𝜑𝑛𝑂) → 𝑛 ≤ (𝑍 / (𝐾𝐽)))
300288rpred 13099 . . . . . . . . . . . 12 (𝜑𝑌 ∈ ℝ)
30124simpld 494 . . . . . . . . . . . . 13 (𝜑𝑋 ∈ ℝ+)
302301rpred 13099 . . . . . . . . . . . 12 (𝜑𝑋 ∈ ℝ)
303151rpred 13099 . . . . . . . . . . . 12 (𝜑 → (𝐾𝐽) ∈ ℝ)
30424simprd 495 . . . . . . . . . . . . 13 (𝜑𝑌 < 𝑋)
305300, 302, 304ltled 11438 . . . . . . . . . . . 12 (𝜑𝑌𝑋)
306 elfzofz 13732 . . . . . . . . . . . . . . . 16 (𝐽 ∈ (𝑀..^𝑁) → 𝐽 ∈ (𝑀...𝑁))
30756, 306syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐽 ∈ (𝑀...𝑁))
3081, 2, 3, 4, 5, 6, 7, 8, 9, 10, 23, 24, 25, 26, 27, 84, 85pntlemh 27661 . . . . . . . . . . . . . . 15 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (𝑋 < (𝐾𝐽) ∧ (𝐾𝐽) ≤ (√‘𝑍)))
309307, 308mpdan 686 . . . . . . . . . . . . . 14 (𝜑 → (𝑋 < (𝐾𝐽) ∧ (𝐾𝐽) ≤ (√‘𝑍)))
310309simpld 494 . . . . . . . . . . . . 13 (𝜑𝑋 < (𝐾𝐽))
311302, 303, 310ltled 11438 . . . . . . . . . . . 12 (𝜑𝑋 ≤ (𝐾𝐽))
312300, 302, 303, 305, 311letrd 11447 . . . . . . . . . . 11 (𝜑𝑌 ≤ (𝐾𝐽))
313288, 151, 29lediv2d 13123 . . . . . . . . . . 11 (𝜑 → (𝑌 ≤ (𝐾𝐽) ↔ (𝑍 / (𝐾𝐽)) ≤ (𝑍 / 𝑌)))
314312, 313mpbid 232 . . . . . . . . . 10 (𝜑 → (𝑍 / (𝐾𝐽)) ≤ (𝑍 / 𝑌))
315314adantr 480 . . . . . . . . 9 ((𝜑𝑛𝑂) → (𝑍 / (𝐾𝐽)) ≤ (𝑍 / 𝑌))
316284, 287, 291, 299, 315letrd 11447 . . . . . . . 8 ((𝜑𝑛𝑂) → 𝑛 ≤ (𝑍 / 𝑌))
31769, 316jca 511 . . . . . . 7 ((𝜑𝑛𝑂) → (𝑛 ∈ ℕ ∧ 𝑛 ≤ (𝑍 / 𝑌)))
3181, 2, 3, 4, 5, 6, 7, 8, 9, 10, 23, 24, 25, 26, 27, 84, 85, 86pntlemn 27662 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛 ≤ (𝑍 / 𝑌))) → 0 ≤ (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
319317, 318syldan 590 . . . . . 6 ((𝜑𝑛𝑂) → 0 ≤ (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
320319adantr 480 . . . . 5 (((𝜑𝑛𝑂) ∧ ¬ 𝑛𝐼) → 0 ≤ (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
321103, 104, 283, 320ifbothda 4586 . . . 4 ((𝜑𝑛𝑂) → if(𝑛𝐼, ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))), 0) ≤ (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
32252, 102, 82, 321fsumle 15847 . . 3 (𝜑 → Σ𝑛𝑂 if(𝑛𝐼, ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))), 0) ≤ Σ𝑛𝑂 (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
32398, 322eqbrtrd 5188 . 2 (𝜑 → ((♯‘𝐼) · ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)))) ≤ Σ𝑛𝑂 (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
32436, 49, 83, 89, 323letrd 11447 1 (𝜑 → ((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ≤ Σ𝑛𝑂 (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  wss 3976  ifcif 4548   class class class wbr 5166  cmpt 5249  cfv 6573  (class class class)co 7448  Fincfn 9003  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189  +∞cpnf 11321   < clt 11324  cle 11325  cmin 11520   / cdiv 11947  cn 12293  2c2 12348  3c3 12349  4c4 12350  8c8 12354  0cn0 12553  cz 12639  cdc 12758  cuz 12903  +crp 13057  (,)cioo 13407  [,)cico 13409  [,]cicc 13410  ...cfz 13567  ..^cfzo 13711  cfl 13841  cexp 14112  chash 14379  csqrt 15282  abscabs 15283  Σcsu 15734  expce 16109  eceu 16110  logclog 26614  ψcchp 27154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-fac 14323  df-bc 14352  df-hash 14380  df-shft 15116  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-sum 15735  df-ef 16115  df-e 16116  df-sin 16117  df-cos 16118  df-pi 16120  df-dvds 16303  df-gcd 16541  df-prm 16719  df-pc 16884  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cn 23256  df-cnp 23257  df-haus 23344  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-limc 25921  df-dv 25922  df-log 26616  df-vma 27159  df-chp 27160
This theorem is referenced by:  pntlemi  27666
  Copyright terms: Public domain W3C validator