MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlemj Structured version   Visualization version   GIF version

Theorem pntlemj 27647
Description: Lemma for pnt 27658. The induction step. Using pntibnd 27637, we find an interval in 𝐾𝐽...𝐾↑(𝐽 + 1) which is sufficiently large and has a much smaller value, 𝑅(𝑧) / 𝑧𝐸 (instead of our original bound 𝑅(𝑧) / 𝑧𝑈). (Contributed by Mario Carneiro, 13-Apr-2016.)
Hypotheses
Ref Expression
pntlem1.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntlem1.a (𝜑𝐴 ∈ ℝ+)
pntlem1.b (𝜑𝐵 ∈ ℝ+)
pntlem1.l (𝜑𝐿 ∈ (0(,)1))
pntlem1.d 𝐷 = (𝐴 + 1)
pntlem1.f 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
pntlem1.u (𝜑𝑈 ∈ ℝ+)
pntlem1.u2 (𝜑𝑈𝐴)
pntlem1.e 𝐸 = (𝑈 / 𝐷)
pntlem1.k 𝐾 = (exp‘(𝐵 / 𝐸))
pntlem1.y (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
pntlem1.x (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
pntlem1.c (𝜑𝐶 ∈ ℝ+)
pntlem1.w 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
pntlem1.z (𝜑𝑍 ∈ (𝑊[,)+∞))
pntlem1.m 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1)
pntlem1.n 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2))
pntlem1.U (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑈)
pntlem1.K (𝜑 → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
pntlem1.o 𝑂 = (((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝐽))))
pntlem1.v (𝜑𝑉 ∈ ℝ+)
pntlem1.V (𝜑 → (((𝐾𝐽) < 𝑉 ∧ ((1 + (𝐿 · 𝐸)) · 𝑉) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑉[,]((1 + (𝐿 · 𝐸)) · 𝑉))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
pntlem1.j (𝜑𝐽 ∈ (𝑀..^𝑁))
pntlem1.i 𝐼 = (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)...(⌊‘(𝑍 / 𝑉)))
Assertion
Ref Expression
pntlemj (𝜑 → ((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ≤ Σ𝑛𝑂 (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
Distinct variable groups:   𝑧,𝐶   𝑛,𝐼   𝑦,𝑛,𝑧,𝐽   𝑢,𝑛,𝐿,𝑦,𝑧   𝑛,𝐾,𝑦,𝑧   𝑛,𝑀,𝑧   𝑛,𝑂,𝑧   𝜑,𝑛   𝑛,𝑁,𝑧   𝑅,𝑛,𝑢,𝑦,𝑧   𝑛,𝑉,𝑢   𝑈,𝑛,𝑧   𝑛,𝑊,𝑧   𝑛,𝑋,𝑦,𝑧   𝑛,𝑌,𝑧   𝑛,𝑎,𝑢,𝑦,𝑧,𝐸   𝑛,𝑍,𝑢,𝑧
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑢,𝑎)   𝐴(𝑦,𝑧,𝑢,𝑛,𝑎)   𝐵(𝑦,𝑧,𝑢,𝑛,𝑎)   𝐶(𝑦,𝑢,𝑛,𝑎)   𝐷(𝑦,𝑧,𝑢,𝑛,𝑎)   𝑅(𝑎)   𝑈(𝑦,𝑢,𝑎)   𝐹(𝑦,𝑧,𝑢,𝑛,𝑎)   𝐼(𝑦,𝑧,𝑢,𝑎)   𝐽(𝑢,𝑎)   𝐾(𝑢,𝑎)   𝐿(𝑎)   𝑀(𝑦,𝑢,𝑎)   𝑁(𝑦,𝑢,𝑎)   𝑂(𝑦,𝑢,𝑎)   𝑉(𝑦,𝑧,𝑎)   𝑊(𝑦,𝑢,𝑎)   𝑋(𝑢,𝑎)   𝑌(𝑦,𝑢,𝑎)   𝑍(𝑦,𝑎)

Proof of Theorem pntlemj
StepHypRef Expression
1 pntlem1.r . . . . . . 7 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
2 pntlem1.a . . . . . . 7 (𝜑𝐴 ∈ ℝ+)
3 pntlem1.b . . . . . . 7 (𝜑𝐵 ∈ ℝ+)
4 pntlem1.l . . . . . . 7 (𝜑𝐿 ∈ (0(,)1))
5 pntlem1.d . . . . . . 7 𝐷 = (𝐴 + 1)
6 pntlem1.f . . . . . . 7 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
7 pntlem1.u . . . . . . 7 (𝜑𝑈 ∈ ℝ+)
8 pntlem1.u2 . . . . . . 7 (𝜑𝑈𝐴)
9 pntlem1.e . . . . . . 7 𝐸 = (𝑈 / 𝐷)
10 pntlem1.k . . . . . . 7 𝐾 = (exp‘(𝐵 / 𝐸))
111, 2, 3, 4, 5, 6, 7, 8, 9, 10pntlemc 27639 . . . . . 6 (𝜑 → (𝐸 ∈ ℝ+𝐾 ∈ ℝ+ ∧ (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+)))
1211simp3d 1145 . . . . 5 (𝜑 → (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+))
1312simp3d 1145 . . . 4 (𝜑 → (𝑈𝐸) ∈ ℝ+)
141, 2, 3, 4, 5, 6pntlemd 27638 . . . . . . . 8 (𝜑 → (𝐿 ∈ ℝ+𝐷 ∈ ℝ+𝐹 ∈ ℝ+))
1514simp1d 1143 . . . . . . 7 (𝜑𝐿 ∈ ℝ+)
1611simp1d 1143 . . . . . . 7 (𝜑𝐸 ∈ ℝ+)
1715, 16rpmulcld 13093 . . . . . 6 (𝜑 → (𝐿 · 𝐸) ∈ ℝ+)
18 8nn 12361 . . . . . . 7 8 ∈ ℕ
19 nnrp 13046 . . . . . . 7 (8 ∈ ℕ → 8 ∈ ℝ+)
2018, 19ax-mp 5 . . . . . 6 8 ∈ ℝ+
21 rpdivcl 13060 . . . . . 6 (((𝐿 · 𝐸) ∈ ℝ+ ∧ 8 ∈ ℝ+) → ((𝐿 · 𝐸) / 8) ∈ ℝ+)
2217, 20, 21sylancl 586 . . . . 5 (𝜑 → ((𝐿 · 𝐸) / 8) ∈ ℝ+)
23 pntlem1.y . . . . . . . . 9 (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
24 pntlem1.x . . . . . . . . 9 (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
25 pntlem1.c . . . . . . . . 9 (𝜑𝐶 ∈ ℝ+)
26 pntlem1.w . . . . . . . . 9 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
27 pntlem1.z . . . . . . . . 9 (𝜑𝑍 ∈ (𝑊[,)+∞))
281, 2, 3, 4, 5, 6, 7, 8, 9, 10, 23, 24, 25, 26, 27pntlemb 27641 . . . . . . . 8 (𝜑 → (𝑍 ∈ ℝ+ ∧ (1 < 𝑍 ∧ e ≤ (√‘𝑍) ∧ (√‘𝑍) ≤ (𝑍 / 𝑌)) ∧ ((4 / (𝐿 · 𝐸)) ≤ (√‘𝑍) ∧ (((log‘𝑋) / (log‘𝐾)) + 2) ≤ (((log‘𝑍) / (log‘𝐾)) / 4) ∧ ((𝑈 · 3) + 𝐶) ≤ (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))))
2928simp1d 1143 . . . . . . 7 (𝜑𝑍 ∈ ℝ+)
3029rpred 13077 . . . . . 6 (𝜑𝑍 ∈ ℝ)
3128simp2d 1144 . . . . . . 7 (𝜑 → (1 < 𝑍 ∧ e ≤ (√‘𝑍) ∧ (√‘𝑍) ≤ (𝑍 / 𝑌)))
3231simp1d 1143 . . . . . 6 (𝜑 → 1 < 𝑍)
3330, 32rplogcld 26671 . . . . 5 (𝜑 → (log‘𝑍) ∈ ℝ+)
3422, 33rpmulcld 13093 . . . 4 (𝜑 → (((𝐿 · 𝐸) / 8) · (log‘𝑍)) ∈ ℝ+)
3513, 34rpmulcld 13093 . . 3 (𝜑 → ((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ∈ ℝ+)
3635rpred 13077 . 2 (𝜑 → ((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ∈ ℝ)
37 pntlem1.i . . . . . 6 𝐼 = (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)...(⌊‘(𝑍 / 𝑉)))
38 fzfid 14014 . . . . . 6 (𝜑 → (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)...(⌊‘(𝑍 / 𝑉))) ∈ Fin)
3937, 38eqeltrid 2845 . . . . 5 (𝜑𝐼 ∈ Fin)
40 hashcl 14395 . . . . 5 (𝐼 ∈ Fin → (♯‘𝐼) ∈ ℕ0)
4139, 40syl 17 . . . 4 (𝜑 → (♯‘𝐼) ∈ ℕ0)
4241nn0red 12588 . . 3 (𝜑 → (♯‘𝐼) ∈ ℝ)
4313rpred 13077 . . . 4 (𝜑 → (𝑈𝐸) ∈ ℝ)
44 pntlem1.v . . . . . . 7 (𝜑𝑉 ∈ ℝ+)
4529, 44rpdivcld 13094 . . . . . 6 (𝜑 → (𝑍 / 𝑉) ∈ ℝ+)
4645relogcld 26665 . . . . 5 (𝜑 → (log‘(𝑍 / 𝑉)) ∈ ℝ)
4746, 45rerpdivcld 13108 . . . 4 (𝜑 → ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)) ∈ ℝ)
4843, 47remulcld 11291 . . 3 (𝜑 → ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) ∈ ℝ)
4942, 48remulcld 11291 . 2 (𝜑 → ((♯‘𝐼) · ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)))) ∈ ℝ)
50 pntlem1.o . . . 4 𝑂 = (((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝐽))))
51 fzfid 14014 . . . 4 (𝜑 → (((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝐽)))) ∈ Fin)
5250, 51eqeltrid 2845 . . 3 (𝜑𝑂 ∈ Fin)
537rpred 13077 . . . . . . 7 (𝜑𝑈 ∈ ℝ)
5453adantr 480 . . . . . 6 ((𝜑𝑛𝑂) → 𝑈 ∈ ℝ)
5511simp2d 1144 . . . . . . . . . . 11 (𝜑𝐾 ∈ ℝ+)
56 pntlem1.j . . . . . . . . . . . . 13 (𝜑𝐽 ∈ (𝑀..^𝑁))
57 elfzoelz 13699 . . . . . . . . . . . . 13 (𝐽 ∈ (𝑀..^𝑁) → 𝐽 ∈ ℤ)
5856, 57syl 17 . . . . . . . . . . . 12 (𝜑𝐽 ∈ ℤ)
5958peano2zd 12725 . . . . . . . . . . 11 (𝜑 → (𝐽 + 1) ∈ ℤ)
6055, 59rpexpcld 14286 . . . . . . . . . 10 (𝜑 → (𝐾↑(𝐽 + 1)) ∈ ℝ+)
6129, 60rpdivcld 13094 . . . . . . . . 9 (𝜑 → (𝑍 / (𝐾↑(𝐽 + 1))) ∈ ℝ+)
6261rprege0d 13084 . . . . . . . 8 (𝜑 → ((𝑍 / (𝐾↑(𝐽 + 1))) ∈ ℝ ∧ 0 ≤ (𝑍 / (𝐾↑(𝐽 + 1)))))
63 flge0nn0 13860 . . . . . . . 8 (((𝑍 / (𝐾↑(𝐽 + 1))) ∈ ℝ ∧ 0 ≤ (𝑍 / (𝐾↑(𝐽 + 1)))) → (⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) ∈ ℕ0)
64 nn0p1nn 12565 . . . . . . . 8 ((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) ∈ ℕ0 → ((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1) ∈ ℕ)
6562, 63, 643syl 18 . . . . . . 7 (𝜑 → ((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1) ∈ ℕ)
66 elfzuz 13560 . . . . . . . 8 (𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝐽)))) → 𝑛 ∈ (ℤ‘((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)))
6766, 50eleq2s 2859 . . . . . . 7 (𝑛𝑂𝑛 ∈ (ℤ‘((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)))
68 eluznn 12960 . . . . . . 7 ((((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1) ∈ ℕ ∧ 𝑛 ∈ (ℤ‘((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1))) → 𝑛 ∈ ℕ)
6965, 67, 68syl2an 596 . . . . . 6 ((𝜑𝑛𝑂) → 𝑛 ∈ ℕ)
7054, 69nndivred 12320 . . . . 5 ((𝜑𝑛𝑂) → (𝑈 / 𝑛) ∈ ℝ)
7129adantr 480 . . . . . . . . . 10 ((𝜑𝑛𝑂) → 𝑍 ∈ ℝ+)
7269nnrpd 13075 . . . . . . . . . 10 ((𝜑𝑛𝑂) → 𝑛 ∈ ℝ+)
7371, 72rpdivcld 13094 . . . . . . . . 9 ((𝜑𝑛𝑂) → (𝑍 / 𝑛) ∈ ℝ+)
741pntrf 27607 . . . . . . . . . 10 𝑅:ℝ+⟶ℝ
7574ffvelcdmi 7103 . . . . . . . . 9 ((𝑍 / 𝑛) ∈ ℝ+ → (𝑅‘(𝑍 / 𝑛)) ∈ ℝ)
7673, 75syl 17 . . . . . . . 8 ((𝜑𝑛𝑂) → (𝑅‘(𝑍 / 𝑛)) ∈ ℝ)
7776, 71rerpdivcld 13108 . . . . . . 7 ((𝜑𝑛𝑂) → ((𝑅‘(𝑍 / 𝑛)) / 𝑍) ∈ ℝ)
7877recnd 11289 . . . . . 6 ((𝜑𝑛𝑂) → ((𝑅‘(𝑍 / 𝑛)) / 𝑍) ∈ ℂ)
7978abscld 15475 . . . . 5 ((𝜑𝑛𝑂) → (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) ∈ ℝ)
8070, 79resubcld 11691 . . . 4 ((𝜑𝑛𝑂) → ((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) ∈ ℝ)
8172relogcld 26665 . . . 4 ((𝜑𝑛𝑂) → (log‘𝑛) ∈ ℝ)
8280, 81remulcld 11291 . . 3 ((𝜑𝑛𝑂) → (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∈ ℝ)
8352, 82fsumrecl 15770 . 2 (𝜑 → Σ𝑛𝑂 (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∈ ℝ)
84 pntlem1.m . . 3 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1)
85 pntlem1.n . . 3 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2))
86 pntlem1.U . . 3 (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑈)
87 pntlem1.K . . 3 (𝜑 → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
88 pntlem1.V . . 3 (𝜑 → (((𝐾𝐽) < 𝑉 ∧ ((1 + (𝐿 · 𝐸)) · 𝑉) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑉[,]((1 + (𝐿 · 𝐸)) · 𝑉))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
891, 2, 3, 4, 5, 6, 7, 8, 9, 10, 23, 24, 25, 26, 27, 84, 85, 86, 87, 50, 44, 88, 56, 37pntlemr 27646 . 2 (𝜑 → ((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ≤ ((♯‘𝐼) · ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)))))
9048recnd 11289 . . . . 5 (𝜑 → ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) ∈ ℂ)
91 fsumconst 15826 . . . . 5 ((𝐼 ∈ Fin ∧ ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) ∈ ℂ) → Σ𝑛𝐼 ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) = ((♯‘𝐼) · ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)))))
9239, 90, 91syl2anc 584 . . . 4 (𝜑 → Σ𝑛𝐼 ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) = ((♯‘𝐼) · ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)))))
931, 2, 3, 4, 5, 6, 7, 8, 9, 10, 23, 24, 25, 26, 27, 84, 85, 86, 87, 50, 44, 88, 56, 37pntlemq 27645 . . . . 5 (𝜑𝐼𝑂)
9490ralrimivw 3150 . . . . 5 (𝜑 → ∀𝑛𝐼 ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) ∈ ℂ)
9552olcd 875 . . . . 5 (𝜑 → (𝑂 ⊆ (ℤ‘1) ∨ 𝑂 ∈ Fin))
96 sumss2 15762 . . . . 5 (((𝐼𝑂 ∧ ∀𝑛𝐼 ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) ∈ ℂ) ∧ (𝑂 ⊆ (ℤ‘1) ∨ 𝑂 ∈ Fin)) → Σ𝑛𝐼 ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) = Σ𝑛𝑂 if(𝑛𝐼, ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))), 0))
9793, 94, 95, 96syl21anc 838 . . . 4 (𝜑 → Σ𝑛𝐼 ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) = Σ𝑛𝑂 if(𝑛𝐼, ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))), 0))
9892, 97eqtr3d 2779 . . 3 (𝜑 → ((♯‘𝐼) · ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)))) = Σ𝑛𝑂 if(𝑛𝐼, ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))), 0))
9948adantr 480 . . . . . 6 ((𝜑𝑛𝐼) → ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) ∈ ℝ)
10099adantlr 715 . . . . 5 (((𝜑𝑛𝑂) ∧ 𝑛𝐼) → ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) ∈ ℝ)
101 0red 11264 . . . . 5 (((𝜑𝑛𝑂) ∧ ¬ 𝑛𝐼) → 0 ∈ ℝ)
102100, 101ifclda 4561 . . . 4 ((𝜑𝑛𝑂) → if(𝑛𝐼, ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))), 0) ∈ ℝ)
103 breq1 5146 . . . . 5 (((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) = if(𝑛𝐼, ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))), 0) → (((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) ≤ (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ↔ if(𝑛𝐼, ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))), 0) ≤ (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))))
104 breq1 5146 . . . . 5 (0 = if(𝑛𝐼, ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))), 0) → (0 ≤ (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ↔ if(𝑛𝐼, ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))), 0) ≤ (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))))
10513rpregt0d 13083 . . . . . . . . . 10 (𝜑 → ((𝑈𝐸) ∈ ℝ ∧ 0 < (𝑈𝐸)))
106105adantr 480 . . . . . . . . 9 ((𝜑𝑛𝐼) → ((𝑈𝐸) ∈ ℝ ∧ 0 < (𝑈𝐸)))
107106simpld 494 . . . . . . . 8 ((𝜑𝑛𝐼) → (𝑈𝐸) ∈ ℝ)
108 1rp 13038 . . . . . . . . . . . . . . . . 17 1 ∈ ℝ+
109 rpaddcl 13057 . . . . . . . . . . . . . . . . 17 ((1 ∈ ℝ+ ∧ (𝐿 · 𝐸) ∈ ℝ+) → (1 + (𝐿 · 𝐸)) ∈ ℝ+)
110108, 17, 109sylancr 587 . . . . . . . . . . . . . . . 16 (𝜑 → (1 + (𝐿 · 𝐸)) ∈ ℝ+)
111110, 44rpmulcld 13093 . . . . . . . . . . . . . . 15 (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑉) ∈ ℝ+)
11229, 111rpdivcld 13094 . . . . . . . . . . . . . 14 (𝜑 → (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ∈ ℝ+)
113112rprege0d 13084 . . . . . . . . . . . . 13 (𝜑 → ((𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ∈ ℝ ∧ 0 ≤ (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))))
114 flge0nn0 13860 . . . . . . . . . . . . 13 (((𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ∈ ℝ ∧ 0 ≤ (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) → (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) ∈ ℕ0)
115 nn0p1nn 12565 . . . . . . . . . . . . 13 ((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) ∈ ℕ0 → ((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1) ∈ ℕ)
116113, 114, 1153syl 18 . . . . . . . . . . . 12 (𝜑 → ((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1) ∈ ℕ)
117 elfzuz 13560 . . . . . . . . . . . . 13 (𝑛 ∈ (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)...(⌊‘(𝑍 / 𝑉))) → 𝑛 ∈ (ℤ‘((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)))
118117, 37eleq2s 2859 . . . . . . . . . . . 12 (𝑛𝐼𝑛 ∈ (ℤ‘((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)))
119 eluznn 12960 . . . . . . . . . . . 12 ((((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1) ∈ ℕ ∧ 𝑛 ∈ (ℤ‘((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1))) → 𝑛 ∈ ℕ)
120116, 118, 119syl2an 596 . . . . . . . . . . 11 ((𝜑𝑛𝐼) → 𝑛 ∈ ℕ)
121120nnrpd 13075 . . . . . . . . . 10 ((𝜑𝑛𝐼) → 𝑛 ∈ ℝ+)
122121relogcld 26665 . . . . . . . . 9 ((𝜑𝑛𝐼) → (log‘𝑛) ∈ ℝ)
123122, 120nndivred 12320 . . . . . . . 8 ((𝜑𝑛𝐼) → ((log‘𝑛) / 𝑛) ∈ ℝ)
124107, 123remulcld 11291 . . . . . . 7 ((𝜑𝑛𝐼) → ((𝑈𝐸) · ((log‘𝑛) / 𝑛)) ∈ ℝ)
12593sselda 3983 . . . . . . . 8 ((𝜑𝑛𝐼) → 𝑛𝑂)
126125, 82syldan 591 . . . . . . 7 ((𝜑𝑛𝐼) → (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∈ ℝ)
127 simpr 484 . . . . . . . . . . . 12 ((𝜑𝑛𝐼) → 𝑛𝐼)
128127, 37eleqtrdi 2851 . . . . . . . . . . 11 ((𝜑𝑛𝐼) → 𝑛 ∈ (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)...(⌊‘(𝑍 / 𝑉))))
129 elfzle2 13568 . . . . . . . . . . 11 (𝑛 ∈ (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)...(⌊‘(𝑍 / 𝑉))) → 𝑛 ≤ (⌊‘(𝑍 / 𝑉)))
130128, 129syl 17 . . . . . . . . . 10 ((𝜑𝑛𝐼) → 𝑛 ≤ (⌊‘(𝑍 / 𝑉)))
13145rpred 13077 . . . . . . . . . . . 12 (𝜑 → (𝑍 / 𝑉) ∈ ℝ)
132131adantr 480 . . . . . . . . . . 11 ((𝜑𝑛𝐼) → (𝑍 / 𝑉) ∈ ℝ)
133128elfzelzd 13565 . . . . . . . . . . 11 ((𝜑𝑛𝐼) → 𝑛 ∈ ℤ)
134 flge 13845 . . . . . . . . . . 11 (((𝑍 / 𝑉) ∈ ℝ ∧ 𝑛 ∈ ℤ) → (𝑛 ≤ (𝑍 / 𝑉) ↔ 𝑛 ≤ (⌊‘(𝑍 / 𝑉))))
135132, 133, 134syl2anc 584 . . . . . . . . . 10 ((𝜑𝑛𝐼) → (𝑛 ≤ (𝑍 / 𝑉) ↔ 𝑛 ≤ (⌊‘(𝑍 / 𝑉))))
136130, 135mpbird 257 . . . . . . . . 9 ((𝜑𝑛𝐼) → 𝑛 ≤ (𝑍 / 𝑉))
137120nnred 12281 . . . . . . . . . 10 ((𝜑𝑛𝐼) → 𝑛 ∈ ℝ)
138 ere 16125 . . . . . . . . . . . 12 e ∈ ℝ
139138a1i 11 . . . . . . . . . . 11 ((𝜑𝑛𝐼) → e ∈ ℝ)
140112rpred 13077 . . . . . . . . . . . 12 (𝜑 → (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ∈ ℝ)
141140adantr 480 . . . . . . . . . . 11 ((𝜑𝑛𝐼) → (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ∈ ℝ)
142138a1i 11 . . . . . . . . . . . . 13 (𝜑 → e ∈ ℝ)
14329rpsqrtcld 15450 . . . . . . . . . . . . . 14 (𝜑 → (√‘𝑍) ∈ ℝ+)
144143rpred 13077 . . . . . . . . . . . . 13 (𝜑 → (√‘𝑍) ∈ ℝ)
14531simp2d 1144 . . . . . . . . . . . . 13 (𝜑 → e ≤ (√‘𝑍))
146111rpred 13077 . . . . . . . . . . . . . . . . 17 (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑉) ∈ ℝ)
14760rpred 13077 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐾↑(𝐽 + 1)) ∈ ℝ)
14888simpld 494 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝐾𝐽) < 𝑉 ∧ ((1 + (𝐿 · 𝐸)) · 𝑉) < (𝐾 · (𝐾𝐽))))
149148simprd 495 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑉) < (𝐾 · (𝐾𝐽)))
15055rpcnd 13079 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐾 ∈ ℂ)
15155, 58rpexpcld 14286 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝐾𝐽) ∈ ℝ+)
152151rpcnd 13079 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐾𝐽) ∈ ℂ)
153150, 152mulcomd 11282 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐾 · (𝐾𝐽)) = ((𝐾𝐽) · 𝐾))
1541, 2, 3, 4, 5, 6, 7, 8, 9, 10, 23, 24, 25, 26, 27, 84, 85pntlemg 27642 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ𝑀) ∧ (((log‘𝑍) / (log‘𝐾)) / 4) ≤ (𝑁𝑀)))
155154simp1d 1143 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑀 ∈ ℕ)
156 elfzouz 13703 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐽 ∈ (𝑀..^𝑁) → 𝐽 ∈ (ℤ𝑀))
15756, 156syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐽 ∈ (ℤ𝑀))
158 eluznn 12960 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑀 ∈ ℕ ∧ 𝐽 ∈ (ℤ𝑀)) → 𝐽 ∈ ℕ)
159155, 157, 158syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐽 ∈ ℕ)
160159nnnn0d 12587 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐽 ∈ ℕ0)
161150, 160expp1d 14187 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐾↑(𝐽 + 1)) = ((𝐾𝐽) · 𝐾))
162153, 161eqtr4d 2780 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐾 · (𝐾𝐽)) = (𝐾↑(𝐽 + 1)))
163149, 162breqtrd 5169 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑉) < (𝐾↑(𝐽 + 1)))
164146, 147, 163ltled 11409 . . . . . . . . . . . . . . . . 17 (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑉) ≤ (𝐾↑(𝐽 + 1)))
165 fzofzp1 13803 . . . . . . . . . . . . . . . . . . . 20 (𝐽 ∈ (𝑀..^𝑁) → (𝐽 + 1) ∈ (𝑀...𝑁))
16656, 165syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐽 + 1) ∈ (𝑀...𝑁))
1671, 2, 3, 4, 5, 6, 7, 8, 9, 10, 23, 24, 25, 26, 27, 84, 85pntlemh 27643 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝐽 + 1) ∈ (𝑀...𝑁)) → (𝑋 < (𝐾↑(𝐽 + 1)) ∧ (𝐾↑(𝐽 + 1)) ≤ (√‘𝑍)))
168166, 167mpdan 687 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑋 < (𝐾↑(𝐽 + 1)) ∧ (𝐾↑(𝐽 + 1)) ≤ (√‘𝑍)))
169168simprd 495 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐾↑(𝐽 + 1)) ≤ (√‘𝑍))
170146, 147, 144, 164, 169letrd 11418 . . . . . . . . . . . . . . . 16 (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑉) ≤ (√‘𝑍))
171146, 144, 143lemul2d 13121 . . . . . . . . . . . . . . . 16 (𝜑 → (((1 + (𝐿 · 𝐸)) · 𝑉) ≤ (√‘𝑍) ↔ ((√‘𝑍) · ((1 + (𝐿 · 𝐸)) · 𝑉)) ≤ ((√‘𝑍) · (√‘𝑍))))
172170, 171mpbid 232 . . . . . . . . . . . . . . 15 (𝜑 → ((√‘𝑍) · ((1 + (𝐿 · 𝐸)) · 𝑉)) ≤ ((√‘𝑍) · (√‘𝑍)))
17329rprege0d 13084 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑍 ∈ ℝ ∧ 0 ≤ 𝑍))
174 remsqsqrt 15295 . . . . . . . . . . . . . . . 16 ((𝑍 ∈ ℝ ∧ 0 ≤ 𝑍) → ((√‘𝑍) · (√‘𝑍)) = 𝑍)
175173, 174syl 17 . . . . . . . . . . . . . . 15 (𝜑 → ((√‘𝑍) · (√‘𝑍)) = 𝑍)
176172, 175breqtrd 5169 . . . . . . . . . . . . . 14 (𝜑 → ((√‘𝑍) · ((1 + (𝐿 · 𝐸)) · 𝑉)) ≤ 𝑍)
177144, 30, 111lemuldivd 13126 . . . . . . . . . . . . . 14 (𝜑 → (((√‘𝑍) · ((1 + (𝐿 · 𝐸)) · 𝑉)) ≤ 𝑍 ↔ (√‘𝑍) ≤ (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))))
178176, 177mpbid 232 . . . . . . . . . . . . 13 (𝜑 → (√‘𝑍) ≤ (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))
179142, 144, 140, 145, 178letrd 11418 . . . . . . . . . . . 12 (𝜑 → e ≤ (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))
180179adantr 480 . . . . . . . . . . 11 ((𝜑𝑛𝐼) → e ≤ (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))
181 reflcl 13836 . . . . . . . . . . . . . 14 ((𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ∈ ℝ → (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) ∈ ℝ)
182 peano2re 11434 . . . . . . . . . . . . . 14 ((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) ∈ ℝ → ((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1) ∈ ℝ)
183140, 181, 1823syl 18 . . . . . . . . . . . . 13 (𝜑 → ((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1) ∈ ℝ)
184183adantr 480 . . . . . . . . . . . 12 ((𝜑𝑛𝐼) → ((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1) ∈ ℝ)
185 fllep1 13841 . . . . . . . . . . . . 13 ((𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ∈ ℝ → (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ≤ ((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1))
186141, 185syl 17 . . . . . . . . . . . 12 ((𝜑𝑛𝐼) → (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ≤ ((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1))
187 elfzle1 13567 . . . . . . . . . . . . 13 (𝑛 ∈ (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)...(⌊‘(𝑍 / 𝑉))) → ((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1) ≤ 𝑛)
188128, 187syl 17 . . . . . . . . . . . 12 ((𝜑𝑛𝐼) → ((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1) ≤ 𝑛)
189141, 184, 137, 186, 188letrd 11418 . . . . . . . . . . 11 ((𝜑𝑛𝐼) → (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ≤ 𝑛)
190139, 141, 137, 180, 189letrd 11418 . . . . . . . . . 10 ((𝜑𝑛𝐼) → e ≤ 𝑛)
191139, 137, 132, 190, 136letrd 11418 . . . . . . . . . 10 ((𝜑𝑛𝐼) → e ≤ (𝑍 / 𝑉))
192 logdivle 26664 . . . . . . . . . 10 (((𝑛 ∈ ℝ ∧ e ≤ 𝑛) ∧ ((𝑍 / 𝑉) ∈ ℝ ∧ e ≤ (𝑍 / 𝑉))) → (𝑛 ≤ (𝑍 / 𝑉) ↔ ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)) ≤ ((log‘𝑛) / 𝑛)))
193137, 190, 132, 191, 192syl22anc 839 . . . . . . . . 9 ((𝜑𝑛𝐼) → (𝑛 ≤ (𝑍 / 𝑉) ↔ ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)) ≤ ((log‘𝑛) / 𝑛)))
194136, 193mpbid 232 . . . . . . . 8 ((𝜑𝑛𝐼) → ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)) ≤ ((log‘𝑛) / 𝑛))
19547adantr 480 . . . . . . . . 9 ((𝜑𝑛𝐼) → ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)) ∈ ℝ)
196 lemul2 12120 . . . . . . . . 9 ((((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)) ∈ ℝ ∧ ((log‘𝑛) / 𝑛) ∈ ℝ ∧ ((𝑈𝐸) ∈ ℝ ∧ 0 < (𝑈𝐸))) → (((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)) ≤ ((log‘𝑛) / 𝑛) ↔ ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) ≤ ((𝑈𝐸) · ((log‘𝑛) / 𝑛))))
197195, 123, 106, 196syl3anc 1373 . . . . . . . 8 ((𝜑𝑛𝐼) → (((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)) ≤ ((log‘𝑛) / 𝑛) ↔ ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) ≤ ((𝑈𝐸) · ((log‘𝑛) / 𝑛))))
198194, 197mpbid 232 . . . . . . 7 ((𝜑𝑛𝐼) → ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) ≤ ((𝑈𝐸) · ((log‘𝑛) / 𝑛)))
19913rpcnd 13079 . . . . . . . . . . 11 (𝜑 → (𝑈𝐸) ∈ ℂ)
200199adantr 480 . . . . . . . . . 10 ((𝜑𝑛𝐼) → (𝑈𝐸) ∈ ℂ)
201122recnd 11289 . . . . . . . . . 10 ((𝜑𝑛𝐼) → (log‘𝑛) ∈ ℂ)
202121rpcnne0d 13086 . . . . . . . . . 10 ((𝜑𝑛𝐼) → (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0))
203 div23 11941 . . . . . . . . . 10 (((𝑈𝐸) ∈ ℂ ∧ (log‘𝑛) ∈ ℂ ∧ (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0)) → (((𝑈𝐸) · (log‘𝑛)) / 𝑛) = (((𝑈𝐸) / 𝑛) · (log‘𝑛)))
204200, 201, 202, 203syl3anc 1373 . . . . . . . . 9 ((𝜑𝑛𝐼) → (((𝑈𝐸) · (log‘𝑛)) / 𝑛) = (((𝑈𝐸) / 𝑛) · (log‘𝑛)))
205 divass 11940 . . . . . . . . . 10 (((𝑈𝐸) ∈ ℂ ∧ (log‘𝑛) ∈ ℂ ∧ (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0)) → (((𝑈𝐸) · (log‘𝑛)) / 𝑛) = ((𝑈𝐸) · ((log‘𝑛) / 𝑛)))
206200, 201, 202, 205syl3anc 1373 . . . . . . . . 9 ((𝜑𝑛𝐼) → (((𝑈𝐸) · (log‘𝑛)) / 𝑛) = ((𝑈𝐸) · ((log‘𝑛) / 𝑛)))
207204, 206eqtr3d 2779 . . . . . . . 8 ((𝜑𝑛𝐼) → (((𝑈𝐸) / 𝑛) · (log‘𝑛)) = ((𝑈𝐸) · ((log‘𝑛) / 𝑛)))
20843adantr 480 . . . . . . . . . 10 ((𝜑𝑛𝐼) → (𝑈𝐸) ∈ ℝ)
209208, 120nndivred 12320 . . . . . . . . 9 ((𝜑𝑛𝐼) → ((𝑈𝐸) / 𝑛) ∈ ℝ)
210125, 80syldan 591 . . . . . . . . 9 ((𝜑𝑛𝐼) → ((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) ∈ ℝ)
211 log1 26627 . . . . . . . . . 10 (log‘1) = 0
212120nnge1d 12314 . . . . . . . . . . 11 ((𝜑𝑛𝐼) → 1 ≤ 𝑛)
213 logleb 26645 . . . . . . . . . . . 12 ((1 ∈ ℝ+𝑛 ∈ ℝ+) → (1 ≤ 𝑛 ↔ (log‘1) ≤ (log‘𝑛)))
214108, 121, 213sylancr 587 . . . . . . . . . . 11 ((𝜑𝑛𝐼) → (1 ≤ 𝑛 ↔ (log‘1) ≤ (log‘𝑛)))
215212, 214mpbid 232 . . . . . . . . . 10 ((𝜑𝑛𝐼) → (log‘1) ≤ (log‘𝑛))
216211, 215eqbrtrrid 5179 . . . . . . . . 9 ((𝜑𝑛𝐼) → 0 ≤ (log‘𝑛))
2177rpcnd 13079 . . . . . . . . . . . 12 (𝜑𝑈 ∈ ℂ)
218217adantr 480 . . . . . . . . . . 11 ((𝜑𝑛𝐼) → 𝑈 ∈ ℂ)
21916rpred 13077 . . . . . . . . . . . . 13 (𝜑𝐸 ∈ ℝ)
220219adantr 480 . . . . . . . . . . . 12 ((𝜑𝑛𝐼) → 𝐸 ∈ ℝ)
221220recnd 11289 . . . . . . . . . . 11 ((𝜑𝑛𝐼) → 𝐸 ∈ ℂ)
222 divsubdir 11961 . . . . . . . . . . 11 ((𝑈 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0)) → ((𝑈𝐸) / 𝑛) = ((𝑈 / 𝑛) − (𝐸 / 𝑛)))
223218, 221, 202, 222syl3anc 1373 . . . . . . . . . 10 ((𝜑𝑛𝐼) → ((𝑈𝐸) / 𝑛) = ((𝑈 / 𝑛) − (𝐸 / 𝑛)))
224125, 79syldan 591 . . . . . . . . . . 11 ((𝜑𝑛𝐼) → (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) ∈ ℝ)
225220, 120nndivred 12320 . . . . . . . . . . 11 ((𝜑𝑛𝐼) → (𝐸 / 𝑛) ∈ ℝ)
226125, 70syldan 591 . . . . . . . . . . 11 ((𝜑𝑛𝐼) → (𝑈 / 𝑛) ∈ ℝ)
227125, 76syldan 591 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛𝐼) → (𝑅‘(𝑍 / 𝑛)) ∈ ℝ)
228227recnd 11289 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛𝐼) → (𝑅‘(𝑍 / 𝑛)) ∈ ℂ)
22929adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛𝐼) → 𝑍 ∈ ℝ+)
230229rpcnne0d 13086 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛𝐼) → (𝑍 ∈ ℂ ∧ 𝑍 ≠ 0))
231 divdiv2 11979 . . . . . . . . . . . . . . . . 17 (((𝑅‘(𝑍 / 𝑛)) ∈ ℂ ∧ (𝑍 ∈ ℂ ∧ 𝑍 ≠ 0) ∧ (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0)) → ((𝑅‘(𝑍 / 𝑛)) / (𝑍 / 𝑛)) = (((𝑅‘(𝑍 / 𝑛)) · 𝑛) / 𝑍))
232228, 230, 202, 231syl3anc 1373 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝐼) → ((𝑅‘(𝑍 / 𝑛)) / (𝑍 / 𝑛)) = (((𝑅‘(𝑍 / 𝑛)) · 𝑛) / 𝑍))
233121rpcnd 13079 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛𝐼) → 𝑛 ∈ ℂ)
234 div23 11941 . . . . . . . . . . . . . . . . 17 (((𝑅‘(𝑍 / 𝑛)) ∈ ℂ ∧ 𝑛 ∈ ℂ ∧ (𝑍 ∈ ℂ ∧ 𝑍 ≠ 0)) → (((𝑅‘(𝑍 / 𝑛)) · 𝑛) / 𝑍) = (((𝑅‘(𝑍 / 𝑛)) / 𝑍) · 𝑛))
235228, 233, 230, 234syl3anc 1373 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝐼) → (((𝑅‘(𝑍 / 𝑛)) · 𝑛) / 𝑍) = (((𝑅‘(𝑍 / 𝑛)) / 𝑍) · 𝑛))
236232, 235eqtrd 2777 . . . . . . . . . . . . . . 15 ((𝜑𝑛𝐼) → ((𝑅‘(𝑍 / 𝑛)) / (𝑍 / 𝑛)) = (((𝑅‘(𝑍 / 𝑛)) / 𝑍) · 𝑛))
237236fveq2d 6910 . . . . . . . . . . . . . 14 ((𝜑𝑛𝐼) → (abs‘((𝑅‘(𝑍 / 𝑛)) / (𝑍 / 𝑛))) = (abs‘(((𝑅‘(𝑍 / 𝑛)) / 𝑍) · 𝑛)))
238125, 78syldan 591 . . . . . . . . . . . . . . 15 ((𝜑𝑛𝐼) → ((𝑅‘(𝑍 / 𝑛)) / 𝑍) ∈ ℂ)
239238, 233absmuld 15493 . . . . . . . . . . . . . 14 ((𝜑𝑛𝐼) → (abs‘(((𝑅‘(𝑍 / 𝑛)) / 𝑍) · 𝑛)) = ((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (abs‘𝑛)))
240121rprege0d 13084 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝐼) → (𝑛 ∈ ℝ ∧ 0 ≤ 𝑛))
241 absid 15335 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℝ ∧ 0 ≤ 𝑛) → (abs‘𝑛) = 𝑛)
242240, 241syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑛𝐼) → (abs‘𝑛) = 𝑛)
243242oveq2d 7447 . . . . . . . . . . . . . 14 ((𝜑𝑛𝐼) → ((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (abs‘𝑛)) = ((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · 𝑛))
244237, 239, 2433eqtrd 2781 . . . . . . . . . . . . 13 ((𝜑𝑛𝐼) → (abs‘((𝑅‘(𝑍 / 𝑛)) / (𝑍 / 𝑛))) = ((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · 𝑛))
245 fveq2 6906 . . . . . . . . . . . . . . . . 17 (𝑢 = (𝑍 / 𝑛) → (𝑅𝑢) = (𝑅‘(𝑍 / 𝑛)))
246 id 22 . . . . . . . . . . . . . . . . 17 (𝑢 = (𝑍 / 𝑛) → 𝑢 = (𝑍 / 𝑛))
247245, 246oveq12d 7449 . . . . . . . . . . . . . . . 16 (𝑢 = (𝑍 / 𝑛) → ((𝑅𝑢) / 𝑢) = ((𝑅‘(𝑍 / 𝑛)) / (𝑍 / 𝑛)))
248247fveq2d 6910 . . . . . . . . . . . . . . 15 (𝑢 = (𝑍 / 𝑛) → (abs‘((𝑅𝑢) / 𝑢)) = (abs‘((𝑅‘(𝑍 / 𝑛)) / (𝑍 / 𝑛))))
249248breq1d 5153 . . . . . . . . . . . . . 14 (𝑢 = (𝑍 / 𝑛) → ((abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸 ↔ (abs‘((𝑅‘(𝑍 / 𝑛)) / (𝑍 / 𝑛))) ≤ 𝐸))
25088simprd 495 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑢 ∈ (𝑉[,]((1 + (𝐿 · 𝐸)) · 𝑉))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)
251250adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑛𝐼) → ∀𝑢 ∈ (𝑉[,]((1 + (𝐿 · 𝐸)) · 𝑉))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)
25230adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝐼) → 𝑍 ∈ ℝ)
253252, 120nndivred 12320 . . . . . . . . . . . . . . 15 ((𝜑𝑛𝐼) → (𝑍 / 𝑛) ∈ ℝ)
25444rpregt0d 13083 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑉 ∈ ℝ ∧ 0 < 𝑉))
255254adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛𝐼) → (𝑉 ∈ ℝ ∧ 0 < 𝑉))
256 lemuldiv2 12149 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℝ ∧ 𝑍 ∈ ℝ ∧ (𝑉 ∈ ℝ ∧ 0 < 𝑉)) → ((𝑉 · 𝑛) ≤ 𝑍𝑛 ≤ (𝑍 / 𝑉)))
257137, 252, 255, 256syl3anc 1373 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛𝐼) → ((𝑉 · 𝑛) ≤ 𝑍𝑛 ≤ (𝑍 / 𝑉)))
258136, 257mpbird 257 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝐼) → (𝑉 · 𝑛) ≤ 𝑍)
259255simpld 494 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛𝐼) → 𝑉 ∈ ℝ)
260259, 252, 121lemuldivd 13126 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝐼) → ((𝑉 · 𝑛) ≤ 𝑍𝑉 ≤ (𝑍 / 𝑛)))
261258, 260mpbid 232 . . . . . . . . . . . . . . 15 ((𝜑𝑛𝐼) → 𝑉 ≤ (𝑍 / 𝑛))
262111rpregt0d 13083 . . . . . . . . . . . . . . . . . 18 (𝜑 → (((1 + (𝐿 · 𝐸)) · 𝑉) ∈ ℝ ∧ 0 < ((1 + (𝐿 · 𝐸)) · 𝑉)))
263262adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛𝐼) → (((1 + (𝐿 · 𝐸)) · 𝑉) ∈ ℝ ∧ 0 < ((1 + (𝐿 · 𝐸)) · 𝑉)))
264121rpregt0d 13083 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛𝐼) → (𝑛 ∈ ℝ ∧ 0 < 𝑛))
265 lediv23 12160 . . . . . . . . . . . . . . . . 17 ((𝑍 ∈ ℝ ∧ (((1 + (𝐿 · 𝐸)) · 𝑉) ∈ ℝ ∧ 0 < ((1 + (𝐿 · 𝐸)) · 𝑉)) ∧ (𝑛 ∈ ℝ ∧ 0 < 𝑛)) → ((𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ≤ 𝑛 ↔ (𝑍 / 𝑛) ≤ ((1 + (𝐿 · 𝐸)) · 𝑉)))
266252, 263, 264, 265syl3anc 1373 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝐼) → ((𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ≤ 𝑛 ↔ (𝑍 / 𝑛) ≤ ((1 + (𝐿 · 𝐸)) · 𝑉)))
267189, 266mpbid 232 . . . . . . . . . . . . . . 15 ((𝜑𝑛𝐼) → (𝑍 / 𝑛) ≤ ((1 + (𝐿 · 𝐸)) · 𝑉))
26844rpred 13077 . . . . . . . . . . . . . . . . 17 (𝜑𝑉 ∈ ℝ)
269268adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝐼) → 𝑉 ∈ ℝ)
270146adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝐼) → ((1 + (𝐿 · 𝐸)) · 𝑉) ∈ ℝ)
271 elicc2 13452 . . . . . . . . . . . . . . . 16 ((𝑉 ∈ ℝ ∧ ((1 + (𝐿 · 𝐸)) · 𝑉) ∈ ℝ) → ((𝑍 / 𝑛) ∈ (𝑉[,]((1 + (𝐿 · 𝐸)) · 𝑉)) ↔ ((𝑍 / 𝑛) ∈ ℝ ∧ 𝑉 ≤ (𝑍 / 𝑛) ∧ (𝑍 / 𝑛) ≤ ((1 + (𝐿 · 𝐸)) · 𝑉))))
272269, 270, 271syl2anc 584 . . . . . . . . . . . . . . 15 ((𝜑𝑛𝐼) → ((𝑍 / 𝑛) ∈ (𝑉[,]((1 + (𝐿 · 𝐸)) · 𝑉)) ↔ ((𝑍 / 𝑛) ∈ ℝ ∧ 𝑉 ≤ (𝑍 / 𝑛) ∧ (𝑍 / 𝑛) ≤ ((1 + (𝐿 · 𝐸)) · 𝑉))))
273253, 261, 267, 272mpbir3and 1343 . . . . . . . . . . . . . 14 ((𝜑𝑛𝐼) → (𝑍 / 𝑛) ∈ (𝑉[,]((1 + (𝐿 · 𝐸)) · 𝑉)))
274249, 251, 273rspcdva 3623 . . . . . . . . . . . . 13 ((𝜑𝑛𝐼) → (abs‘((𝑅‘(𝑍 / 𝑛)) / (𝑍 / 𝑛))) ≤ 𝐸)
275244, 274eqbrtrrd 5167 . . . . . . . . . . . 12 ((𝜑𝑛𝐼) → ((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · 𝑛) ≤ 𝐸)
276224, 220, 121lemuldivd 13126 . . . . . . . . . . . 12 ((𝜑𝑛𝐼) → (((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · 𝑛) ≤ 𝐸 ↔ (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) ≤ (𝐸 / 𝑛)))
277275, 276mpbid 232 . . . . . . . . . . 11 ((𝜑𝑛𝐼) → (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) ≤ (𝐸 / 𝑛))
278224, 225, 226, 277lesub2dd 11880 . . . . . . . . . 10 ((𝜑𝑛𝐼) → ((𝑈 / 𝑛) − (𝐸 / 𝑛)) ≤ ((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))))
279223, 278eqbrtrd 5165 . . . . . . . . 9 ((𝜑𝑛𝐼) → ((𝑈𝐸) / 𝑛) ≤ ((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))))
280209, 210, 122, 216, 279lemul1ad 12207 . . . . . . . 8 ((𝜑𝑛𝐼) → (((𝑈𝐸) / 𝑛) · (log‘𝑛)) ≤ (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
281207, 280eqbrtrrd 5167 . . . . . . 7 ((𝜑𝑛𝐼) → ((𝑈𝐸) · ((log‘𝑛) / 𝑛)) ≤ (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
28299, 124, 126, 198, 281letrd 11418 . . . . . 6 ((𝜑𝑛𝐼) → ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) ≤ (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
283282adantlr 715 . . . . 5 (((𝜑𝑛𝑂) ∧ 𝑛𝐼) → ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) ≤ (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
28469nnred 12281 . . . . . . . . 9 ((𝜑𝑛𝑂) → 𝑛 ∈ ℝ)
28529, 151rpdivcld 13094 . . . . . . . . . . 11 (𝜑 → (𝑍 / (𝐾𝐽)) ∈ ℝ+)
286285rpred 13077 . . . . . . . . . 10 (𝜑 → (𝑍 / (𝐾𝐽)) ∈ ℝ)
287286adantr 480 . . . . . . . . 9 ((𝜑𝑛𝑂) → (𝑍 / (𝐾𝐽)) ∈ ℝ)
28823simpld 494 . . . . . . . . . . . 12 (𝜑𝑌 ∈ ℝ+)
28929, 288rpdivcld 13094 . . . . . . . . . . 11 (𝜑 → (𝑍 / 𝑌) ∈ ℝ+)
290289rpred 13077 . . . . . . . . . 10 (𝜑 → (𝑍 / 𝑌) ∈ ℝ)
291290adantr 480 . . . . . . . . 9 ((𝜑𝑛𝑂) → (𝑍 / 𝑌) ∈ ℝ)
292 simpr 484 . . . . . . . . . . . 12 ((𝜑𝑛𝑂) → 𝑛𝑂)
293292, 50eleqtrdi 2851 . . . . . . . . . . 11 ((𝜑𝑛𝑂) → 𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝐽)))))
294 elfzle2 13568 . . . . . . . . . . 11 (𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝐽)))) → 𝑛 ≤ (⌊‘(𝑍 / (𝐾𝐽))))
295293, 294syl 17 . . . . . . . . . 10 ((𝜑𝑛𝑂) → 𝑛 ≤ (⌊‘(𝑍 / (𝐾𝐽))))
29669nnzd 12640 . . . . . . . . . . 11 ((𝜑𝑛𝑂) → 𝑛 ∈ ℤ)
297 flge 13845 . . . . . . . . . . 11 (((𝑍 / (𝐾𝐽)) ∈ ℝ ∧ 𝑛 ∈ ℤ) → (𝑛 ≤ (𝑍 / (𝐾𝐽)) ↔ 𝑛 ≤ (⌊‘(𝑍 / (𝐾𝐽)))))
298287, 296, 297syl2anc 584 . . . . . . . . . 10 ((𝜑𝑛𝑂) → (𝑛 ≤ (𝑍 / (𝐾𝐽)) ↔ 𝑛 ≤ (⌊‘(𝑍 / (𝐾𝐽)))))
299295, 298mpbird 257 . . . . . . . . 9 ((𝜑𝑛𝑂) → 𝑛 ≤ (𝑍 / (𝐾𝐽)))
300288rpred 13077 . . . . . . . . . . . 12 (𝜑𝑌 ∈ ℝ)
30124simpld 494 . . . . . . . . . . . . 13 (𝜑𝑋 ∈ ℝ+)
302301rpred 13077 . . . . . . . . . . . 12 (𝜑𝑋 ∈ ℝ)
303151rpred 13077 . . . . . . . . . . . 12 (𝜑 → (𝐾𝐽) ∈ ℝ)
30424simprd 495 . . . . . . . . . . . . 13 (𝜑𝑌 < 𝑋)
305300, 302, 304ltled 11409 . . . . . . . . . . . 12 (𝜑𝑌𝑋)
306 elfzofz 13715 . . . . . . . . . . . . . . . 16 (𝐽 ∈ (𝑀..^𝑁) → 𝐽 ∈ (𝑀...𝑁))
30756, 306syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐽 ∈ (𝑀...𝑁))
3081, 2, 3, 4, 5, 6, 7, 8, 9, 10, 23, 24, 25, 26, 27, 84, 85pntlemh 27643 . . . . . . . . . . . . . . 15 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (𝑋 < (𝐾𝐽) ∧ (𝐾𝐽) ≤ (√‘𝑍)))
309307, 308mpdan 687 . . . . . . . . . . . . . 14 (𝜑 → (𝑋 < (𝐾𝐽) ∧ (𝐾𝐽) ≤ (√‘𝑍)))
310309simpld 494 . . . . . . . . . . . . 13 (𝜑𝑋 < (𝐾𝐽))
311302, 303, 310ltled 11409 . . . . . . . . . . . 12 (𝜑𝑋 ≤ (𝐾𝐽))
312300, 302, 303, 305, 311letrd 11418 . . . . . . . . . . 11 (𝜑𝑌 ≤ (𝐾𝐽))
313288, 151, 29lediv2d 13101 . . . . . . . . . . 11 (𝜑 → (𝑌 ≤ (𝐾𝐽) ↔ (𝑍 / (𝐾𝐽)) ≤ (𝑍 / 𝑌)))
314312, 313mpbid 232 . . . . . . . . . 10 (𝜑 → (𝑍 / (𝐾𝐽)) ≤ (𝑍 / 𝑌))
315314adantr 480 . . . . . . . . 9 ((𝜑𝑛𝑂) → (𝑍 / (𝐾𝐽)) ≤ (𝑍 / 𝑌))
316284, 287, 291, 299, 315letrd 11418 . . . . . . . 8 ((𝜑𝑛𝑂) → 𝑛 ≤ (𝑍 / 𝑌))
31769, 316jca 511 . . . . . . 7 ((𝜑𝑛𝑂) → (𝑛 ∈ ℕ ∧ 𝑛 ≤ (𝑍 / 𝑌)))
3181, 2, 3, 4, 5, 6, 7, 8, 9, 10, 23, 24, 25, 26, 27, 84, 85, 86pntlemn 27644 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛 ≤ (𝑍 / 𝑌))) → 0 ≤ (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
319317, 318syldan 591 . . . . . 6 ((𝜑𝑛𝑂) → 0 ≤ (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
320319adantr 480 . . . . 5 (((𝜑𝑛𝑂) ∧ ¬ 𝑛𝐼) → 0 ≤ (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
321103, 104, 283, 320ifbothda 4564 . . . 4 ((𝜑𝑛𝑂) → if(𝑛𝐼, ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))), 0) ≤ (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
32252, 102, 82, 321fsumle 15835 . . 3 (𝜑 → Σ𝑛𝑂 if(𝑛𝐼, ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))), 0) ≤ Σ𝑛𝑂 (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
32398, 322eqbrtrd 5165 . 2 (𝜑 → ((♯‘𝐼) · ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)))) ≤ Σ𝑛𝑂 (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
32436, 49, 83, 89, 323letrd 11418 1 (𝜑 → ((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ≤ Σ𝑛𝑂 (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 848  w3a 1087   = wceq 1540  wcel 2108  wne 2940  wral 3061  wrex 3070  wss 3951  ifcif 4525   class class class wbr 5143  cmpt 5225  cfv 6561  (class class class)co 7431  Fincfn 8985  cc 11153  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160  +∞cpnf 11292   < clt 11295  cle 11296  cmin 11492   / cdiv 11920  cn 12266  2c2 12321  3c3 12322  4c4 12323  8c8 12327  0cn0 12526  cz 12613  cdc 12733  cuz 12878  +crp 13034  (,)cioo 13387  [,)cico 13389  [,]cicc 13390  ...cfz 13547  ..^cfzo 13694  cfl 13830  cexp 14102  chash 14369  csqrt 15272  abscabs 15273  Σcsu 15722  expce 16097  eceu 16098  logclog 26596  ψcchp 27136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-dju 9941  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ioc 13392  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-fac 14313  df-bc 14342  df-hash 14370  df-shft 15106  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-limsup 15507  df-clim 15524  df-rlim 15525  df-sum 15723  df-ef 16103  df-e 16104  df-sin 16105  df-cos 16106  df-pi 16108  df-dvds 16291  df-gcd 16532  df-prm 16709  df-pc 16875  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-lp 23144  df-perf 23145  df-cn 23235  df-cnp 23236  df-haus 23323  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-xms 24330  df-ms 24331  df-tms 24332  df-cncf 24904  df-limc 25901  df-dv 25902  df-log 26598  df-vma 27141  df-chp 27142
This theorem is referenced by:  pntlemi  27648
  Copyright terms: Public domain W3C validator