MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlemj Structured version   Visualization version   GIF version

Theorem pntlemj 27514
Description: Lemma for pnt 27525. The induction step. Using pntibnd 27504, we find an interval in 𝐾𝐽...𝐾↑(𝐽 + 1) which is sufficiently large and has a much smaller value, 𝑅(𝑧) / 𝑧𝐸 (instead of our original bound 𝑅(𝑧) / 𝑧𝑈). (Contributed by Mario Carneiro, 13-Apr-2016.)
Hypotheses
Ref Expression
pntlem1.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntlem1.a (𝜑𝐴 ∈ ℝ+)
pntlem1.b (𝜑𝐵 ∈ ℝ+)
pntlem1.l (𝜑𝐿 ∈ (0(,)1))
pntlem1.d 𝐷 = (𝐴 + 1)
pntlem1.f 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
pntlem1.u (𝜑𝑈 ∈ ℝ+)
pntlem1.u2 (𝜑𝑈𝐴)
pntlem1.e 𝐸 = (𝑈 / 𝐷)
pntlem1.k 𝐾 = (exp‘(𝐵 / 𝐸))
pntlem1.y (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
pntlem1.x (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
pntlem1.c (𝜑𝐶 ∈ ℝ+)
pntlem1.w 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
pntlem1.z (𝜑𝑍 ∈ (𝑊[,)+∞))
pntlem1.m 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1)
pntlem1.n 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2))
pntlem1.U (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑈)
pntlem1.K (𝜑 → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
pntlem1.o 𝑂 = (((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝐽))))
pntlem1.v (𝜑𝑉 ∈ ℝ+)
pntlem1.V (𝜑 → (((𝐾𝐽) < 𝑉 ∧ ((1 + (𝐿 · 𝐸)) · 𝑉) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑉[,]((1 + (𝐿 · 𝐸)) · 𝑉))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
pntlem1.j (𝜑𝐽 ∈ (𝑀..^𝑁))
pntlem1.i 𝐼 = (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)...(⌊‘(𝑍 / 𝑉)))
Assertion
Ref Expression
pntlemj (𝜑 → ((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ≤ Σ𝑛𝑂 (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
Distinct variable groups:   𝑧,𝐶   𝑛,𝐼   𝑦,𝑛,𝑧,𝐽   𝑢,𝑛,𝐿,𝑦,𝑧   𝑛,𝐾,𝑦,𝑧   𝑛,𝑀,𝑧   𝑛,𝑂,𝑧   𝜑,𝑛   𝑛,𝑁,𝑧   𝑅,𝑛,𝑢,𝑦,𝑧   𝑛,𝑉,𝑢   𝑈,𝑛,𝑧   𝑛,𝑊,𝑧   𝑛,𝑋,𝑦,𝑧   𝑛,𝑌,𝑧   𝑛,𝑎,𝑢,𝑦,𝑧,𝐸   𝑛,𝑍,𝑢,𝑧
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑢,𝑎)   𝐴(𝑦,𝑧,𝑢,𝑛,𝑎)   𝐵(𝑦,𝑧,𝑢,𝑛,𝑎)   𝐶(𝑦,𝑢,𝑛,𝑎)   𝐷(𝑦,𝑧,𝑢,𝑛,𝑎)   𝑅(𝑎)   𝑈(𝑦,𝑢,𝑎)   𝐹(𝑦,𝑧,𝑢,𝑛,𝑎)   𝐼(𝑦,𝑧,𝑢,𝑎)   𝐽(𝑢,𝑎)   𝐾(𝑢,𝑎)   𝐿(𝑎)   𝑀(𝑦,𝑢,𝑎)   𝑁(𝑦,𝑢,𝑎)   𝑂(𝑦,𝑢,𝑎)   𝑉(𝑦,𝑧,𝑎)   𝑊(𝑦,𝑢,𝑎)   𝑋(𝑢,𝑎)   𝑌(𝑦,𝑢,𝑎)   𝑍(𝑦,𝑎)

Proof of Theorem pntlemj
StepHypRef Expression
1 pntlem1.r . . . . . . 7 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
2 pntlem1.a . . . . . . 7 (𝜑𝐴 ∈ ℝ+)
3 pntlem1.b . . . . . . 7 (𝜑𝐵 ∈ ℝ+)
4 pntlem1.l . . . . . . 7 (𝜑𝐿 ∈ (0(,)1))
5 pntlem1.d . . . . . . 7 𝐷 = (𝐴 + 1)
6 pntlem1.f . . . . . . 7 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
7 pntlem1.u . . . . . . 7 (𝜑𝑈 ∈ ℝ+)
8 pntlem1.u2 . . . . . . 7 (𝜑𝑈𝐴)
9 pntlem1.e . . . . . . 7 𝐸 = (𝑈 / 𝐷)
10 pntlem1.k . . . . . . 7 𝐾 = (exp‘(𝐵 / 𝐸))
111, 2, 3, 4, 5, 6, 7, 8, 9, 10pntlemc 27506 . . . . . 6 (𝜑 → (𝐸 ∈ ℝ+𝐾 ∈ ℝ+ ∧ (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+)))
1211simp3d 1144 . . . . 5 (𝜑 → (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+))
1312simp3d 1144 . . . 4 (𝜑 → (𝑈𝐸) ∈ ℝ+)
141, 2, 3, 4, 5, 6pntlemd 27505 . . . . . . . 8 (𝜑 → (𝐿 ∈ ℝ+𝐷 ∈ ℝ+𝐹 ∈ ℝ+))
1514simp1d 1142 . . . . . . 7 (𝜑𝐿 ∈ ℝ+)
1611simp1d 1142 . . . . . . 7 (𝜑𝐸 ∈ ℝ+)
1715, 16rpmulcld 13011 . . . . . 6 (𝜑 → (𝐿 · 𝐸) ∈ ℝ+)
18 8nn 12281 . . . . . . 7 8 ∈ ℕ
19 nnrp 12963 . . . . . . 7 (8 ∈ ℕ → 8 ∈ ℝ+)
2018, 19ax-mp 5 . . . . . 6 8 ∈ ℝ+
21 rpdivcl 12978 . . . . . 6 (((𝐿 · 𝐸) ∈ ℝ+ ∧ 8 ∈ ℝ+) → ((𝐿 · 𝐸) / 8) ∈ ℝ+)
2217, 20, 21sylancl 586 . . . . 5 (𝜑 → ((𝐿 · 𝐸) / 8) ∈ ℝ+)
23 pntlem1.y . . . . . . . . 9 (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
24 pntlem1.x . . . . . . . . 9 (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
25 pntlem1.c . . . . . . . . 9 (𝜑𝐶 ∈ ℝ+)
26 pntlem1.w . . . . . . . . 9 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
27 pntlem1.z . . . . . . . . 9 (𝜑𝑍 ∈ (𝑊[,)+∞))
281, 2, 3, 4, 5, 6, 7, 8, 9, 10, 23, 24, 25, 26, 27pntlemb 27508 . . . . . . . 8 (𝜑 → (𝑍 ∈ ℝ+ ∧ (1 < 𝑍 ∧ e ≤ (√‘𝑍) ∧ (√‘𝑍) ≤ (𝑍 / 𝑌)) ∧ ((4 / (𝐿 · 𝐸)) ≤ (√‘𝑍) ∧ (((log‘𝑋) / (log‘𝐾)) + 2) ≤ (((log‘𝑍) / (log‘𝐾)) / 4) ∧ ((𝑈 · 3) + 𝐶) ≤ (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))))
2928simp1d 1142 . . . . . . 7 (𝜑𝑍 ∈ ℝ+)
3029rpred 12995 . . . . . 6 (𝜑𝑍 ∈ ℝ)
3128simp2d 1143 . . . . . . 7 (𝜑 → (1 < 𝑍 ∧ e ≤ (√‘𝑍) ∧ (√‘𝑍) ≤ (𝑍 / 𝑌)))
3231simp1d 1142 . . . . . 6 (𝜑 → 1 < 𝑍)
3330, 32rplogcld 26538 . . . . 5 (𝜑 → (log‘𝑍) ∈ ℝ+)
3422, 33rpmulcld 13011 . . . 4 (𝜑 → (((𝐿 · 𝐸) / 8) · (log‘𝑍)) ∈ ℝ+)
3513, 34rpmulcld 13011 . . 3 (𝜑 → ((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ∈ ℝ+)
3635rpred 12995 . 2 (𝜑 → ((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ∈ ℝ)
37 pntlem1.i . . . . . 6 𝐼 = (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)...(⌊‘(𝑍 / 𝑉)))
38 fzfid 13938 . . . . . 6 (𝜑 → (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)...(⌊‘(𝑍 / 𝑉))) ∈ Fin)
3937, 38eqeltrid 2832 . . . . 5 (𝜑𝐼 ∈ Fin)
40 hashcl 14321 . . . . 5 (𝐼 ∈ Fin → (♯‘𝐼) ∈ ℕ0)
4139, 40syl 17 . . . 4 (𝜑 → (♯‘𝐼) ∈ ℕ0)
4241nn0red 12504 . . 3 (𝜑 → (♯‘𝐼) ∈ ℝ)
4313rpred 12995 . . . 4 (𝜑 → (𝑈𝐸) ∈ ℝ)
44 pntlem1.v . . . . . . 7 (𝜑𝑉 ∈ ℝ+)
4529, 44rpdivcld 13012 . . . . . 6 (𝜑 → (𝑍 / 𝑉) ∈ ℝ+)
4645relogcld 26532 . . . . 5 (𝜑 → (log‘(𝑍 / 𝑉)) ∈ ℝ)
4746, 45rerpdivcld 13026 . . . 4 (𝜑 → ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)) ∈ ℝ)
4843, 47remulcld 11204 . . 3 (𝜑 → ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) ∈ ℝ)
4942, 48remulcld 11204 . 2 (𝜑 → ((♯‘𝐼) · ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)))) ∈ ℝ)
50 pntlem1.o . . . 4 𝑂 = (((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝐽))))
51 fzfid 13938 . . . 4 (𝜑 → (((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝐽)))) ∈ Fin)
5250, 51eqeltrid 2832 . . 3 (𝜑𝑂 ∈ Fin)
537rpred 12995 . . . . . . 7 (𝜑𝑈 ∈ ℝ)
5453adantr 480 . . . . . 6 ((𝜑𝑛𝑂) → 𝑈 ∈ ℝ)
5511simp2d 1143 . . . . . . . . . . 11 (𝜑𝐾 ∈ ℝ+)
56 pntlem1.j . . . . . . . . . . . . 13 (𝜑𝐽 ∈ (𝑀..^𝑁))
57 elfzoelz 13620 . . . . . . . . . . . . 13 (𝐽 ∈ (𝑀..^𝑁) → 𝐽 ∈ ℤ)
5856, 57syl 17 . . . . . . . . . . . 12 (𝜑𝐽 ∈ ℤ)
5958peano2zd 12641 . . . . . . . . . . 11 (𝜑 → (𝐽 + 1) ∈ ℤ)
6055, 59rpexpcld 14212 . . . . . . . . . 10 (𝜑 → (𝐾↑(𝐽 + 1)) ∈ ℝ+)
6129, 60rpdivcld 13012 . . . . . . . . 9 (𝜑 → (𝑍 / (𝐾↑(𝐽 + 1))) ∈ ℝ+)
6261rprege0d 13002 . . . . . . . 8 (𝜑 → ((𝑍 / (𝐾↑(𝐽 + 1))) ∈ ℝ ∧ 0 ≤ (𝑍 / (𝐾↑(𝐽 + 1)))))
63 flge0nn0 13782 . . . . . . . 8 (((𝑍 / (𝐾↑(𝐽 + 1))) ∈ ℝ ∧ 0 ≤ (𝑍 / (𝐾↑(𝐽 + 1)))) → (⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) ∈ ℕ0)
64 nn0p1nn 12481 . . . . . . . 8 ((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) ∈ ℕ0 → ((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1) ∈ ℕ)
6562, 63, 643syl 18 . . . . . . 7 (𝜑 → ((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1) ∈ ℕ)
66 elfzuz 13481 . . . . . . . 8 (𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝐽)))) → 𝑛 ∈ (ℤ‘((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)))
6766, 50eleq2s 2846 . . . . . . 7 (𝑛𝑂𝑛 ∈ (ℤ‘((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)))
68 eluznn 12877 . . . . . . 7 ((((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1) ∈ ℕ ∧ 𝑛 ∈ (ℤ‘((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1))) → 𝑛 ∈ ℕ)
6965, 67, 68syl2an 596 . . . . . 6 ((𝜑𝑛𝑂) → 𝑛 ∈ ℕ)
7054, 69nndivred 12240 . . . . 5 ((𝜑𝑛𝑂) → (𝑈 / 𝑛) ∈ ℝ)
7129adantr 480 . . . . . . . . . 10 ((𝜑𝑛𝑂) → 𝑍 ∈ ℝ+)
7269nnrpd 12993 . . . . . . . . . 10 ((𝜑𝑛𝑂) → 𝑛 ∈ ℝ+)
7371, 72rpdivcld 13012 . . . . . . . . 9 ((𝜑𝑛𝑂) → (𝑍 / 𝑛) ∈ ℝ+)
741pntrf 27474 . . . . . . . . . 10 𝑅:ℝ+⟶ℝ
7574ffvelcdmi 7055 . . . . . . . . 9 ((𝑍 / 𝑛) ∈ ℝ+ → (𝑅‘(𝑍 / 𝑛)) ∈ ℝ)
7673, 75syl 17 . . . . . . . 8 ((𝜑𝑛𝑂) → (𝑅‘(𝑍 / 𝑛)) ∈ ℝ)
7776, 71rerpdivcld 13026 . . . . . . 7 ((𝜑𝑛𝑂) → ((𝑅‘(𝑍 / 𝑛)) / 𝑍) ∈ ℝ)
7877recnd 11202 . . . . . 6 ((𝜑𝑛𝑂) → ((𝑅‘(𝑍 / 𝑛)) / 𝑍) ∈ ℂ)
7978abscld 15405 . . . . 5 ((𝜑𝑛𝑂) → (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) ∈ ℝ)
8070, 79resubcld 11606 . . . 4 ((𝜑𝑛𝑂) → ((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) ∈ ℝ)
8172relogcld 26532 . . . 4 ((𝜑𝑛𝑂) → (log‘𝑛) ∈ ℝ)
8280, 81remulcld 11204 . . 3 ((𝜑𝑛𝑂) → (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∈ ℝ)
8352, 82fsumrecl 15700 . 2 (𝜑 → Σ𝑛𝑂 (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∈ ℝ)
84 pntlem1.m . . 3 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1)
85 pntlem1.n . . 3 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2))
86 pntlem1.U . . 3 (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑈)
87 pntlem1.K . . 3 (𝜑 → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
88 pntlem1.V . . 3 (𝜑 → (((𝐾𝐽) < 𝑉 ∧ ((1 + (𝐿 · 𝐸)) · 𝑉) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑉[,]((1 + (𝐿 · 𝐸)) · 𝑉))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
891, 2, 3, 4, 5, 6, 7, 8, 9, 10, 23, 24, 25, 26, 27, 84, 85, 86, 87, 50, 44, 88, 56, 37pntlemr 27513 . 2 (𝜑 → ((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ≤ ((♯‘𝐼) · ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)))))
9048recnd 11202 . . . . 5 (𝜑 → ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) ∈ ℂ)
91 fsumconst 15756 . . . . 5 ((𝐼 ∈ Fin ∧ ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) ∈ ℂ) → Σ𝑛𝐼 ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) = ((♯‘𝐼) · ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)))))
9239, 90, 91syl2anc 584 . . . 4 (𝜑 → Σ𝑛𝐼 ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) = ((♯‘𝐼) · ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)))))
931, 2, 3, 4, 5, 6, 7, 8, 9, 10, 23, 24, 25, 26, 27, 84, 85, 86, 87, 50, 44, 88, 56, 37pntlemq 27512 . . . . 5 (𝜑𝐼𝑂)
9490ralrimivw 3129 . . . . 5 (𝜑 → ∀𝑛𝐼 ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) ∈ ℂ)
9552olcd 874 . . . . 5 (𝜑 → (𝑂 ⊆ (ℤ‘1) ∨ 𝑂 ∈ Fin))
96 sumss2 15692 . . . . 5 (((𝐼𝑂 ∧ ∀𝑛𝐼 ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) ∈ ℂ) ∧ (𝑂 ⊆ (ℤ‘1) ∨ 𝑂 ∈ Fin)) → Σ𝑛𝐼 ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) = Σ𝑛𝑂 if(𝑛𝐼, ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))), 0))
9793, 94, 95, 96syl21anc 837 . . . 4 (𝜑 → Σ𝑛𝐼 ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) = Σ𝑛𝑂 if(𝑛𝐼, ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))), 0))
9892, 97eqtr3d 2766 . . 3 (𝜑 → ((♯‘𝐼) · ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)))) = Σ𝑛𝑂 if(𝑛𝐼, ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))), 0))
9948adantr 480 . . . . . 6 ((𝜑𝑛𝐼) → ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) ∈ ℝ)
10099adantlr 715 . . . . 5 (((𝜑𝑛𝑂) ∧ 𝑛𝐼) → ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) ∈ ℝ)
101 0red 11177 . . . . 5 (((𝜑𝑛𝑂) ∧ ¬ 𝑛𝐼) → 0 ∈ ℝ)
102100, 101ifclda 4524 . . . 4 ((𝜑𝑛𝑂) → if(𝑛𝐼, ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))), 0) ∈ ℝ)
103 breq1 5110 . . . . 5 (((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) = if(𝑛𝐼, ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))), 0) → (((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) ≤ (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ↔ if(𝑛𝐼, ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))), 0) ≤ (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))))
104 breq1 5110 . . . . 5 (0 = if(𝑛𝐼, ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))), 0) → (0 ≤ (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ↔ if(𝑛𝐼, ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))), 0) ≤ (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))))
10513rpregt0d 13001 . . . . . . . . . 10 (𝜑 → ((𝑈𝐸) ∈ ℝ ∧ 0 < (𝑈𝐸)))
106105adantr 480 . . . . . . . . 9 ((𝜑𝑛𝐼) → ((𝑈𝐸) ∈ ℝ ∧ 0 < (𝑈𝐸)))
107106simpld 494 . . . . . . . 8 ((𝜑𝑛𝐼) → (𝑈𝐸) ∈ ℝ)
108 1rp 12955 . . . . . . . . . . . . . . . . 17 1 ∈ ℝ+
109 rpaddcl 12975 . . . . . . . . . . . . . . . . 17 ((1 ∈ ℝ+ ∧ (𝐿 · 𝐸) ∈ ℝ+) → (1 + (𝐿 · 𝐸)) ∈ ℝ+)
110108, 17, 109sylancr 587 . . . . . . . . . . . . . . . 16 (𝜑 → (1 + (𝐿 · 𝐸)) ∈ ℝ+)
111110, 44rpmulcld 13011 . . . . . . . . . . . . . . 15 (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑉) ∈ ℝ+)
11229, 111rpdivcld 13012 . . . . . . . . . . . . . 14 (𝜑 → (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ∈ ℝ+)
113112rprege0d 13002 . . . . . . . . . . . . 13 (𝜑 → ((𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ∈ ℝ ∧ 0 ≤ (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))))
114 flge0nn0 13782 . . . . . . . . . . . . 13 (((𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ∈ ℝ ∧ 0 ≤ (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) → (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) ∈ ℕ0)
115 nn0p1nn 12481 . . . . . . . . . . . . 13 ((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) ∈ ℕ0 → ((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1) ∈ ℕ)
116113, 114, 1153syl 18 . . . . . . . . . . . 12 (𝜑 → ((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1) ∈ ℕ)
117 elfzuz 13481 . . . . . . . . . . . . 13 (𝑛 ∈ (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)...(⌊‘(𝑍 / 𝑉))) → 𝑛 ∈ (ℤ‘((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)))
118117, 37eleq2s 2846 . . . . . . . . . . . 12 (𝑛𝐼𝑛 ∈ (ℤ‘((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)))
119 eluznn 12877 . . . . . . . . . . . 12 ((((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1) ∈ ℕ ∧ 𝑛 ∈ (ℤ‘((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1))) → 𝑛 ∈ ℕ)
120116, 118, 119syl2an 596 . . . . . . . . . . 11 ((𝜑𝑛𝐼) → 𝑛 ∈ ℕ)
121120nnrpd 12993 . . . . . . . . . 10 ((𝜑𝑛𝐼) → 𝑛 ∈ ℝ+)
122121relogcld 26532 . . . . . . . . 9 ((𝜑𝑛𝐼) → (log‘𝑛) ∈ ℝ)
123122, 120nndivred 12240 . . . . . . . 8 ((𝜑𝑛𝐼) → ((log‘𝑛) / 𝑛) ∈ ℝ)
124107, 123remulcld 11204 . . . . . . 7 ((𝜑𝑛𝐼) → ((𝑈𝐸) · ((log‘𝑛) / 𝑛)) ∈ ℝ)
12593sselda 3946 . . . . . . . 8 ((𝜑𝑛𝐼) → 𝑛𝑂)
126125, 82syldan 591 . . . . . . 7 ((𝜑𝑛𝐼) → (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∈ ℝ)
127 simpr 484 . . . . . . . . . . . 12 ((𝜑𝑛𝐼) → 𝑛𝐼)
128127, 37eleqtrdi 2838 . . . . . . . . . . 11 ((𝜑𝑛𝐼) → 𝑛 ∈ (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)...(⌊‘(𝑍 / 𝑉))))
129 elfzle2 13489 . . . . . . . . . . 11 (𝑛 ∈ (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)...(⌊‘(𝑍 / 𝑉))) → 𝑛 ≤ (⌊‘(𝑍 / 𝑉)))
130128, 129syl 17 . . . . . . . . . 10 ((𝜑𝑛𝐼) → 𝑛 ≤ (⌊‘(𝑍 / 𝑉)))
13145rpred 12995 . . . . . . . . . . . 12 (𝜑 → (𝑍 / 𝑉) ∈ ℝ)
132131adantr 480 . . . . . . . . . . 11 ((𝜑𝑛𝐼) → (𝑍 / 𝑉) ∈ ℝ)
133128elfzelzd 13486 . . . . . . . . . . 11 ((𝜑𝑛𝐼) → 𝑛 ∈ ℤ)
134 flge 13767 . . . . . . . . . . 11 (((𝑍 / 𝑉) ∈ ℝ ∧ 𝑛 ∈ ℤ) → (𝑛 ≤ (𝑍 / 𝑉) ↔ 𝑛 ≤ (⌊‘(𝑍 / 𝑉))))
135132, 133, 134syl2anc 584 . . . . . . . . . 10 ((𝜑𝑛𝐼) → (𝑛 ≤ (𝑍 / 𝑉) ↔ 𝑛 ≤ (⌊‘(𝑍 / 𝑉))))
136130, 135mpbird 257 . . . . . . . . 9 ((𝜑𝑛𝐼) → 𝑛 ≤ (𝑍 / 𝑉))
137120nnred 12201 . . . . . . . . . 10 ((𝜑𝑛𝐼) → 𝑛 ∈ ℝ)
138 ere 16055 . . . . . . . . . . . 12 e ∈ ℝ
139138a1i 11 . . . . . . . . . . 11 ((𝜑𝑛𝐼) → e ∈ ℝ)
140112rpred 12995 . . . . . . . . . . . 12 (𝜑 → (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ∈ ℝ)
141140adantr 480 . . . . . . . . . . 11 ((𝜑𝑛𝐼) → (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ∈ ℝ)
142138a1i 11 . . . . . . . . . . . . 13 (𝜑 → e ∈ ℝ)
14329rpsqrtcld 15378 . . . . . . . . . . . . . 14 (𝜑 → (√‘𝑍) ∈ ℝ+)
144143rpred 12995 . . . . . . . . . . . . 13 (𝜑 → (√‘𝑍) ∈ ℝ)
14531simp2d 1143 . . . . . . . . . . . . 13 (𝜑 → e ≤ (√‘𝑍))
146111rpred 12995 . . . . . . . . . . . . . . . . 17 (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑉) ∈ ℝ)
14760rpred 12995 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐾↑(𝐽 + 1)) ∈ ℝ)
14888simpld 494 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝐾𝐽) < 𝑉 ∧ ((1 + (𝐿 · 𝐸)) · 𝑉) < (𝐾 · (𝐾𝐽))))
149148simprd 495 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑉) < (𝐾 · (𝐾𝐽)))
15055rpcnd 12997 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐾 ∈ ℂ)
15155, 58rpexpcld 14212 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝐾𝐽) ∈ ℝ+)
152151rpcnd 12997 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐾𝐽) ∈ ℂ)
153150, 152mulcomd 11195 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐾 · (𝐾𝐽)) = ((𝐾𝐽) · 𝐾))
1541, 2, 3, 4, 5, 6, 7, 8, 9, 10, 23, 24, 25, 26, 27, 84, 85pntlemg 27509 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ𝑀) ∧ (((log‘𝑍) / (log‘𝐾)) / 4) ≤ (𝑁𝑀)))
155154simp1d 1142 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑀 ∈ ℕ)
156 elfzouz 13624 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐽 ∈ (𝑀..^𝑁) → 𝐽 ∈ (ℤ𝑀))
15756, 156syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐽 ∈ (ℤ𝑀))
158 eluznn 12877 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑀 ∈ ℕ ∧ 𝐽 ∈ (ℤ𝑀)) → 𝐽 ∈ ℕ)
159155, 157, 158syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐽 ∈ ℕ)
160159nnnn0d 12503 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐽 ∈ ℕ0)
161150, 160expp1d 14112 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐾↑(𝐽 + 1)) = ((𝐾𝐽) · 𝐾))
162153, 161eqtr4d 2767 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐾 · (𝐾𝐽)) = (𝐾↑(𝐽 + 1)))
163149, 162breqtrd 5133 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑉) < (𝐾↑(𝐽 + 1)))
164146, 147, 163ltled 11322 . . . . . . . . . . . . . . . . 17 (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑉) ≤ (𝐾↑(𝐽 + 1)))
165 fzofzp1 13725 . . . . . . . . . . . . . . . . . . . 20 (𝐽 ∈ (𝑀..^𝑁) → (𝐽 + 1) ∈ (𝑀...𝑁))
16656, 165syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐽 + 1) ∈ (𝑀...𝑁))
1671, 2, 3, 4, 5, 6, 7, 8, 9, 10, 23, 24, 25, 26, 27, 84, 85pntlemh 27510 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝐽 + 1) ∈ (𝑀...𝑁)) → (𝑋 < (𝐾↑(𝐽 + 1)) ∧ (𝐾↑(𝐽 + 1)) ≤ (√‘𝑍)))
168166, 167mpdan 687 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑋 < (𝐾↑(𝐽 + 1)) ∧ (𝐾↑(𝐽 + 1)) ≤ (√‘𝑍)))
169168simprd 495 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐾↑(𝐽 + 1)) ≤ (√‘𝑍))
170146, 147, 144, 164, 169letrd 11331 . . . . . . . . . . . . . . . 16 (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑉) ≤ (√‘𝑍))
171146, 144, 143lemul2d 13039 . . . . . . . . . . . . . . . 16 (𝜑 → (((1 + (𝐿 · 𝐸)) · 𝑉) ≤ (√‘𝑍) ↔ ((√‘𝑍) · ((1 + (𝐿 · 𝐸)) · 𝑉)) ≤ ((√‘𝑍) · (√‘𝑍))))
172170, 171mpbid 232 . . . . . . . . . . . . . . 15 (𝜑 → ((√‘𝑍) · ((1 + (𝐿 · 𝐸)) · 𝑉)) ≤ ((√‘𝑍) · (√‘𝑍)))
17329rprege0d 13002 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑍 ∈ ℝ ∧ 0 ≤ 𝑍))
174 remsqsqrt 15222 . . . . . . . . . . . . . . . 16 ((𝑍 ∈ ℝ ∧ 0 ≤ 𝑍) → ((√‘𝑍) · (√‘𝑍)) = 𝑍)
175173, 174syl 17 . . . . . . . . . . . . . . 15 (𝜑 → ((√‘𝑍) · (√‘𝑍)) = 𝑍)
176172, 175breqtrd 5133 . . . . . . . . . . . . . 14 (𝜑 → ((√‘𝑍) · ((1 + (𝐿 · 𝐸)) · 𝑉)) ≤ 𝑍)
177144, 30, 111lemuldivd 13044 . . . . . . . . . . . . . 14 (𝜑 → (((√‘𝑍) · ((1 + (𝐿 · 𝐸)) · 𝑉)) ≤ 𝑍 ↔ (√‘𝑍) ≤ (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))))
178176, 177mpbid 232 . . . . . . . . . . . . 13 (𝜑 → (√‘𝑍) ≤ (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))
179142, 144, 140, 145, 178letrd 11331 . . . . . . . . . . . 12 (𝜑 → e ≤ (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))
180179adantr 480 . . . . . . . . . . 11 ((𝜑𝑛𝐼) → e ≤ (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))
181 reflcl 13758 . . . . . . . . . . . . . 14 ((𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ∈ ℝ → (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) ∈ ℝ)
182 peano2re 11347 . . . . . . . . . . . . . 14 ((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) ∈ ℝ → ((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1) ∈ ℝ)
183140, 181, 1823syl 18 . . . . . . . . . . . . 13 (𝜑 → ((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1) ∈ ℝ)
184183adantr 480 . . . . . . . . . . . 12 ((𝜑𝑛𝐼) → ((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1) ∈ ℝ)
185 fllep1 13763 . . . . . . . . . . . . 13 ((𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ∈ ℝ → (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ≤ ((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1))
186141, 185syl 17 . . . . . . . . . . . 12 ((𝜑𝑛𝐼) → (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ≤ ((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1))
187 elfzle1 13488 . . . . . . . . . . . . 13 (𝑛 ∈ (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)...(⌊‘(𝑍 / 𝑉))) → ((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1) ≤ 𝑛)
188128, 187syl 17 . . . . . . . . . . . 12 ((𝜑𝑛𝐼) → ((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1) ≤ 𝑛)
189141, 184, 137, 186, 188letrd 11331 . . . . . . . . . . 11 ((𝜑𝑛𝐼) → (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ≤ 𝑛)
190139, 141, 137, 180, 189letrd 11331 . . . . . . . . . 10 ((𝜑𝑛𝐼) → e ≤ 𝑛)
191139, 137, 132, 190, 136letrd 11331 . . . . . . . . . 10 ((𝜑𝑛𝐼) → e ≤ (𝑍 / 𝑉))
192 logdivle 26531 . . . . . . . . . 10 (((𝑛 ∈ ℝ ∧ e ≤ 𝑛) ∧ ((𝑍 / 𝑉) ∈ ℝ ∧ e ≤ (𝑍 / 𝑉))) → (𝑛 ≤ (𝑍 / 𝑉) ↔ ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)) ≤ ((log‘𝑛) / 𝑛)))
193137, 190, 132, 191, 192syl22anc 838 . . . . . . . . 9 ((𝜑𝑛𝐼) → (𝑛 ≤ (𝑍 / 𝑉) ↔ ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)) ≤ ((log‘𝑛) / 𝑛)))
194136, 193mpbid 232 . . . . . . . 8 ((𝜑𝑛𝐼) → ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)) ≤ ((log‘𝑛) / 𝑛))
19547adantr 480 . . . . . . . . 9 ((𝜑𝑛𝐼) → ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)) ∈ ℝ)
196 lemul2 12035 . . . . . . . . 9 ((((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)) ∈ ℝ ∧ ((log‘𝑛) / 𝑛) ∈ ℝ ∧ ((𝑈𝐸) ∈ ℝ ∧ 0 < (𝑈𝐸))) → (((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)) ≤ ((log‘𝑛) / 𝑛) ↔ ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) ≤ ((𝑈𝐸) · ((log‘𝑛) / 𝑛))))
197195, 123, 106, 196syl3anc 1373 . . . . . . . 8 ((𝜑𝑛𝐼) → (((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)) ≤ ((log‘𝑛) / 𝑛) ↔ ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) ≤ ((𝑈𝐸) · ((log‘𝑛) / 𝑛))))
198194, 197mpbid 232 . . . . . . 7 ((𝜑𝑛𝐼) → ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) ≤ ((𝑈𝐸) · ((log‘𝑛) / 𝑛)))
19913rpcnd 12997 . . . . . . . . . . 11 (𝜑 → (𝑈𝐸) ∈ ℂ)
200199adantr 480 . . . . . . . . . 10 ((𝜑𝑛𝐼) → (𝑈𝐸) ∈ ℂ)
201122recnd 11202 . . . . . . . . . 10 ((𝜑𝑛𝐼) → (log‘𝑛) ∈ ℂ)
202121rpcnne0d 13004 . . . . . . . . . 10 ((𝜑𝑛𝐼) → (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0))
203 div23 11856 . . . . . . . . . 10 (((𝑈𝐸) ∈ ℂ ∧ (log‘𝑛) ∈ ℂ ∧ (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0)) → (((𝑈𝐸) · (log‘𝑛)) / 𝑛) = (((𝑈𝐸) / 𝑛) · (log‘𝑛)))
204200, 201, 202, 203syl3anc 1373 . . . . . . . . 9 ((𝜑𝑛𝐼) → (((𝑈𝐸) · (log‘𝑛)) / 𝑛) = (((𝑈𝐸) / 𝑛) · (log‘𝑛)))
205 divass 11855 . . . . . . . . . 10 (((𝑈𝐸) ∈ ℂ ∧ (log‘𝑛) ∈ ℂ ∧ (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0)) → (((𝑈𝐸) · (log‘𝑛)) / 𝑛) = ((𝑈𝐸) · ((log‘𝑛) / 𝑛)))
206200, 201, 202, 205syl3anc 1373 . . . . . . . . 9 ((𝜑𝑛𝐼) → (((𝑈𝐸) · (log‘𝑛)) / 𝑛) = ((𝑈𝐸) · ((log‘𝑛) / 𝑛)))
207204, 206eqtr3d 2766 . . . . . . . 8 ((𝜑𝑛𝐼) → (((𝑈𝐸) / 𝑛) · (log‘𝑛)) = ((𝑈𝐸) · ((log‘𝑛) / 𝑛)))
20843adantr 480 . . . . . . . . . 10 ((𝜑𝑛𝐼) → (𝑈𝐸) ∈ ℝ)
209208, 120nndivred 12240 . . . . . . . . 9 ((𝜑𝑛𝐼) → ((𝑈𝐸) / 𝑛) ∈ ℝ)
210125, 80syldan 591 . . . . . . . . 9 ((𝜑𝑛𝐼) → ((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) ∈ ℝ)
211 log1 26494 . . . . . . . . . 10 (log‘1) = 0
212120nnge1d 12234 . . . . . . . . . . 11 ((𝜑𝑛𝐼) → 1 ≤ 𝑛)
213 logleb 26512 . . . . . . . . . . . 12 ((1 ∈ ℝ+𝑛 ∈ ℝ+) → (1 ≤ 𝑛 ↔ (log‘1) ≤ (log‘𝑛)))
214108, 121, 213sylancr 587 . . . . . . . . . . 11 ((𝜑𝑛𝐼) → (1 ≤ 𝑛 ↔ (log‘1) ≤ (log‘𝑛)))
215212, 214mpbid 232 . . . . . . . . . 10 ((𝜑𝑛𝐼) → (log‘1) ≤ (log‘𝑛))
216211, 215eqbrtrrid 5143 . . . . . . . . 9 ((𝜑𝑛𝐼) → 0 ≤ (log‘𝑛))
2177rpcnd 12997 . . . . . . . . . . . 12 (𝜑𝑈 ∈ ℂ)
218217adantr 480 . . . . . . . . . . 11 ((𝜑𝑛𝐼) → 𝑈 ∈ ℂ)
21916rpred 12995 . . . . . . . . . . . . 13 (𝜑𝐸 ∈ ℝ)
220219adantr 480 . . . . . . . . . . . 12 ((𝜑𝑛𝐼) → 𝐸 ∈ ℝ)
221220recnd 11202 . . . . . . . . . . 11 ((𝜑𝑛𝐼) → 𝐸 ∈ ℂ)
222 divsubdir 11876 . . . . . . . . . . 11 ((𝑈 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0)) → ((𝑈𝐸) / 𝑛) = ((𝑈 / 𝑛) − (𝐸 / 𝑛)))
223218, 221, 202, 222syl3anc 1373 . . . . . . . . . 10 ((𝜑𝑛𝐼) → ((𝑈𝐸) / 𝑛) = ((𝑈 / 𝑛) − (𝐸 / 𝑛)))
224125, 79syldan 591 . . . . . . . . . . 11 ((𝜑𝑛𝐼) → (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) ∈ ℝ)
225220, 120nndivred 12240 . . . . . . . . . . 11 ((𝜑𝑛𝐼) → (𝐸 / 𝑛) ∈ ℝ)
226125, 70syldan 591 . . . . . . . . . . 11 ((𝜑𝑛𝐼) → (𝑈 / 𝑛) ∈ ℝ)
227125, 76syldan 591 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛𝐼) → (𝑅‘(𝑍 / 𝑛)) ∈ ℝ)
228227recnd 11202 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛𝐼) → (𝑅‘(𝑍 / 𝑛)) ∈ ℂ)
22929adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛𝐼) → 𝑍 ∈ ℝ+)
230229rpcnne0d 13004 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛𝐼) → (𝑍 ∈ ℂ ∧ 𝑍 ≠ 0))
231 divdiv2 11894 . . . . . . . . . . . . . . . . 17 (((𝑅‘(𝑍 / 𝑛)) ∈ ℂ ∧ (𝑍 ∈ ℂ ∧ 𝑍 ≠ 0) ∧ (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0)) → ((𝑅‘(𝑍 / 𝑛)) / (𝑍 / 𝑛)) = (((𝑅‘(𝑍 / 𝑛)) · 𝑛) / 𝑍))
232228, 230, 202, 231syl3anc 1373 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝐼) → ((𝑅‘(𝑍 / 𝑛)) / (𝑍 / 𝑛)) = (((𝑅‘(𝑍 / 𝑛)) · 𝑛) / 𝑍))
233121rpcnd 12997 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛𝐼) → 𝑛 ∈ ℂ)
234 div23 11856 . . . . . . . . . . . . . . . . 17 (((𝑅‘(𝑍 / 𝑛)) ∈ ℂ ∧ 𝑛 ∈ ℂ ∧ (𝑍 ∈ ℂ ∧ 𝑍 ≠ 0)) → (((𝑅‘(𝑍 / 𝑛)) · 𝑛) / 𝑍) = (((𝑅‘(𝑍 / 𝑛)) / 𝑍) · 𝑛))
235228, 233, 230, 234syl3anc 1373 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝐼) → (((𝑅‘(𝑍 / 𝑛)) · 𝑛) / 𝑍) = (((𝑅‘(𝑍 / 𝑛)) / 𝑍) · 𝑛))
236232, 235eqtrd 2764 . . . . . . . . . . . . . . 15 ((𝜑𝑛𝐼) → ((𝑅‘(𝑍 / 𝑛)) / (𝑍 / 𝑛)) = (((𝑅‘(𝑍 / 𝑛)) / 𝑍) · 𝑛))
237236fveq2d 6862 . . . . . . . . . . . . . 14 ((𝜑𝑛𝐼) → (abs‘((𝑅‘(𝑍 / 𝑛)) / (𝑍 / 𝑛))) = (abs‘(((𝑅‘(𝑍 / 𝑛)) / 𝑍) · 𝑛)))
238125, 78syldan 591 . . . . . . . . . . . . . . 15 ((𝜑𝑛𝐼) → ((𝑅‘(𝑍 / 𝑛)) / 𝑍) ∈ ℂ)
239238, 233absmuld 15423 . . . . . . . . . . . . . 14 ((𝜑𝑛𝐼) → (abs‘(((𝑅‘(𝑍 / 𝑛)) / 𝑍) · 𝑛)) = ((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (abs‘𝑛)))
240121rprege0d 13002 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝐼) → (𝑛 ∈ ℝ ∧ 0 ≤ 𝑛))
241 absid 15262 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℝ ∧ 0 ≤ 𝑛) → (abs‘𝑛) = 𝑛)
242240, 241syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑛𝐼) → (abs‘𝑛) = 𝑛)
243242oveq2d 7403 . . . . . . . . . . . . . 14 ((𝜑𝑛𝐼) → ((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (abs‘𝑛)) = ((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · 𝑛))
244237, 239, 2433eqtrd 2768 . . . . . . . . . . . . 13 ((𝜑𝑛𝐼) → (abs‘((𝑅‘(𝑍 / 𝑛)) / (𝑍 / 𝑛))) = ((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · 𝑛))
245 fveq2 6858 . . . . . . . . . . . . . . . . 17 (𝑢 = (𝑍 / 𝑛) → (𝑅𝑢) = (𝑅‘(𝑍 / 𝑛)))
246 id 22 . . . . . . . . . . . . . . . . 17 (𝑢 = (𝑍 / 𝑛) → 𝑢 = (𝑍 / 𝑛))
247245, 246oveq12d 7405 . . . . . . . . . . . . . . . 16 (𝑢 = (𝑍 / 𝑛) → ((𝑅𝑢) / 𝑢) = ((𝑅‘(𝑍 / 𝑛)) / (𝑍 / 𝑛)))
248247fveq2d 6862 . . . . . . . . . . . . . . 15 (𝑢 = (𝑍 / 𝑛) → (abs‘((𝑅𝑢) / 𝑢)) = (abs‘((𝑅‘(𝑍 / 𝑛)) / (𝑍 / 𝑛))))
249248breq1d 5117 . . . . . . . . . . . . . 14 (𝑢 = (𝑍 / 𝑛) → ((abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸 ↔ (abs‘((𝑅‘(𝑍 / 𝑛)) / (𝑍 / 𝑛))) ≤ 𝐸))
25088simprd 495 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑢 ∈ (𝑉[,]((1 + (𝐿 · 𝐸)) · 𝑉))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)
251250adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑛𝐼) → ∀𝑢 ∈ (𝑉[,]((1 + (𝐿 · 𝐸)) · 𝑉))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)
25230adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝐼) → 𝑍 ∈ ℝ)
253252, 120nndivred 12240 . . . . . . . . . . . . . . 15 ((𝜑𝑛𝐼) → (𝑍 / 𝑛) ∈ ℝ)
25444rpregt0d 13001 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑉 ∈ ℝ ∧ 0 < 𝑉))
255254adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛𝐼) → (𝑉 ∈ ℝ ∧ 0 < 𝑉))
256 lemuldiv2 12064 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℝ ∧ 𝑍 ∈ ℝ ∧ (𝑉 ∈ ℝ ∧ 0 < 𝑉)) → ((𝑉 · 𝑛) ≤ 𝑍𝑛 ≤ (𝑍 / 𝑉)))
257137, 252, 255, 256syl3anc 1373 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛𝐼) → ((𝑉 · 𝑛) ≤ 𝑍𝑛 ≤ (𝑍 / 𝑉)))
258136, 257mpbird 257 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝐼) → (𝑉 · 𝑛) ≤ 𝑍)
259255simpld 494 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛𝐼) → 𝑉 ∈ ℝ)
260259, 252, 121lemuldivd 13044 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝐼) → ((𝑉 · 𝑛) ≤ 𝑍𝑉 ≤ (𝑍 / 𝑛)))
261258, 260mpbid 232 . . . . . . . . . . . . . . 15 ((𝜑𝑛𝐼) → 𝑉 ≤ (𝑍 / 𝑛))
262111rpregt0d 13001 . . . . . . . . . . . . . . . . . 18 (𝜑 → (((1 + (𝐿 · 𝐸)) · 𝑉) ∈ ℝ ∧ 0 < ((1 + (𝐿 · 𝐸)) · 𝑉)))
263262adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛𝐼) → (((1 + (𝐿 · 𝐸)) · 𝑉) ∈ ℝ ∧ 0 < ((1 + (𝐿 · 𝐸)) · 𝑉)))
264121rpregt0d 13001 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛𝐼) → (𝑛 ∈ ℝ ∧ 0 < 𝑛))
265 lediv23 12075 . . . . . . . . . . . . . . . . 17 ((𝑍 ∈ ℝ ∧ (((1 + (𝐿 · 𝐸)) · 𝑉) ∈ ℝ ∧ 0 < ((1 + (𝐿 · 𝐸)) · 𝑉)) ∧ (𝑛 ∈ ℝ ∧ 0 < 𝑛)) → ((𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ≤ 𝑛 ↔ (𝑍 / 𝑛) ≤ ((1 + (𝐿 · 𝐸)) · 𝑉)))
266252, 263, 264, 265syl3anc 1373 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝐼) → ((𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ≤ 𝑛 ↔ (𝑍 / 𝑛) ≤ ((1 + (𝐿 · 𝐸)) · 𝑉)))
267189, 266mpbid 232 . . . . . . . . . . . . . . 15 ((𝜑𝑛𝐼) → (𝑍 / 𝑛) ≤ ((1 + (𝐿 · 𝐸)) · 𝑉))
26844rpred 12995 . . . . . . . . . . . . . . . . 17 (𝜑𝑉 ∈ ℝ)
269268adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝐼) → 𝑉 ∈ ℝ)
270146adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝐼) → ((1 + (𝐿 · 𝐸)) · 𝑉) ∈ ℝ)
271 elicc2 13372 . . . . . . . . . . . . . . . 16 ((𝑉 ∈ ℝ ∧ ((1 + (𝐿 · 𝐸)) · 𝑉) ∈ ℝ) → ((𝑍 / 𝑛) ∈ (𝑉[,]((1 + (𝐿 · 𝐸)) · 𝑉)) ↔ ((𝑍 / 𝑛) ∈ ℝ ∧ 𝑉 ≤ (𝑍 / 𝑛) ∧ (𝑍 / 𝑛) ≤ ((1 + (𝐿 · 𝐸)) · 𝑉))))
272269, 270, 271syl2anc 584 . . . . . . . . . . . . . . 15 ((𝜑𝑛𝐼) → ((𝑍 / 𝑛) ∈ (𝑉[,]((1 + (𝐿 · 𝐸)) · 𝑉)) ↔ ((𝑍 / 𝑛) ∈ ℝ ∧ 𝑉 ≤ (𝑍 / 𝑛) ∧ (𝑍 / 𝑛) ≤ ((1 + (𝐿 · 𝐸)) · 𝑉))))
273253, 261, 267, 272mpbir3and 1343 . . . . . . . . . . . . . 14 ((𝜑𝑛𝐼) → (𝑍 / 𝑛) ∈ (𝑉[,]((1 + (𝐿 · 𝐸)) · 𝑉)))
274249, 251, 273rspcdva 3589 . . . . . . . . . . . . 13 ((𝜑𝑛𝐼) → (abs‘((𝑅‘(𝑍 / 𝑛)) / (𝑍 / 𝑛))) ≤ 𝐸)
275244, 274eqbrtrrd 5131 . . . . . . . . . . . 12 ((𝜑𝑛𝐼) → ((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · 𝑛) ≤ 𝐸)
276224, 220, 121lemuldivd 13044 . . . . . . . . . . . 12 ((𝜑𝑛𝐼) → (((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · 𝑛) ≤ 𝐸 ↔ (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) ≤ (𝐸 / 𝑛)))
277275, 276mpbid 232 . . . . . . . . . . 11 ((𝜑𝑛𝐼) → (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) ≤ (𝐸 / 𝑛))
278224, 225, 226, 277lesub2dd 11795 . . . . . . . . . 10 ((𝜑𝑛𝐼) → ((𝑈 / 𝑛) − (𝐸 / 𝑛)) ≤ ((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))))
279223, 278eqbrtrd 5129 . . . . . . . . 9 ((𝜑𝑛𝐼) → ((𝑈𝐸) / 𝑛) ≤ ((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))))
280209, 210, 122, 216, 279lemul1ad 12122 . . . . . . . 8 ((𝜑𝑛𝐼) → (((𝑈𝐸) / 𝑛) · (log‘𝑛)) ≤ (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
281207, 280eqbrtrrd 5131 . . . . . . 7 ((𝜑𝑛𝐼) → ((𝑈𝐸) · ((log‘𝑛) / 𝑛)) ≤ (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
28299, 124, 126, 198, 281letrd 11331 . . . . . 6 ((𝜑𝑛𝐼) → ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) ≤ (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
283282adantlr 715 . . . . 5 (((𝜑𝑛𝑂) ∧ 𝑛𝐼) → ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) ≤ (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
28469nnred 12201 . . . . . . . . 9 ((𝜑𝑛𝑂) → 𝑛 ∈ ℝ)
28529, 151rpdivcld 13012 . . . . . . . . . . 11 (𝜑 → (𝑍 / (𝐾𝐽)) ∈ ℝ+)
286285rpred 12995 . . . . . . . . . 10 (𝜑 → (𝑍 / (𝐾𝐽)) ∈ ℝ)
287286adantr 480 . . . . . . . . 9 ((𝜑𝑛𝑂) → (𝑍 / (𝐾𝐽)) ∈ ℝ)
28823simpld 494 . . . . . . . . . . . 12 (𝜑𝑌 ∈ ℝ+)
28929, 288rpdivcld 13012 . . . . . . . . . . 11 (𝜑 → (𝑍 / 𝑌) ∈ ℝ+)
290289rpred 12995 . . . . . . . . . 10 (𝜑 → (𝑍 / 𝑌) ∈ ℝ)
291290adantr 480 . . . . . . . . 9 ((𝜑𝑛𝑂) → (𝑍 / 𝑌) ∈ ℝ)
292 simpr 484 . . . . . . . . . . . 12 ((𝜑𝑛𝑂) → 𝑛𝑂)
293292, 50eleqtrdi 2838 . . . . . . . . . . 11 ((𝜑𝑛𝑂) → 𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝐽)))))
294 elfzle2 13489 . . . . . . . . . . 11 (𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝐽)))) → 𝑛 ≤ (⌊‘(𝑍 / (𝐾𝐽))))
295293, 294syl 17 . . . . . . . . . 10 ((𝜑𝑛𝑂) → 𝑛 ≤ (⌊‘(𝑍 / (𝐾𝐽))))
29669nnzd 12556 . . . . . . . . . . 11 ((𝜑𝑛𝑂) → 𝑛 ∈ ℤ)
297 flge 13767 . . . . . . . . . . 11 (((𝑍 / (𝐾𝐽)) ∈ ℝ ∧ 𝑛 ∈ ℤ) → (𝑛 ≤ (𝑍 / (𝐾𝐽)) ↔ 𝑛 ≤ (⌊‘(𝑍 / (𝐾𝐽)))))
298287, 296, 297syl2anc 584 . . . . . . . . . 10 ((𝜑𝑛𝑂) → (𝑛 ≤ (𝑍 / (𝐾𝐽)) ↔ 𝑛 ≤ (⌊‘(𝑍 / (𝐾𝐽)))))
299295, 298mpbird 257 . . . . . . . . 9 ((𝜑𝑛𝑂) → 𝑛 ≤ (𝑍 / (𝐾𝐽)))
300288rpred 12995 . . . . . . . . . . . 12 (𝜑𝑌 ∈ ℝ)
30124simpld 494 . . . . . . . . . . . . 13 (𝜑𝑋 ∈ ℝ+)
302301rpred 12995 . . . . . . . . . . . 12 (𝜑𝑋 ∈ ℝ)
303151rpred 12995 . . . . . . . . . . . 12 (𝜑 → (𝐾𝐽) ∈ ℝ)
30424simprd 495 . . . . . . . . . . . . 13 (𝜑𝑌 < 𝑋)
305300, 302, 304ltled 11322 . . . . . . . . . . . 12 (𝜑𝑌𝑋)
306 elfzofz 13636 . . . . . . . . . . . . . . . 16 (𝐽 ∈ (𝑀..^𝑁) → 𝐽 ∈ (𝑀...𝑁))
30756, 306syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐽 ∈ (𝑀...𝑁))
3081, 2, 3, 4, 5, 6, 7, 8, 9, 10, 23, 24, 25, 26, 27, 84, 85pntlemh 27510 . . . . . . . . . . . . . . 15 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (𝑋 < (𝐾𝐽) ∧ (𝐾𝐽) ≤ (√‘𝑍)))
309307, 308mpdan 687 . . . . . . . . . . . . . 14 (𝜑 → (𝑋 < (𝐾𝐽) ∧ (𝐾𝐽) ≤ (√‘𝑍)))
310309simpld 494 . . . . . . . . . . . . 13 (𝜑𝑋 < (𝐾𝐽))
311302, 303, 310ltled 11322 . . . . . . . . . . . 12 (𝜑𝑋 ≤ (𝐾𝐽))
312300, 302, 303, 305, 311letrd 11331 . . . . . . . . . . 11 (𝜑𝑌 ≤ (𝐾𝐽))
313288, 151, 29lediv2d 13019 . . . . . . . . . . 11 (𝜑 → (𝑌 ≤ (𝐾𝐽) ↔ (𝑍 / (𝐾𝐽)) ≤ (𝑍 / 𝑌)))
314312, 313mpbid 232 . . . . . . . . . 10 (𝜑 → (𝑍 / (𝐾𝐽)) ≤ (𝑍 / 𝑌))
315314adantr 480 . . . . . . . . 9 ((𝜑𝑛𝑂) → (𝑍 / (𝐾𝐽)) ≤ (𝑍 / 𝑌))
316284, 287, 291, 299, 315letrd 11331 . . . . . . . 8 ((𝜑𝑛𝑂) → 𝑛 ≤ (𝑍 / 𝑌))
31769, 316jca 511 . . . . . . 7 ((𝜑𝑛𝑂) → (𝑛 ∈ ℕ ∧ 𝑛 ≤ (𝑍 / 𝑌)))
3181, 2, 3, 4, 5, 6, 7, 8, 9, 10, 23, 24, 25, 26, 27, 84, 85, 86pntlemn 27511 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛 ≤ (𝑍 / 𝑌))) → 0 ≤ (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
319317, 318syldan 591 . . . . . 6 ((𝜑𝑛𝑂) → 0 ≤ (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
320319adantr 480 . . . . 5 (((𝜑𝑛𝑂) ∧ ¬ 𝑛𝐼) → 0 ≤ (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
321103, 104, 283, 320ifbothda 4527 . . . 4 ((𝜑𝑛𝑂) → if(𝑛𝐼, ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))), 0) ≤ (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
32252, 102, 82, 321fsumle 15765 . . 3 (𝜑 → Σ𝑛𝑂 if(𝑛𝐼, ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))), 0) ≤ Σ𝑛𝑂 (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
32398, 322eqbrtrd 5129 . 2 (𝜑 → ((♯‘𝐼) · ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)))) ≤ Σ𝑛𝑂 (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
32436, 49, 83, 89, 323letrd 11331 1 (𝜑 → ((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ≤ Σ𝑛𝑂 (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  wss 3914  ifcif 4488   class class class wbr 5107  cmpt 5188  cfv 6511  (class class class)co 7387  Fincfn 8918  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073  +∞cpnf 11205   < clt 11208  cle 11209  cmin 11405   / cdiv 11835  cn 12186  2c2 12241  3c3 12242  4c4 12243  8c8 12247  0cn0 12442  cz 12529  cdc 12649  cuz 12793  +crp 12951  (,)cioo 13306  [,)cico 13308  [,]cicc 13309  ...cfz 13468  ..^cfzo 13615  cfl 13752  cexp 14026  chash 14295  csqrt 15199  abscabs 15200  Σcsu 15652  expce 16027  eceu 16028  logclog 26463  ψcchp 27003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-sum 15653  df-ef 16033  df-e 16034  df-sin 16035  df-cos 16036  df-pi 16038  df-dvds 16223  df-gcd 16465  df-prm 16642  df-pc 16808  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-limc 25767  df-dv 25768  df-log 26465  df-vma 27008  df-chp 27009
This theorem is referenced by:  pntlemi  27515
  Copyright terms: Public domain W3C validator