MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlemj Structured version   Visualization version   GIF version

Theorem pntlemj 26112
Description: Lemma for pnt 26123. The induction step. Using pntibnd 26102, we find an interval in 𝐾𝐽...𝐾↑(𝐽 + 1) which is sufficiently large and has a much smaller value, 𝑅(𝑧) / 𝑧𝐸 (instead of our original bound 𝑅(𝑧) / 𝑧𝑈). (Contributed by Mario Carneiro, 13-Apr-2016.)
Hypotheses
Ref Expression
pntlem1.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntlem1.a (𝜑𝐴 ∈ ℝ+)
pntlem1.b (𝜑𝐵 ∈ ℝ+)
pntlem1.l (𝜑𝐿 ∈ (0(,)1))
pntlem1.d 𝐷 = (𝐴 + 1)
pntlem1.f 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
pntlem1.u (𝜑𝑈 ∈ ℝ+)
pntlem1.u2 (𝜑𝑈𝐴)
pntlem1.e 𝐸 = (𝑈 / 𝐷)
pntlem1.k 𝐾 = (exp‘(𝐵 / 𝐸))
pntlem1.y (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
pntlem1.x (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
pntlem1.c (𝜑𝐶 ∈ ℝ+)
pntlem1.w 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
pntlem1.z (𝜑𝑍 ∈ (𝑊[,)+∞))
pntlem1.m 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1)
pntlem1.n 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2))
pntlem1.U (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑈)
pntlem1.K (𝜑 → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
pntlem1.o 𝑂 = (((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝐽))))
pntlem1.v (𝜑𝑉 ∈ ℝ+)
pntlem1.V (𝜑 → (((𝐾𝐽) < 𝑉 ∧ ((1 + (𝐿 · 𝐸)) · 𝑉) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑉[,]((1 + (𝐿 · 𝐸)) · 𝑉))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
pntlem1.j (𝜑𝐽 ∈ (𝑀..^𝑁))
pntlem1.i 𝐼 = (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)...(⌊‘(𝑍 / 𝑉)))
Assertion
Ref Expression
pntlemj (𝜑 → ((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ≤ Σ𝑛𝑂 (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
Distinct variable groups:   𝑧,𝐶   𝑛,𝐼   𝑦,𝑛,𝑧,𝐽   𝑢,𝑛,𝐿,𝑦,𝑧   𝑛,𝐾,𝑦,𝑧   𝑛,𝑀,𝑧   𝑛,𝑂,𝑧   𝜑,𝑛   𝑛,𝑁,𝑧   𝑅,𝑛,𝑢,𝑦,𝑧   𝑛,𝑉,𝑢   𝑈,𝑛,𝑧   𝑛,𝑊,𝑧   𝑛,𝑋,𝑦,𝑧   𝑛,𝑌,𝑧   𝑛,𝑎,𝑢,𝑦,𝑧,𝐸   𝑛,𝑍,𝑢,𝑧
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑢,𝑎)   𝐴(𝑦,𝑧,𝑢,𝑛,𝑎)   𝐵(𝑦,𝑧,𝑢,𝑛,𝑎)   𝐶(𝑦,𝑢,𝑛,𝑎)   𝐷(𝑦,𝑧,𝑢,𝑛,𝑎)   𝑅(𝑎)   𝑈(𝑦,𝑢,𝑎)   𝐹(𝑦,𝑧,𝑢,𝑛,𝑎)   𝐼(𝑦,𝑧,𝑢,𝑎)   𝐽(𝑢,𝑎)   𝐾(𝑢,𝑎)   𝐿(𝑎)   𝑀(𝑦,𝑢,𝑎)   𝑁(𝑦,𝑢,𝑎)   𝑂(𝑦,𝑢,𝑎)   𝑉(𝑦,𝑧,𝑎)   𝑊(𝑦,𝑢,𝑎)   𝑋(𝑢,𝑎)   𝑌(𝑦,𝑢,𝑎)   𝑍(𝑦,𝑎)

Proof of Theorem pntlemj
StepHypRef Expression
1 pntlem1.r . . . . . . 7 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
2 pntlem1.a . . . . . . 7 (𝜑𝐴 ∈ ℝ+)
3 pntlem1.b . . . . . . 7 (𝜑𝐵 ∈ ℝ+)
4 pntlem1.l . . . . . . 7 (𝜑𝐿 ∈ (0(,)1))
5 pntlem1.d . . . . . . 7 𝐷 = (𝐴 + 1)
6 pntlem1.f . . . . . . 7 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
7 pntlem1.u . . . . . . 7 (𝜑𝑈 ∈ ℝ+)
8 pntlem1.u2 . . . . . . 7 (𝜑𝑈𝐴)
9 pntlem1.e . . . . . . 7 𝐸 = (𝑈 / 𝐷)
10 pntlem1.k . . . . . . 7 𝐾 = (exp‘(𝐵 / 𝐸))
111, 2, 3, 4, 5, 6, 7, 8, 9, 10pntlemc 26104 . . . . . 6 (𝜑 → (𝐸 ∈ ℝ+𝐾 ∈ ℝ+ ∧ (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+)))
1211simp3d 1138 . . . . 5 (𝜑 → (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+))
1312simp3d 1138 . . . 4 (𝜑 → (𝑈𝐸) ∈ ℝ+)
141, 2, 3, 4, 5, 6pntlemd 26103 . . . . . . . 8 (𝜑 → (𝐿 ∈ ℝ+𝐷 ∈ ℝ+𝐹 ∈ ℝ+))
1514simp1d 1136 . . . . . . 7 (𝜑𝐿 ∈ ℝ+)
1611simp1d 1136 . . . . . . 7 (𝜑𝐸 ∈ ℝ+)
1715, 16rpmulcld 12442 . . . . . 6 (𝜑 → (𝐿 · 𝐸) ∈ ℝ+)
18 8nn 11726 . . . . . . 7 8 ∈ ℕ
19 nnrp 12395 . . . . . . 7 (8 ∈ ℕ → 8 ∈ ℝ+)
2018, 19ax-mp 5 . . . . . 6 8 ∈ ℝ+
21 rpdivcl 12409 . . . . . 6 (((𝐿 · 𝐸) ∈ ℝ+ ∧ 8 ∈ ℝ+) → ((𝐿 · 𝐸) / 8) ∈ ℝ+)
2217, 20, 21sylancl 586 . . . . 5 (𝜑 → ((𝐿 · 𝐸) / 8) ∈ ℝ+)
23 pntlem1.y . . . . . . . . 9 (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
24 pntlem1.x . . . . . . . . 9 (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
25 pntlem1.c . . . . . . . . 9 (𝜑𝐶 ∈ ℝ+)
26 pntlem1.w . . . . . . . . 9 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
27 pntlem1.z . . . . . . . . 9 (𝜑𝑍 ∈ (𝑊[,)+∞))
281, 2, 3, 4, 5, 6, 7, 8, 9, 10, 23, 24, 25, 26, 27pntlemb 26106 . . . . . . . 8 (𝜑 → (𝑍 ∈ ℝ+ ∧ (1 < 𝑍 ∧ e ≤ (√‘𝑍) ∧ (√‘𝑍) ≤ (𝑍 / 𝑌)) ∧ ((4 / (𝐿 · 𝐸)) ≤ (√‘𝑍) ∧ (((log‘𝑋) / (log‘𝐾)) + 2) ≤ (((log‘𝑍) / (log‘𝐾)) / 4) ∧ ((𝑈 · 3) + 𝐶) ≤ (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))))
2928simp1d 1136 . . . . . . 7 (𝜑𝑍 ∈ ℝ+)
3029rpred 12426 . . . . . 6 (𝜑𝑍 ∈ ℝ)
3128simp2d 1137 . . . . . . 7 (𝜑 → (1 < 𝑍 ∧ e ≤ (√‘𝑍) ∧ (√‘𝑍) ≤ (𝑍 / 𝑌)))
3231simp1d 1136 . . . . . 6 (𝜑 → 1 < 𝑍)
3330, 32rplogcld 25144 . . . . 5 (𝜑 → (log‘𝑍) ∈ ℝ+)
3422, 33rpmulcld 12442 . . . 4 (𝜑 → (((𝐿 · 𝐸) / 8) · (log‘𝑍)) ∈ ℝ+)
3513, 34rpmulcld 12442 . . 3 (𝜑 → ((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ∈ ℝ+)
3635rpred 12426 . 2 (𝜑 → ((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ∈ ℝ)
37 pntlem1.i . . . . . 6 𝐼 = (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)...(⌊‘(𝑍 / 𝑉)))
38 fzfid 13336 . . . . . 6 (𝜑 → (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)...(⌊‘(𝑍 / 𝑉))) ∈ Fin)
3937, 38eqeltrid 2922 . . . . 5 (𝜑𝐼 ∈ Fin)
40 hashcl 13712 . . . . 5 (𝐼 ∈ Fin → (♯‘𝐼) ∈ ℕ0)
4139, 40syl 17 . . . 4 (𝜑 → (♯‘𝐼) ∈ ℕ0)
4241nn0red 11950 . . 3 (𝜑 → (♯‘𝐼) ∈ ℝ)
4313rpred 12426 . . . 4 (𝜑 → (𝑈𝐸) ∈ ℝ)
44 pntlem1.v . . . . . . 7 (𝜑𝑉 ∈ ℝ+)
4529, 44rpdivcld 12443 . . . . . 6 (𝜑 → (𝑍 / 𝑉) ∈ ℝ+)
4645relogcld 25138 . . . . 5 (𝜑 → (log‘(𝑍 / 𝑉)) ∈ ℝ)
4746, 45rerpdivcld 12457 . . . 4 (𝜑 → ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)) ∈ ℝ)
4843, 47remulcld 10665 . . 3 (𝜑 → ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) ∈ ℝ)
4942, 48remulcld 10665 . 2 (𝜑 → ((♯‘𝐼) · ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)))) ∈ ℝ)
50 pntlem1.o . . . 4 𝑂 = (((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝐽))))
51 fzfid 13336 . . . 4 (𝜑 → (((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝐽)))) ∈ Fin)
5250, 51eqeltrid 2922 . . 3 (𝜑𝑂 ∈ Fin)
537rpred 12426 . . . . . . 7 (𝜑𝑈 ∈ ℝ)
5453adantr 481 . . . . . 6 ((𝜑𝑛𝑂) → 𝑈 ∈ ℝ)
5511simp2d 1137 . . . . . . . . . . 11 (𝜑𝐾 ∈ ℝ+)
56 pntlem1.j . . . . . . . . . . . . 13 (𝜑𝐽 ∈ (𝑀..^𝑁))
57 elfzoelz 13033 . . . . . . . . . . . . 13 (𝐽 ∈ (𝑀..^𝑁) → 𝐽 ∈ ℤ)
5856, 57syl 17 . . . . . . . . . . . 12 (𝜑𝐽 ∈ ℤ)
5958peano2zd 12084 . . . . . . . . . . 11 (𝜑 → (𝐽 + 1) ∈ ℤ)
6055, 59rpexpcld 13603 . . . . . . . . . 10 (𝜑 → (𝐾↑(𝐽 + 1)) ∈ ℝ+)
6129, 60rpdivcld 12443 . . . . . . . . 9 (𝜑 → (𝑍 / (𝐾↑(𝐽 + 1))) ∈ ℝ+)
6261rprege0d 12433 . . . . . . . 8 (𝜑 → ((𝑍 / (𝐾↑(𝐽 + 1))) ∈ ℝ ∧ 0 ≤ (𝑍 / (𝐾↑(𝐽 + 1)))))
63 flge0nn0 13185 . . . . . . . 8 (((𝑍 / (𝐾↑(𝐽 + 1))) ∈ ℝ ∧ 0 ≤ (𝑍 / (𝐾↑(𝐽 + 1)))) → (⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) ∈ ℕ0)
64 nn0p1nn 11930 . . . . . . . 8 ((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) ∈ ℕ0 → ((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1) ∈ ℕ)
6562, 63, 643syl 18 . . . . . . 7 (𝜑 → ((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1) ∈ ℕ)
66 elfzuz 12899 . . . . . . . 8 (𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝐽)))) → 𝑛 ∈ (ℤ‘((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)))
6766, 50eleq2s 2936 . . . . . . 7 (𝑛𝑂𝑛 ∈ (ℤ‘((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)))
68 eluznn 12312 . . . . . . 7 ((((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1) ∈ ℕ ∧ 𝑛 ∈ (ℤ‘((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1))) → 𝑛 ∈ ℕ)
6965, 67, 68syl2an 595 . . . . . 6 ((𝜑𝑛𝑂) → 𝑛 ∈ ℕ)
7054, 69nndivred 11685 . . . . 5 ((𝜑𝑛𝑂) → (𝑈 / 𝑛) ∈ ℝ)
7129adantr 481 . . . . . . . . . 10 ((𝜑𝑛𝑂) → 𝑍 ∈ ℝ+)
7269nnrpd 12424 . . . . . . . . . 10 ((𝜑𝑛𝑂) → 𝑛 ∈ ℝ+)
7371, 72rpdivcld 12443 . . . . . . . . 9 ((𝜑𝑛𝑂) → (𝑍 / 𝑛) ∈ ℝ+)
741pntrf 26072 . . . . . . . . . 10 𝑅:ℝ+⟶ℝ
7574ffvelrni 6848 . . . . . . . . 9 ((𝑍 / 𝑛) ∈ ℝ+ → (𝑅‘(𝑍 / 𝑛)) ∈ ℝ)
7673, 75syl 17 . . . . . . . 8 ((𝜑𝑛𝑂) → (𝑅‘(𝑍 / 𝑛)) ∈ ℝ)
7776, 71rerpdivcld 12457 . . . . . . 7 ((𝜑𝑛𝑂) → ((𝑅‘(𝑍 / 𝑛)) / 𝑍) ∈ ℝ)
7877recnd 10663 . . . . . 6 ((𝜑𝑛𝑂) → ((𝑅‘(𝑍 / 𝑛)) / 𝑍) ∈ ℂ)
7978abscld 14791 . . . . 5 ((𝜑𝑛𝑂) → (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) ∈ ℝ)
8070, 79resubcld 11062 . . . 4 ((𝜑𝑛𝑂) → ((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) ∈ ℝ)
8172relogcld 25138 . . . 4 ((𝜑𝑛𝑂) → (log‘𝑛) ∈ ℝ)
8280, 81remulcld 10665 . . 3 ((𝜑𝑛𝑂) → (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∈ ℝ)
8352, 82fsumrecl 15086 . 2 (𝜑 → Σ𝑛𝑂 (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∈ ℝ)
84 pntlem1.m . . 3 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1)
85 pntlem1.n . . 3 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2))
86 pntlem1.U . . 3 (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑈)
87 pntlem1.K . . 3 (𝜑 → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
88 pntlem1.V . . 3 (𝜑 → (((𝐾𝐽) < 𝑉 ∧ ((1 + (𝐿 · 𝐸)) · 𝑉) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑉[,]((1 + (𝐿 · 𝐸)) · 𝑉))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
891, 2, 3, 4, 5, 6, 7, 8, 9, 10, 23, 24, 25, 26, 27, 84, 85, 86, 87, 50, 44, 88, 56, 37pntlemr 26111 . 2 (𝜑 → ((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ≤ ((♯‘𝐼) · ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)))))
9048recnd 10663 . . . . 5 (𝜑 → ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) ∈ ℂ)
91 fsumconst 15140 . . . . 5 ((𝐼 ∈ Fin ∧ ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) ∈ ℂ) → Σ𝑛𝐼 ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) = ((♯‘𝐼) · ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)))))
9239, 90, 91syl2anc 584 . . . 4 (𝜑 → Σ𝑛𝐼 ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) = ((♯‘𝐼) · ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)))))
931, 2, 3, 4, 5, 6, 7, 8, 9, 10, 23, 24, 25, 26, 27, 84, 85, 86, 87, 50, 44, 88, 56, 37pntlemq 26110 . . . . 5 (𝜑𝐼𝑂)
9490ralrimivw 3188 . . . . 5 (𝜑 → ∀𝑛𝐼 ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) ∈ ℂ)
9552olcd 872 . . . . 5 (𝜑 → (𝑂 ⊆ (ℤ‘1) ∨ 𝑂 ∈ Fin))
96 sumss2 15078 . . . . 5 (((𝐼𝑂 ∧ ∀𝑛𝐼 ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) ∈ ℂ) ∧ (𝑂 ⊆ (ℤ‘1) ∨ 𝑂 ∈ Fin)) → Σ𝑛𝐼 ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) = Σ𝑛𝑂 if(𝑛𝐼, ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))), 0))
9793, 94, 95, 96syl21anc 835 . . . 4 (𝜑 → Σ𝑛𝐼 ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) = Σ𝑛𝑂 if(𝑛𝐼, ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))), 0))
9892, 97eqtr3d 2863 . . 3 (𝜑 → ((♯‘𝐼) · ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)))) = Σ𝑛𝑂 if(𝑛𝐼, ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))), 0))
9948adantr 481 . . . . . 6 ((𝜑𝑛𝐼) → ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) ∈ ℝ)
10099adantlr 711 . . . . 5 (((𝜑𝑛𝑂) ∧ 𝑛𝐼) → ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) ∈ ℝ)
101 0red 10638 . . . . 5 (((𝜑𝑛𝑂) ∧ ¬ 𝑛𝐼) → 0 ∈ ℝ)
102100, 101ifclda 4504 . . . 4 ((𝜑𝑛𝑂) → if(𝑛𝐼, ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))), 0) ∈ ℝ)
103 breq1 5066 . . . . 5 (((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) = if(𝑛𝐼, ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))), 0) → (((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) ≤ (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ↔ if(𝑛𝐼, ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))), 0) ≤ (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))))
104 breq1 5066 . . . . 5 (0 = if(𝑛𝐼, ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))), 0) → (0 ≤ (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ↔ if(𝑛𝐼, ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))), 0) ≤ (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))))
10513rpregt0d 12432 . . . . . . . . . 10 (𝜑 → ((𝑈𝐸) ∈ ℝ ∧ 0 < (𝑈𝐸)))
106105adantr 481 . . . . . . . . 9 ((𝜑𝑛𝐼) → ((𝑈𝐸) ∈ ℝ ∧ 0 < (𝑈𝐸)))
107106simpld 495 . . . . . . . 8 ((𝜑𝑛𝐼) → (𝑈𝐸) ∈ ℝ)
108 1rp 12388 . . . . . . . . . . . . . . . . 17 1 ∈ ℝ+
109 rpaddcl 12406 . . . . . . . . . . . . . . . . 17 ((1 ∈ ℝ+ ∧ (𝐿 · 𝐸) ∈ ℝ+) → (1 + (𝐿 · 𝐸)) ∈ ℝ+)
110108, 17, 109sylancr 587 . . . . . . . . . . . . . . . 16 (𝜑 → (1 + (𝐿 · 𝐸)) ∈ ℝ+)
111110, 44rpmulcld 12442 . . . . . . . . . . . . . . 15 (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑉) ∈ ℝ+)
11229, 111rpdivcld 12443 . . . . . . . . . . . . . 14 (𝜑 → (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ∈ ℝ+)
113112rprege0d 12433 . . . . . . . . . . . . 13 (𝜑 → ((𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ∈ ℝ ∧ 0 ≤ (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))))
114 flge0nn0 13185 . . . . . . . . . . . . 13 (((𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ∈ ℝ ∧ 0 ≤ (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) → (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) ∈ ℕ0)
115 nn0p1nn 11930 . . . . . . . . . . . . 13 ((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) ∈ ℕ0 → ((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1) ∈ ℕ)
116113, 114, 1153syl 18 . . . . . . . . . . . 12 (𝜑 → ((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1) ∈ ℕ)
117 elfzuz 12899 . . . . . . . . . . . . 13 (𝑛 ∈ (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)...(⌊‘(𝑍 / 𝑉))) → 𝑛 ∈ (ℤ‘((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)))
118117, 37eleq2s 2936 . . . . . . . . . . . 12 (𝑛𝐼𝑛 ∈ (ℤ‘((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)))
119 eluznn 12312 . . . . . . . . . . . 12 ((((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1) ∈ ℕ ∧ 𝑛 ∈ (ℤ‘((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1))) → 𝑛 ∈ ℕ)
120116, 118, 119syl2an 595 . . . . . . . . . . 11 ((𝜑𝑛𝐼) → 𝑛 ∈ ℕ)
121120nnrpd 12424 . . . . . . . . . 10 ((𝜑𝑛𝐼) → 𝑛 ∈ ℝ+)
122121relogcld 25138 . . . . . . . . 9 ((𝜑𝑛𝐼) → (log‘𝑛) ∈ ℝ)
123122, 120nndivred 11685 . . . . . . . 8 ((𝜑𝑛𝐼) → ((log‘𝑛) / 𝑛) ∈ ℝ)
124107, 123remulcld 10665 . . . . . . 7 ((𝜑𝑛𝐼) → ((𝑈𝐸) · ((log‘𝑛) / 𝑛)) ∈ ℝ)
12593sselda 3971 . . . . . . . 8 ((𝜑𝑛𝐼) → 𝑛𝑂)
126125, 82syldan 591 . . . . . . 7 ((𝜑𝑛𝐼) → (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∈ ℝ)
127 simpr 485 . . . . . . . . . . . 12 ((𝜑𝑛𝐼) → 𝑛𝐼)
128127, 37syl6eleq 2928 . . . . . . . . . . 11 ((𝜑𝑛𝐼) → 𝑛 ∈ (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)...(⌊‘(𝑍 / 𝑉))))
129 elfzle2 12906 . . . . . . . . . . 11 (𝑛 ∈ (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)...(⌊‘(𝑍 / 𝑉))) → 𝑛 ≤ (⌊‘(𝑍 / 𝑉)))
130128, 129syl 17 . . . . . . . . . 10 ((𝜑𝑛𝐼) → 𝑛 ≤ (⌊‘(𝑍 / 𝑉)))
13145rpred 12426 . . . . . . . . . . . 12 (𝜑 → (𝑍 / 𝑉) ∈ ℝ)
132131adantr 481 . . . . . . . . . . 11 ((𝜑𝑛𝐼) → (𝑍 / 𝑉) ∈ ℝ)
133 elfzelz 12903 . . . . . . . . . . . 12 (𝑛 ∈ (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)...(⌊‘(𝑍 / 𝑉))) → 𝑛 ∈ ℤ)
134128, 133syl 17 . . . . . . . . . . 11 ((𝜑𝑛𝐼) → 𝑛 ∈ ℤ)
135 flge 13170 . . . . . . . . . . 11 (((𝑍 / 𝑉) ∈ ℝ ∧ 𝑛 ∈ ℤ) → (𝑛 ≤ (𝑍 / 𝑉) ↔ 𝑛 ≤ (⌊‘(𝑍 / 𝑉))))
136132, 134, 135syl2anc 584 . . . . . . . . . 10 ((𝜑𝑛𝐼) → (𝑛 ≤ (𝑍 / 𝑉) ↔ 𝑛 ≤ (⌊‘(𝑍 / 𝑉))))
137130, 136mpbird 258 . . . . . . . . 9 ((𝜑𝑛𝐼) → 𝑛 ≤ (𝑍 / 𝑉))
138120nnred 11647 . . . . . . . . . 10 ((𝜑𝑛𝐼) → 𝑛 ∈ ℝ)
139 ere 15437 . . . . . . . . . . . 12 e ∈ ℝ
140139a1i 11 . . . . . . . . . . 11 ((𝜑𝑛𝐼) → e ∈ ℝ)
141112rpred 12426 . . . . . . . . . . . 12 (𝜑 → (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ∈ ℝ)
142141adantr 481 . . . . . . . . . . 11 ((𝜑𝑛𝐼) → (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ∈ ℝ)
143139a1i 11 . . . . . . . . . . . . 13 (𝜑 → e ∈ ℝ)
14429rpsqrtcld 14766 . . . . . . . . . . . . . 14 (𝜑 → (√‘𝑍) ∈ ℝ+)
145144rpred 12426 . . . . . . . . . . . . 13 (𝜑 → (√‘𝑍) ∈ ℝ)
14631simp2d 1137 . . . . . . . . . . . . 13 (𝜑 → e ≤ (√‘𝑍))
147111rpred 12426 . . . . . . . . . . . . . . . . 17 (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑉) ∈ ℝ)
14860rpred 12426 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐾↑(𝐽 + 1)) ∈ ℝ)
14988simpld 495 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝐾𝐽) < 𝑉 ∧ ((1 + (𝐿 · 𝐸)) · 𝑉) < (𝐾 · (𝐾𝐽))))
150149simprd 496 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑉) < (𝐾 · (𝐾𝐽)))
15155rpcnd 12428 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐾 ∈ ℂ)
15255, 58rpexpcld 13603 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝐾𝐽) ∈ ℝ+)
153152rpcnd 12428 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐾𝐽) ∈ ℂ)
154151, 153mulcomd 10656 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐾 · (𝐾𝐽)) = ((𝐾𝐽) · 𝐾))
1551, 2, 3, 4, 5, 6, 7, 8, 9, 10, 23, 24, 25, 26, 27, 84, 85pntlemg 26107 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ𝑀) ∧ (((log‘𝑍) / (log‘𝐾)) / 4) ≤ (𝑁𝑀)))
156155simp1d 1136 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑀 ∈ ℕ)
157 elfzouz 13037 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐽 ∈ (𝑀..^𝑁) → 𝐽 ∈ (ℤ𝑀))
15856, 157syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐽 ∈ (ℤ𝑀))
159 eluznn 12312 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑀 ∈ ℕ ∧ 𝐽 ∈ (ℤ𝑀)) → 𝐽 ∈ ℕ)
160156, 158, 159syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐽 ∈ ℕ)
161160nnnn0d 11949 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐽 ∈ ℕ0)
162151, 161expp1d 13506 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐾↑(𝐽 + 1)) = ((𝐾𝐽) · 𝐾))
163154, 162eqtr4d 2864 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐾 · (𝐾𝐽)) = (𝐾↑(𝐽 + 1)))
164150, 163breqtrd 5089 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑉) < (𝐾↑(𝐽 + 1)))
165147, 148, 164ltled 10782 . . . . . . . . . . . . . . . . 17 (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑉) ≤ (𝐾↑(𝐽 + 1)))
166 fzofzp1 13129 . . . . . . . . . . . . . . . . . . . 20 (𝐽 ∈ (𝑀..^𝑁) → (𝐽 + 1) ∈ (𝑀...𝑁))
16756, 166syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐽 + 1) ∈ (𝑀...𝑁))
1681, 2, 3, 4, 5, 6, 7, 8, 9, 10, 23, 24, 25, 26, 27, 84, 85pntlemh 26108 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝐽 + 1) ∈ (𝑀...𝑁)) → (𝑋 < (𝐾↑(𝐽 + 1)) ∧ (𝐾↑(𝐽 + 1)) ≤ (√‘𝑍)))
169167, 168mpdan 683 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑋 < (𝐾↑(𝐽 + 1)) ∧ (𝐾↑(𝐽 + 1)) ≤ (√‘𝑍)))
170169simprd 496 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐾↑(𝐽 + 1)) ≤ (√‘𝑍))
171147, 148, 145, 165, 170letrd 10791 . . . . . . . . . . . . . . . 16 (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑉) ≤ (√‘𝑍))
172147, 145, 144lemul2d 12470 . . . . . . . . . . . . . . . 16 (𝜑 → (((1 + (𝐿 · 𝐸)) · 𝑉) ≤ (√‘𝑍) ↔ ((√‘𝑍) · ((1 + (𝐿 · 𝐸)) · 𝑉)) ≤ ((√‘𝑍) · (√‘𝑍))))
173171, 172mpbid 233 . . . . . . . . . . . . . . 15 (𝜑 → ((√‘𝑍) · ((1 + (𝐿 · 𝐸)) · 𝑉)) ≤ ((√‘𝑍) · (√‘𝑍)))
17429rprege0d 12433 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑍 ∈ ℝ ∧ 0 ≤ 𝑍))
175 remsqsqrt 14611 . . . . . . . . . . . . . . . 16 ((𝑍 ∈ ℝ ∧ 0 ≤ 𝑍) → ((√‘𝑍) · (√‘𝑍)) = 𝑍)
176174, 175syl 17 . . . . . . . . . . . . . . 15 (𝜑 → ((√‘𝑍) · (√‘𝑍)) = 𝑍)
177173, 176breqtrd 5089 . . . . . . . . . . . . . 14 (𝜑 → ((√‘𝑍) · ((1 + (𝐿 · 𝐸)) · 𝑉)) ≤ 𝑍)
178145, 30, 111lemuldivd 12475 . . . . . . . . . . . . . 14 (𝜑 → (((√‘𝑍) · ((1 + (𝐿 · 𝐸)) · 𝑉)) ≤ 𝑍 ↔ (√‘𝑍) ≤ (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))))
179177, 178mpbid 233 . . . . . . . . . . . . 13 (𝜑 → (√‘𝑍) ≤ (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))
180143, 145, 141, 146, 179letrd 10791 . . . . . . . . . . . 12 (𝜑 → e ≤ (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))
181180adantr 481 . . . . . . . . . . 11 ((𝜑𝑛𝐼) → e ≤ (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))
182 reflcl 13161 . . . . . . . . . . . . . 14 ((𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ∈ ℝ → (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) ∈ ℝ)
183 peano2re 10807 . . . . . . . . . . . . . 14 ((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) ∈ ℝ → ((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1) ∈ ℝ)
184141, 182, 1833syl 18 . . . . . . . . . . . . 13 (𝜑 → ((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1) ∈ ℝ)
185184adantr 481 . . . . . . . . . . . 12 ((𝜑𝑛𝐼) → ((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1) ∈ ℝ)
186 fllep1 13166 . . . . . . . . . . . . 13 ((𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ∈ ℝ → (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ≤ ((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1))
187142, 186syl 17 . . . . . . . . . . . 12 ((𝜑𝑛𝐼) → (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ≤ ((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1))
188 elfzle1 12905 . . . . . . . . . . . . 13 (𝑛 ∈ (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)...(⌊‘(𝑍 / 𝑉))) → ((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1) ≤ 𝑛)
189128, 188syl 17 . . . . . . . . . . . 12 ((𝜑𝑛𝐼) → ((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1) ≤ 𝑛)
190142, 185, 138, 187, 189letrd 10791 . . . . . . . . . . 11 ((𝜑𝑛𝐼) → (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ≤ 𝑛)
191140, 142, 138, 181, 190letrd 10791 . . . . . . . . . 10 ((𝜑𝑛𝐼) → e ≤ 𝑛)
192140, 138, 132, 191, 137letrd 10791 . . . . . . . . . 10 ((𝜑𝑛𝐼) → e ≤ (𝑍 / 𝑉))
193 logdivle 25137 . . . . . . . . . 10 (((𝑛 ∈ ℝ ∧ e ≤ 𝑛) ∧ ((𝑍 / 𝑉) ∈ ℝ ∧ e ≤ (𝑍 / 𝑉))) → (𝑛 ≤ (𝑍 / 𝑉) ↔ ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)) ≤ ((log‘𝑛) / 𝑛)))
194138, 191, 132, 192, 193syl22anc 836 . . . . . . . . 9 ((𝜑𝑛𝐼) → (𝑛 ≤ (𝑍 / 𝑉) ↔ ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)) ≤ ((log‘𝑛) / 𝑛)))
195137, 194mpbid 233 . . . . . . . 8 ((𝜑𝑛𝐼) → ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)) ≤ ((log‘𝑛) / 𝑛))
19647adantr 481 . . . . . . . . 9 ((𝜑𝑛𝐼) → ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)) ∈ ℝ)
197 lemul2 11487 . . . . . . . . 9 ((((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)) ∈ ℝ ∧ ((log‘𝑛) / 𝑛) ∈ ℝ ∧ ((𝑈𝐸) ∈ ℝ ∧ 0 < (𝑈𝐸))) → (((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)) ≤ ((log‘𝑛) / 𝑛) ↔ ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) ≤ ((𝑈𝐸) · ((log‘𝑛) / 𝑛))))
198196, 123, 106, 197syl3anc 1365 . . . . . . . 8 ((𝜑𝑛𝐼) → (((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)) ≤ ((log‘𝑛) / 𝑛) ↔ ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) ≤ ((𝑈𝐸) · ((log‘𝑛) / 𝑛))))
199195, 198mpbid 233 . . . . . . 7 ((𝜑𝑛𝐼) → ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) ≤ ((𝑈𝐸) · ((log‘𝑛) / 𝑛)))
20013rpcnd 12428 . . . . . . . . . . 11 (𝜑 → (𝑈𝐸) ∈ ℂ)
201200adantr 481 . . . . . . . . . 10 ((𝜑𝑛𝐼) → (𝑈𝐸) ∈ ℂ)
202122recnd 10663 . . . . . . . . . 10 ((𝜑𝑛𝐼) → (log‘𝑛) ∈ ℂ)
203121rpcnne0d 12435 . . . . . . . . . 10 ((𝜑𝑛𝐼) → (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0))
204 div23 11311 . . . . . . . . . 10 (((𝑈𝐸) ∈ ℂ ∧ (log‘𝑛) ∈ ℂ ∧ (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0)) → (((𝑈𝐸) · (log‘𝑛)) / 𝑛) = (((𝑈𝐸) / 𝑛) · (log‘𝑛)))
205201, 202, 203, 204syl3anc 1365 . . . . . . . . 9 ((𝜑𝑛𝐼) → (((𝑈𝐸) · (log‘𝑛)) / 𝑛) = (((𝑈𝐸) / 𝑛) · (log‘𝑛)))
206 divass 11310 . . . . . . . . . 10 (((𝑈𝐸) ∈ ℂ ∧ (log‘𝑛) ∈ ℂ ∧ (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0)) → (((𝑈𝐸) · (log‘𝑛)) / 𝑛) = ((𝑈𝐸) · ((log‘𝑛) / 𝑛)))
207201, 202, 203, 206syl3anc 1365 . . . . . . . . 9 ((𝜑𝑛𝐼) → (((𝑈𝐸) · (log‘𝑛)) / 𝑛) = ((𝑈𝐸) · ((log‘𝑛) / 𝑛)))
208205, 207eqtr3d 2863 . . . . . . . 8 ((𝜑𝑛𝐼) → (((𝑈𝐸) / 𝑛) · (log‘𝑛)) = ((𝑈𝐸) · ((log‘𝑛) / 𝑛)))
20943adantr 481 . . . . . . . . . 10 ((𝜑𝑛𝐼) → (𝑈𝐸) ∈ ℝ)
210209, 120nndivred 11685 . . . . . . . . 9 ((𝜑𝑛𝐼) → ((𝑈𝐸) / 𝑛) ∈ ℝ)
211125, 80syldan 591 . . . . . . . . 9 ((𝜑𝑛𝐼) → ((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) ∈ ℝ)
212 log1 25101 . . . . . . . . . 10 (log‘1) = 0
213120nnge1d 11679 . . . . . . . . . . 11 ((𝜑𝑛𝐼) → 1 ≤ 𝑛)
214 logleb 25118 . . . . . . . . . . . 12 ((1 ∈ ℝ+𝑛 ∈ ℝ+) → (1 ≤ 𝑛 ↔ (log‘1) ≤ (log‘𝑛)))
215108, 121, 214sylancr 587 . . . . . . . . . . 11 ((𝜑𝑛𝐼) → (1 ≤ 𝑛 ↔ (log‘1) ≤ (log‘𝑛)))
216213, 215mpbid 233 . . . . . . . . . 10 ((𝜑𝑛𝐼) → (log‘1) ≤ (log‘𝑛))
217212, 216eqbrtrrid 5099 . . . . . . . . 9 ((𝜑𝑛𝐼) → 0 ≤ (log‘𝑛))
2187rpcnd 12428 . . . . . . . . . . . 12 (𝜑𝑈 ∈ ℂ)
219218adantr 481 . . . . . . . . . . 11 ((𝜑𝑛𝐼) → 𝑈 ∈ ℂ)
22016rpred 12426 . . . . . . . . . . . . 13 (𝜑𝐸 ∈ ℝ)
221220adantr 481 . . . . . . . . . . . 12 ((𝜑𝑛𝐼) → 𝐸 ∈ ℝ)
222221recnd 10663 . . . . . . . . . . 11 ((𝜑𝑛𝐼) → 𝐸 ∈ ℂ)
223 divsubdir 11328 . . . . . . . . . . 11 ((𝑈 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0)) → ((𝑈𝐸) / 𝑛) = ((𝑈 / 𝑛) − (𝐸 / 𝑛)))
224219, 222, 203, 223syl3anc 1365 . . . . . . . . . 10 ((𝜑𝑛𝐼) → ((𝑈𝐸) / 𝑛) = ((𝑈 / 𝑛) − (𝐸 / 𝑛)))
225125, 79syldan 591 . . . . . . . . . . 11 ((𝜑𝑛𝐼) → (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) ∈ ℝ)
226221, 120nndivred 11685 . . . . . . . . . . 11 ((𝜑𝑛𝐼) → (𝐸 / 𝑛) ∈ ℝ)
227125, 70syldan 591 . . . . . . . . . . 11 ((𝜑𝑛𝐼) → (𝑈 / 𝑛) ∈ ℝ)
228125, 76syldan 591 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛𝐼) → (𝑅‘(𝑍 / 𝑛)) ∈ ℝ)
229228recnd 10663 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛𝐼) → (𝑅‘(𝑍 / 𝑛)) ∈ ℂ)
23029adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛𝐼) → 𝑍 ∈ ℝ+)
231230rpcnne0d 12435 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛𝐼) → (𝑍 ∈ ℂ ∧ 𝑍 ≠ 0))
232 divdiv2 11346 . . . . . . . . . . . . . . . . 17 (((𝑅‘(𝑍 / 𝑛)) ∈ ℂ ∧ (𝑍 ∈ ℂ ∧ 𝑍 ≠ 0) ∧ (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0)) → ((𝑅‘(𝑍 / 𝑛)) / (𝑍 / 𝑛)) = (((𝑅‘(𝑍 / 𝑛)) · 𝑛) / 𝑍))
233229, 231, 203, 232syl3anc 1365 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝐼) → ((𝑅‘(𝑍 / 𝑛)) / (𝑍 / 𝑛)) = (((𝑅‘(𝑍 / 𝑛)) · 𝑛) / 𝑍))
234121rpcnd 12428 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛𝐼) → 𝑛 ∈ ℂ)
235 div23 11311 . . . . . . . . . . . . . . . . 17 (((𝑅‘(𝑍 / 𝑛)) ∈ ℂ ∧ 𝑛 ∈ ℂ ∧ (𝑍 ∈ ℂ ∧ 𝑍 ≠ 0)) → (((𝑅‘(𝑍 / 𝑛)) · 𝑛) / 𝑍) = (((𝑅‘(𝑍 / 𝑛)) / 𝑍) · 𝑛))
236229, 234, 231, 235syl3anc 1365 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝐼) → (((𝑅‘(𝑍 / 𝑛)) · 𝑛) / 𝑍) = (((𝑅‘(𝑍 / 𝑛)) / 𝑍) · 𝑛))
237233, 236eqtrd 2861 . . . . . . . . . . . . . . 15 ((𝜑𝑛𝐼) → ((𝑅‘(𝑍 / 𝑛)) / (𝑍 / 𝑛)) = (((𝑅‘(𝑍 / 𝑛)) / 𝑍) · 𝑛))
238237fveq2d 6673 . . . . . . . . . . . . . 14 ((𝜑𝑛𝐼) → (abs‘((𝑅‘(𝑍 / 𝑛)) / (𝑍 / 𝑛))) = (abs‘(((𝑅‘(𝑍 / 𝑛)) / 𝑍) · 𝑛)))
239125, 78syldan 591 . . . . . . . . . . . . . . 15 ((𝜑𝑛𝐼) → ((𝑅‘(𝑍 / 𝑛)) / 𝑍) ∈ ℂ)
240239, 234absmuld 14809 . . . . . . . . . . . . . 14 ((𝜑𝑛𝐼) → (abs‘(((𝑅‘(𝑍 / 𝑛)) / 𝑍) · 𝑛)) = ((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (abs‘𝑛)))
241121rprege0d 12433 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝐼) → (𝑛 ∈ ℝ ∧ 0 ≤ 𝑛))
242 absid 14651 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℝ ∧ 0 ≤ 𝑛) → (abs‘𝑛) = 𝑛)
243241, 242syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑛𝐼) → (abs‘𝑛) = 𝑛)
244243oveq2d 7166 . . . . . . . . . . . . . 14 ((𝜑𝑛𝐼) → ((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (abs‘𝑛)) = ((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · 𝑛))
245238, 240, 2443eqtrd 2865 . . . . . . . . . . . . 13 ((𝜑𝑛𝐼) → (abs‘((𝑅‘(𝑍 / 𝑛)) / (𝑍 / 𝑛))) = ((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · 𝑛))
246 fveq2 6669 . . . . . . . . . . . . . . . . 17 (𝑢 = (𝑍 / 𝑛) → (𝑅𝑢) = (𝑅‘(𝑍 / 𝑛)))
247 id 22 . . . . . . . . . . . . . . . . 17 (𝑢 = (𝑍 / 𝑛) → 𝑢 = (𝑍 / 𝑛))
248246, 247oveq12d 7168 . . . . . . . . . . . . . . . 16 (𝑢 = (𝑍 / 𝑛) → ((𝑅𝑢) / 𝑢) = ((𝑅‘(𝑍 / 𝑛)) / (𝑍 / 𝑛)))
249248fveq2d 6673 . . . . . . . . . . . . . . 15 (𝑢 = (𝑍 / 𝑛) → (abs‘((𝑅𝑢) / 𝑢)) = (abs‘((𝑅‘(𝑍 / 𝑛)) / (𝑍 / 𝑛))))
250249breq1d 5073 . . . . . . . . . . . . . 14 (𝑢 = (𝑍 / 𝑛) → ((abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸 ↔ (abs‘((𝑅‘(𝑍 / 𝑛)) / (𝑍 / 𝑛))) ≤ 𝐸))
25188simprd 496 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑢 ∈ (𝑉[,]((1 + (𝐿 · 𝐸)) · 𝑉))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)
252251adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑛𝐼) → ∀𝑢 ∈ (𝑉[,]((1 + (𝐿 · 𝐸)) · 𝑉))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)
25330adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝐼) → 𝑍 ∈ ℝ)
254253, 120nndivred 11685 . . . . . . . . . . . . . . 15 ((𝜑𝑛𝐼) → (𝑍 / 𝑛) ∈ ℝ)
25544rpregt0d 12432 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑉 ∈ ℝ ∧ 0 < 𝑉))
256255adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛𝐼) → (𝑉 ∈ ℝ ∧ 0 < 𝑉))
257 lemuldiv2 11515 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℝ ∧ 𝑍 ∈ ℝ ∧ (𝑉 ∈ ℝ ∧ 0 < 𝑉)) → ((𝑉 · 𝑛) ≤ 𝑍𝑛 ≤ (𝑍 / 𝑉)))
258138, 253, 256, 257syl3anc 1365 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛𝐼) → ((𝑉 · 𝑛) ≤ 𝑍𝑛 ≤ (𝑍 / 𝑉)))
259137, 258mpbird 258 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝐼) → (𝑉 · 𝑛) ≤ 𝑍)
260256simpld 495 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛𝐼) → 𝑉 ∈ ℝ)
261260, 253, 121lemuldivd 12475 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝐼) → ((𝑉 · 𝑛) ≤ 𝑍𝑉 ≤ (𝑍 / 𝑛)))
262259, 261mpbid 233 . . . . . . . . . . . . . . 15 ((𝜑𝑛𝐼) → 𝑉 ≤ (𝑍 / 𝑛))
263111rpregt0d 12432 . . . . . . . . . . . . . . . . . 18 (𝜑 → (((1 + (𝐿 · 𝐸)) · 𝑉) ∈ ℝ ∧ 0 < ((1 + (𝐿 · 𝐸)) · 𝑉)))
264263adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛𝐼) → (((1 + (𝐿 · 𝐸)) · 𝑉) ∈ ℝ ∧ 0 < ((1 + (𝐿 · 𝐸)) · 𝑉)))
265121rpregt0d 12432 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛𝐼) → (𝑛 ∈ ℝ ∧ 0 < 𝑛))
266 lediv23 11526 . . . . . . . . . . . . . . . . 17 ((𝑍 ∈ ℝ ∧ (((1 + (𝐿 · 𝐸)) · 𝑉) ∈ ℝ ∧ 0 < ((1 + (𝐿 · 𝐸)) · 𝑉)) ∧ (𝑛 ∈ ℝ ∧ 0 < 𝑛)) → ((𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ≤ 𝑛 ↔ (𝑍 / 𝑛) ≤ ((1 + (𝐿 · 𝐸)) · 𝑉)))
267253, 264, 265, 266syl3anc 1365 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝐼) → ((𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ≤ 𝑛 ↔ (𝑍 / 𝑛) ≤ ((1 + (𝐿 · 𝐸)) · 𝑉)))
268190, 267mpbid 233 . . . . . . . . . . . . . . 15 ((𝜑𝑛𝐼) → (𝑍 / 𝑛) ≤ ((1 + (𝐿 · 𝐸)) · 𝑉))
26944rpred 12426 . . . . . . . . . . . . . . . . 17 (𝜑𝑉 ∈ ℝ)
270269adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝐼) → 𝑉 ∈ ℝ)
271147adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝐼) → ((1 + (𝐿 · 𝐸)) · 𝑉) ∈ ℝ)
272 elicc2 12796 . . . . . . . . . . . . . . . 16 ((𝑉 ∈ ℝ ∧ ((1 + (𝐿 · 𝐸)) · 𝑉) ∈ ℝ) → ((𝑍 / 𝑛) ∈ (𝑉[,]((1 + (𝐿 · 𝐸)) · 𝑉)) ↔ ((𝑍 / 𝑛) ∈ ℝ ∧ 𝑉 ≤ (𝑍 / 𝑛) ∧ (𝑍 / 𝑛) ≤ ((1 + (𝐿 · 𝐸)) · 𝑉))))
273270, 271, 272syl2anc 584 . . . . . . . . . . . . . . 15 ((𝜑𝑛𝐼) → ((𝑍 / 𝑛) ∈ (𝑉[,]((1 + (𝐿 · 𝐸)) · 𝑉)) ↔ ((𝑍 / 𝑛) ∈ ℝ ∧ 𝑉 ≤ (𝑍 / 𝑛) ∧ (𝑍 / 𝑛) ≤ ((1 + (𝐿 · 𝐸)) · 𝑉))))
274254, 262, 268, 273mpbir3and 1336 . . . . . . . . . . . . . 14 ((𝜑𝑛𝐼) → (𝑍 / 𝑛) ∈ (𝑉[,]((1 + (𝐿 · 𝐸)) · 𝑉)))
275250, 252, 274rspcdva 3629 . . . . . . . . . . . . 13 ((𝜑𝑛𝐼) → (abs‘((𝑅‘(𝑍 / 𝑛)) / (𝑍 / 𝑛))) ≤ 𝐸)
276245, 275eqbrtrrd 5087 . . . . . . . . . . . 12 ((𝜑𝑛𝐼) → ((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · 𝑛) ≤ 𝐸)
277225, 221, 121lemuldivd 12475 . . . . . . . . . . . 12 ((𝜑𝑛𝐼) → (((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · 𝑛) ≤ 𝐸 ↔ (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) ≤ (𝐸 / 𝑛)))
278276, 277mpbid 233 . . . . . . . . . . 11 ((𝜑𝑛𝐼) → (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) ≤ (𝐸 / 𝑛))
279225, 226, 227, 278lesub2dd 11251 . . . . . . . . . 10 ((𝜑𝑛𝐼) → ((𝑈 / 𝑛) − (𝐸 / 𝑛)) ≤ ((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))))
280224, 279eqbrtrd 5085 . . . . . . . . 9 ((𝜑𝑛𝐼) → ((𝑈𝐸) / 𝑛) ≤ ((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))))
281210, 211, 122, 217, 280lemul1ad 11573 . . . . . . . 8 ((𝜑𝑛𝐼) → (((𝑈𝐸) / 𝑛) · (log‘𝑛)) ≤ (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
282208, 281eqbrtrrd 5087 . . . . . . 7 ((𝜑𝑛𝐼) → ((𝑈𝐸) · ((log‘𝑛) / 𝑛)) ≤ (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
28399, 124, 126, 199, 282letrd 10791 . . . . . 6 ((𝜑𝑛𝐼) → ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) ≤ (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
284283adantlr 711 . . . . 5 (((𝜑𝑛𝑂) ∧ 𝑛𝐼) → ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) ≤ (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
28569nnred 11647 . . . . . . . . 9 ((𝜑𝑛𝑂) → 𝑛 ∈ ℝ)
28629, 152rpdivcld 12443 . . . . . . . . . . 11 (𝜑 → (𝑍 / (𝐾𝐽)) ∈ ℝ+)
287286rpred 12426 . . . . . . . . . 10 (𝜑 → (𝑍 / (𝐾𝐽)) ∈ ℝ)
288287adantr 481 . . . . . . . . 9 ((𝜑𝑛𝑂) → (𝑍 / (𝐾𝐽)) ∈ ℝ)
28923simpld 495 . . . . . . . . . . . 12 (𝜑𝑌 ∈ ℝ+)
29029, 289rpdivcld 12443 . . . . . . . . . . 11 (𝜑 → (𝑍 / 𝑌) ∈ ℝ+)
291290rpred 12426 . . . . . . . . . 10 (𝜑 → (𝑍 / 𝑌) ∈ ℝ)
292291adantr 481 . . . . . . . . 9 ((𝜑𝑛𝑂) → (𝑍 / 𝑌) ∈ ℝ)
293 simpr 485 . . . . . . . . . . . 12 ((𝜑𝑛𝑂) → 𝑛𝑂)
294293, 50syl6eleq 2928 . . . . . . . . . . 11 ((𝜑𝑛𝑂) → 𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝐽)))))
295 elfzle2 12906 . . . . . . . . . . 11 (𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝐽)))) → 𝑛 ≤ (⌊‘(𝑍 / (𝐾𝐽))))
296294, 295syl 17 . . . . . . . . . 10 ((𝜑𝑛𝑂) → 𝑛 ≤ (⌊‘(𝑍 / (𝐾𝐽))))
29769nnzd 12080 . . . . . . . . . . 11 ((𝜑𝑛𝑂) → 𝑛 ∈ ℤ)
298 flge 13170 . . . . . . . . . . 11 (((𝑍 / (𝐾𝐽)) ∈ ℝ ∧ 𝑛 ∈ ℤ) → (𝑛 ≤ (𝑍 / (𝐾𝐽)) ↔ 𝑛 ≤ (⌊‘(𝑍 / (𝐾𝐽)))))
299288, 297, 298syl2anc 584 . . . . . . . . . 10 ((𝜑𝑛𝑂) → (𝑛 ≤ (𝑍 / (𝐾𝐽)) ↔ 𝑛 ≤ (⌊‘(𝑍 / (𝐾𝐽)))))
300296, 299mpbird 258 . . . . . . . . 9 ((𝜑𝑛𝑂) → 𝑛 ≤ (𝑍 / (𝐾𝐽)))
301289rpred 12426 . . . . . . . . . . . 12 (𝜑𝑌 ∈ ℝ)
30224simpld 495 . . . . . . . . . . . . 13 (𝜑𝑋 ∈ ℝ+)
303302rpred 12426 . . . . . . . . . . . 12 (𝜑𝑋 ∈ ℝ)
304152rpred 12426 . . . . . . . . . . . 12 (𝜑 → (𝐾𝐽) ∈ ℝ)
30524simprd 496 . . . . . . . . . . . . 13 (𝜑𝑌 < 𝑋)
306301, 303, 305ltled 10782 . . . . . . . . . . . 12 (𝜑𝑌𝑋)
307 elfzofz 13048 . . . . . . . . . . . . . . . 16 (𝐽 ∈ (𝑀..^𝑁) → 𝐽 ∈ (𝑀...𝑁))
30856, 307syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐽 ∈ (𝑀...𝑁))
3091, 2, 3, 4, 5, 6, 7, 8, 9, 10, 23, 24, 25, 26, 27, 84, 85pntlemh 26108 . . . . . . . . . . . . . . 15 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (𝑋 < (𝐾𝐽) ∧ (𝐾𝐽) ≤ (√‘𝑍)))
310308, 309mpdan 683 . . . . . . . . . . . . . 14 (𝜑 → (𝑋 < (𝐾𝐽) ∧ (𝐾𝐽) ≤ (√‘𝑍)))
311310simpld 495 . . . . . . . . . . . . 13 (𝜑𝑋 < (𝐾𝐽))
312303, 304, 311ltled 10782 . . . . . . . . . . . 12 (𝜑𝑋 ≤ (𝐾𝐽))
313301, 303, 304, 306, 312letrd 10791 . . . . . . . . . . 11 (𝜑𝑌 ≤ (𝐾𝐽))
314289, 152, 29lediv2d 12450 . . . . . . . . . . 11 (𝜑 → (𝑌 ≤ (𝐾𝐽) ↔ (𝑍 / (𝐾𝐽)) ≤ (𝑍 / 𝑌)))
315313, 314mpbid 233 . . . . . . . . . 10 (𝜑 → (𝑍 / (𝐾𝐽)) ≤ (𝑍 / 𝑌))
316315adantr 481 . . . . . . . . 9 ((𝜑𝑛𝑂) → (𝑍 / (𝐾𝐽)) ≤ (𝑍 / 𝑌))
317285, 288, 292, 300, 316letrd 10791 . . . . . . . 8 ((𝜑𝑛𝑂) → 𝑛 ≤ (𝑍 / 𝑌))
31869, 317jca 512 . . . . . . 7 ((𝜑𝑛𝑂) → (𝑛 ∈ ℕ ∧ 𝑛 ≤ (𝑍 / 𝑌)))
3191, 2, 3, 4, 5, 6, 7, 8, 9, 10, 23, 24, 25, 26, 27, 84, 85, 86pntlemn 26109 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛 ≤ (𝑍 / 𝑌))) → 0 ≤ (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
320318, 319syldan 591 . . . . . 6 ((𝜑𝑛𝑂) → 0 ≤ (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
321320adantr 481 . . . . 5 (((𝜑𝑛𝑂) ∧ ¬ 𝑛𝐼) → 0 ≤ (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
322103, 104, 284, 321ifbothda 4507 . . . 4 ((𝜑𝑛𝑂) → if(𝑛𝐼, ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))), 0) ≤ (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
32352, 102, 82, 322fsumle 15149 . . 3 (𝜑 → Σ𝑛𝑂 if(𝑛𝐼, ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))), 0) ≤ Σ𝑛𝑂 (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
32498, 323eqbrtrd 5085 . 2 (𝜑 → ((♯‘𝐼) · ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)))) ≤ Σ𝑛𝑂 (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
32536, 49, 83, 89, 324letrd 10791 1 (𝜑 → ((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ≤ Σ𝑛𝑂 (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  wo 843  w3a 1081   = wceq 1530  wcel 2107  wne 3021  wral 3143  wrex 3144  wss 3940  ifcif 4470   class class class wbr 5063  cmpt 5143  cfv 6354  (class class class)co 7150  Fincfn 8503  cc 10529  cr 10530  0cc0 10531  1c1 10532   + caddc 10534   · cmul 10536  +∞cpnf 10666   < clt 10669  cle 10670  cmin 10864   / cdiv 11291  cn 11632  2c2 11686  3c3 11687  4c4 11688  8c8 11692  0cn0 11891  cz 11975  cdc 12092  cuz 12237  +crp 12384  (,)cioo 12733  [,)cico 12735  [,]cicc 12736  ...cfz 12887  ..^cfzo 13028  cfl 13155  cexp 13424  chash 13685  csqrt 14587  abscabs 14588  Σcsu 15037  expce 15410  eceu 15411  logclog 25070  ψcchp 25603
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609  ax-addf 10610  ax-mulf 10611
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-iin 4920  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-om 7574  df-1st 7685  df-2nd 7686  df-supp 7827  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-2o 8099  df-oadd 8102  df-er 8284  df-map 8403  df-pm 8404  df-ixp 8456  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fsupp 8828  df-fi 8869  df-sup 8900  df-inf 8901  df-oi 8968  df-dju 9324  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-q 12343  df-rp 12385  df-xneg 12502  df-xadd 12503  df-xmul 12504  df-ioo 12737  df-ioc 12738  df-ico 12739  df-icc 12740  df-fz 12888  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13425  df-fac 13629  df-bc 13658  df-hash 13686  df-shft 14421  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-limsup 14823  df-clim 14840  df-rlim 14841  df-sum 15038  df-ef 15416  df-e 15417  df-sin 15418  df-cos 15419  df-pi 15421  df-dvds 15603  df-gcd 15839  df-prm 16011  df-pc 16169  df-struct 16480  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-mulr 16574  df-starv 16575  df-sca 16576  df-vsca 16577  df-ip 16578  df-tset 16579  df-ple 16580  df-ds 16582  df-unif 16583  df-hom 16584  df-cco 16585  df-rest 16691  df-topn 16692  df-0g 16710  df-gsum 16711  df-topgen 16712  df-pt 16713  df-prds 16716  df-xrs 16770  df-qtop 16775  df-imas 16776  df-xps 16778  df-mre 16852  df-mrc 16853  df-acs 16855  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-submnd 17952  df-mulg 18170  df-cntz 18392  df-cmn 18844  df-psmet 20472  df-xmet 20473  df-met 20474  df-bl 20475  df-mopn 20476  df-fbas 20477  df-fg 20478  df-cnfld 20481  df-top 21437  df-topon 21454  df-topsp 21476  df-bases 21489  df-cld 21562  df-ntr 21563  df-cls 21564  df-nei 21641  df-lp 21679  df-perf 21680  df-cn 21770  df-cnp 21771  df-haus 21858  df-tx 22105  df-hmeo 22298  df-fil 22389  df-fm 22481  df-flim 22482  df-flf 22483  df-xms 22864  df-ms 22865  df-tms 22866  df-cncf 23420  df-limc 24398  df-dv 24399  df-log 25072  df-vma 25608  df-chp 25609
This theorem is referenced by:  pntlemi  26113
  Copyright terms: Public domain W3C validator