MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlemj Structured version   Visualization version   GIF version

Theorem pntlemj 27521
Description: Lemma for pnt 27532. The induction step. Using pntibnd 27511, we find an interval in 𝐾𝐽...𝐾↑(𝐽 + 1) which is sufficiently large and has a much smaller value, 𝑅(𝑧) / 𝑧𝐸 (instead of our original bound 𝑅(𝑧) / 𝑧𝑈). (Contributed by Mario Carneiro, 13-Apr-2016.)
Hypotheses
Ref Expression
pntlem1.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntlem1.a (𝜑𝐴 ∈ ℝ+)
pntlem1.b (𝜑𝐵 ∈ ℝ+)
pntlem1.l (𝜑𝐿 ∈ (0(,)1))
pntlem1.d 𝐷 = (𝐴 + 1)
pntlem1.f 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
pntlem1.u (𝜑𝑈 ∈ ℝ+)
pntlem1.u2 (𝜑𝑈𝐴)
pntlem1.e 𝐸 = (𝑈 / 𝐷)
pntlem1.k 𝐾 = (exp‘(𝐵 / 𝐸))
pntlem1.y (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
pntlem1.x (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
pntlem1.c (𝜑𝐶 ∈ ℝ+)
pntlem1.w 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
pntlem1.z (𝜑𝑍 ∈ (𝑊[,)+∞))
pntlem1.m 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1)
pntlem1.n 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2))
pntlem1.U (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑈)
pntlem1.K (𝜑 → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
pntlem1.o 𝑂 = (((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝐽))))
pntlem1.v (𝜑𝑉 ∈ ℝ+)
pntlem1.V (𝜑 → (((𝐾𝐽) < 𝑉 ∧ ((1 + (𝐿 · 𝐸)) · 𝑉) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑉[,]((1 + (𝐿 · 𝐸)) · 𝑉))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
pntlem1.j (𝜑𝐽 ∈ (𝑀..^𝑁))
pntlem1.i 𝐼 = (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)...(⌊‘(𝑍 / 𝑉)))
Assertion
Ref Expression
pntlemj (𝜑 → ((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ≤ Σ𝑛𝑂 (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
Distinct variable groups:   𝑧,𝐶   𝑛,𝐼   𝑦,𝑛,𝑧,𝐽   𝑢,𝑛,𝐿,𝑦,𝑧   𝑛,𝐾,𝑦,𝑧   𝑛,𝑀,𝑧   𝑛,𝑂,𝑧   𝜑,𝑛   𝑛,𝑁,𝑧   𝑅,𝑛,𝑢,𝑦,𝑧   𝑛,𝑉,𝑢   𝑈,𝑛,𝑧   𝑛,𝑊,𝑧   𝑛,𝑋,𝑦,𝑧   𝑛,𝑌,𝑧   𝑛,𝑎,𝑢,𝑦,𝑧,𝐸   𝑛,𝑍,𝑢,𝑧
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑢,𝑎)   𝐴(𝑦,𝑧,𝑢,𝑛,𝑎)   𝐵(𝑦,𝑧,𝑢,𝑛,𝑎)   𝐶(𝑦,𝑢,𝑛,𝑎)   𝐷(𝑦,𝑧,𝑢,𝑛,𝑎)   𝑅(𝑎)   𝑈(𝑦,𝑢,𝑎)   𝐹(𝑦,𝑧,𝑢,𝑛,𝑎)   𝐼(𝑦,𝑧,𝑢,𝑎)   𝐽(𝑢,𝑎)   𝐾(𝑢,𝑎)   𝐿(𝑎)   𝑀(𝑦,𝑢,𝑎)   𝑁(𝑦,𝑢,𝑎)   𝑂(𝑦,𝑢,𝑎)   𝑉(𝑦,𝑧,𝑎)   𝑊(𝑦,𝑢,𝑎)   𝑋(𝑢,𝑎)   𝑌(𝑦,𝑢,𝑎)   𝑍(𝑦,𝑎)

Proof of Theorem pntlemj
StepHypRef Expression
1 pntlem1.r . . . . . . 7 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
2 pntlem1.a . . . . . . 7 (𝜑𝐴 ∈ ℝ+)
3 pntlem1.b . . . . . . 7 (𝜑𝐵 ∈ ℝ+)
4 pntlem1.l . . . . . . 7 (𝜑𝐿 ∈ (0(,)1))
5 pntlem1.d . . . . . . 7 𝐷 = (𝐴 + 1)
6 pntlem1.f . . . . . . 7 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
7 pntlem1.u . . . . . . 7 (𝜑𝑈 ∈ ℝ+)
8 pntlem1.u2 . . . . . . 7 (𝜑𝑈𝐴)
9 pntlem1.e . . . . . . 7 𝐸 = (𝑈 / 𝐷)
10 pntlem1.k . . . . . . 7 𝐾 = (exp‘(𝐵 / 𝐸))
111, 2, 3, 4, 5, 6, 7, 8, 9, 10pntlemc 27513 . . . . . 6 (𝜑 → (𝐸 ∈ ℝ+𝐾 ∈ ℝ+ ∧ (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+)))
1211simp3d 1144 . . . . 5 (𝜑 → (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+))
1312simp3d 1144 . . . 4 (𝜑 → (𝑈𝐸) ∈ ℝ+)
141, 2, 3, 4, 5, 6pntlemd 27512 . . . . . . . 8 (𝜑 → (𝐿 ∈ ℝ+𝐷 ∈ ℝ+𝐹 ∈ ℝ+))
1514simp1d 1142 . . . . . . 7 (𝜑𝐿 ∈ ℝ+)
1611simp1d 1142 . . . . . . 7 (𝜑𝐸 ∈ ℝ+)
1715, 16rpmulcld 13018 . . . . . 6 (𝜑 → (𝐿 · 𝐸) ∈ ℝ+)
18 8nn 12288 . . . . . . 7 8 ∈ ℕ
19 nnrp 12970 . . . . . . 7 (8 ∈ ℕ → 8 ∈ ℝ+)
2018, 19ax-mp 5 . . . . . 6 8 ∈ ℝ+
21 rpdivcl 12985 . . . . . 6 (((𝐿 · 𝐸) ∈ ℝ+ ∧ 8 ∈ ℝ+) → ((𝐿 · 𝐸) / 8) ∈ ℝ+)
2217, 20, 21sylancl 586 . . . . 5 (𝜑 → ((𝐿 · 𝐸) / 8) ∈ ℝ+)
23 pntlem1.y . . . . . . . . 9 (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
24 pntlem1.x . . . . . . . . 9 (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
25 pntlem1.c . . . . . . . . 9 (𝜑𝐶 ∈ ℝ+)
26 pntlem1.w . . . . . . . . 9 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
27 pntlem1.z . . . . . . . . 9 (𝜑𝑍 ∈ (𝑊[,)+∞))
281, 2, 3, 4, 5, 6, 7, 8, 9, 10, 23, 24, 25, 26, 27pntlemb 27515 . . . . . . . 8 (𝜑 → (𝑍 ∈ ℝ+ ∧ (1 < 𝑍 ∧ e ≤ (√‘𝑍) ∧ (√‘𝑍) ≤ (𝑍 / 𝑌)) ∧ ((4 / (𝐿 · 𝐸)) ≤ (√‘𝑍) ∧ (((log‘𝑋) / (log‘𝐾)) + 2) ≤ (((log‘𝑍) / (log‘𝐾)) / 4) ∧ ((𝑈 · 3) + 𝐶) ≤ (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))))
2928simp1d 1142 . . . . . . 7 (𝜑𝑍 ∈ ℝ+)
3029rpred 13002 . . . . . 6 (𝜑𝑍 ∈ ℝ)
3128simp2d 1143 . . . . . . 7 (𝜑 → (1 < 𝑍 ∧ e ≤ (√‘𝑍) ∧ (√‘𝑍) ≤ (𝑍 / 𝑌)))
3231simp1d 1142 . . . . . 6 (𝜑 → 1 < 𝑍)
3330, 32rplogcld 26545 . . . . 5 (𝜑 → (log‘𝑍) ∈ ℝ+)
3422, 33rpmulcld 13018 . . . 4 (𝜑 → (((𝐿 · 𝐸) / 8) · (log‘𝑍)) ∈ ℝ+)
3513, 34rpmulcld 13018 . . 3 (𝜑 → ((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ∈ ℝ+)
3635rpred 13002 . 2 (𝜑 → ((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ∈ ℝ)
37 pntlem1.i . . . . . 6 𝐼 = (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)...(⌊‘(𝑍 / 𝑉)))
38 fzfid 13945 . . . . . 6 (𝜑 → (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)...(⌊‘(𝑍 / 𝑉))) ∈ Fin)
3937, 38eqeltrid 2833 . . . . 5 (𝜑𝐼 ∈ Fin)
40 hashcl 14328 . . . . 5 (𝐼 ∈ Fin → (♯‘𝐼) ∈ ℕ0)
4139, 40syl 17 . . . 4 (𝜑 → (♯‘𝐼) ∈ ℕ0)
4241nn0red 12511 . . 3 (𝜑 → (♯‘𝐼) ∈ ℝ)
4313rpred 13002 . . . 4 (𝜑 → (𝑈𝐸) ∈ ℝ)
44 pntlem1.v . . . . . . 7 (𝜑𝑉 ∈ ℝ+)
4529, 44rpdivcld 13019 . . . . . 6 (𝜑 → (𝑍 / 𝑉) ∈ ℝ+)
4645relogcld 26539 . . . . 5 (𝜑 → (log‘(𝑍 / 𝑉)) ∈ ℝ)
4746, 45rerpdivcld 13033 . . . 4 (𝜑 → ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)) ∈ ℝ)
4843, 47remulcld 11211 . . 3 (𝜑 → ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) ∈ ℝ)
4942, 48remulcld 11211 . 2 (𝜑 → ((♯‘𝐼) · ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)))) ∈ ℝ)
50 pntlem1.o . . . 4 𝑂 = (((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝐽))))
51 fzfid 13945 . . . 4 (𝜑 → (((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝐽)))) ∈ Fin)
5250, 51eqeltrid 2833 . . 3 (𝜑𝑂 ∈ Fin)
537rpred 13002 . . . . . . 7 (𝜑𝑈 ∈ ℝ)
5453adantr 480 . . . . . 6 ((𝜑𝑛𝑂) → 𝑈 ∈ ℝ)
5511simp2d 1143 . . . . . . . . . . 11 (𝜑𝐾 ∈ ℝ+)
56 pntlem1.j . . . . . . . . . . . . 13 (𝜑𝐽 ∈ (𝑀..^𝑁))
57 elfzoelz 13627 . . . . . . . . . . . . 13 (𝐽 ∈ (𝑀..^𝑁) → 𝐽 ∈ ℤ)
5856, 57syl 17 . . . . . . . . . . . 12 (𝜑𝐽 ∈ ℤ)
5958peano2zd 12648 . . . . . . . . . . 11 (𝜑 → (𝐽 + 1) ∈ ℤ)
6055, 59rpexpcld 14219 . . . . . . . . . 10 (𝜑 → (𝐾↑(𝐽 + 1)) ∈ ℝ+)
6129, 60rpdivcld 13019 . . . . . . . . 9 (𝜑 → (𝑍 / (𝐾↑(𝐽 + 1))) ∈ ℝ+)
6261rprege0d 13009 . . . . . . . 8 (𝜑 → ((𝑍 / (𝐾↑(𝐽 + 1))) ∈ ℝ ∧ 0 ≤ (𝑍 / (𝐾↑(𝐽 + 1)))))
63 flge0nn0 13789 . . . . . . . 8 (((𝑍 / (𝐾↑(𝐽 + 1))) ∈ ℝ ∧ 0 ≤ (𝑍 / (𝐾↑(𝐽 + 1)))) → (⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) ∈ ℕ0)
64 nn0p1nn 12488 . . . . . . . 8 ((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) ∈ ℕ0 → ((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1) ∈ ℕ)
6562, 63, 643syl 18 . . . . . . 7 (𝜑 → ((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1) ∈ ℕ)
66 elfzuz 13488 . . . . . . . 8 (𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝐽)))) → 𝑛 ∈ (ℤ‘((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)))
6766, 50eleq2s 2847 . . . . . . 7 (𝑛𝑂𝑛 ∈ (ℤ‘((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)))
68 eluznn 12884 . . . . . . 7 ((((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1) ∈ ℕ ∧ 𝑛 ∈ (ℤ‘((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1))) → 𝑛 ∈ ℕ)
6965, 67, 68syl2an 596 . . . . . 6 ((𝜑𝑛𝑂) → 𝑛 ∈ ℕ)
7054, 69nndivred 12247 . . . . 5 ((𝜑𝑛𝑂) → (𝑈 / 𝑛) ∈ ℝ)
7129adantr 480 . . . . . . . . . 10 ((𝜑𝑛𝑂) → 𝑍 ∈ ℝ+)
7269nnrpd 13000 . . . . . . . . . 10 ((𝜑𝑛𝑂) → 𝑛 ∈ ℝ+)
7371, 72rpdivcld 13019 . . . . . . . . 9 ((𝜑𝑛𝑂) → (𝑍 / 𝑛) ∈ ℝ+)
741pntrf 27481 . . . . . . . . . 10 𝑅:ℝ+⟶ℝ
7574ffvelcdmi 7058 . . . . . . . . 9 ((𝑍 / 𝑛) ∈ ℝ+ → (𝑅‘(𝑍 / 𝑛)) ∈ ℝ)
7673, 75syl 17 . . . . . . . 8 ((𝜑𝑛𝑂) → (𝑅‘(𝑍 / 𝑛)) ∈ ℝ)
7776, 71rerpdivcld 13033 . . . . . . 7 ((𝜑𝑛𝑂) → ((𝑅‘(𝑍 / 𝑛)) / 𝑍) ∈ ℝ)
7877recnd 11209 . . . . . 6 ((𝜑𝑛𝑂) → ((𝑅‘(𝑍 / 𝑛)) / 𝑍) ∈ ℂ)
7978abscld 15412 . . . . 5 ((𝜑𝑛𝑂) → (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) ∈ ℝ)
8070, 79resubcld 11613 . . . 4 ((𝜑𝑛𝑂) → ((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) ∈ ℝ)
8172relogcld 26539 . . . 4 ((𝜑𝑛𝑂) → (log‘𝑛) ∈ ℝ)
8280, 81remulcld 11211 . . 3 ((𝜑𝑛𝑂) → (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∈ ℝ)
8352, 82fsumrecl 15707 . 2 (𝜑 → Σ𝑛𝑂 (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∈ ℝ)
84 pntlem1.m . . 3 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1)
85 pntlem1.n . . 3 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2))
86 pntlem1.U . . 3 (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑈)
87 pntlem1.K . . 3 (𝜑 → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
88 pntlem1.V . . 3 (𝜑 → (((𝐾𝐽) < 𝑉 ∧ ((1 + (𝐿 · 𝐸)) · 𝑉) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑉[,]((1 + (𝐿 · 𝐸)) · 𝑉))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
891, 2, 3, 4, 5, 6, 7, 8, 9, 10, 23, 24, 25, 26, 27, 84, 85, 86, 87, 50, 44, 88, 56, 37pntlemr 27520 . 2 (𝜑 → ((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ≤ ((♯‘𝐼) · ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)))))
9048recnd 11209 . . . . 5 (𝜑 → ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) ∈ ℂ)
91 fsumconst 15763 . . . . 5 ((𝐼 ∈ Fin ∧ ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) ∈ ℂ) → Σ𝑛𝐼 ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) = ((♯‘𝐼) · ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)))))
9239, 90, 91syl2anc 584 . . . 4 (𝜑 → Σ𝑛𝐼 ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) = ((♯‘𝐼) · ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)))))
931, 2, 3, 4, 5, 6, 7, 8, 9, 10, 23, 24, 25, 26, 27, 84, 85, 86, 87, 50, 44, 88, 56, 37pntlemq 27519 . . . . 5 (𝜑𝐼𝑂)
9490ralrimivw 3130 . . . . 5 (𝜑 → ∀𝑛𝐼 ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) ∈ ℂ)
9552olcd 874 . . . . 5 (𝜑 → (𝑂 ⊆ (ℤ‘1) ∨ 𝑂 ∈ Fin))
96 sumss2 15699 . . . . 5 (((𝐼𝑂 ∧ ∀𝑛𝐼 ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) ∈ ℂ) ∧ (𝑂 ⊆ (ℤ‘1) ∨ 𝑂 ∈ Fin)) → Σ𝑛𝐼 ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) = Σ𝑛𝑂 if(𝑛𝐼, ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))), 0))
9793, 94, 95, 96syl21anc 837 . . . 4 (𝜑 → Σ𝑛𝐼 ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) = Σ𝑛𝑂 if(𝑛𝐼, ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))), 0))
9892, 97eqtr3d 2767 . . 3 (𝜑 → ((♯‘𝐼) · ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)))) = Σ𝑛𝑂 if(𝑛𝐼, ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))), 0))
9948adantr 480 . . . . . 6 ((𝜑𝑛𝐼) → ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) ∈ ℝ)
10099adantlr 715 . . . . 5 (((𝜑𝑛𝑂) ∧ 𝑛𝐼) → ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) ∈ ℝ)
101 0red 11184 . . . . 5 (((𝜑𝑛𝑂) ∧ ¬ 𝑛𝐼) → 0 ∈ ℝ)
102100, 101ifclda 4527 . . . 4 ((𝜑𝑛𝑂) → if(𝑛𝐼, ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))), 0) ∈ ℝ)
103 breq1 5113 . . . . 5 (((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) = if(𝑛𝐼, ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))), 0) → (((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) ≤ (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ↔ if(𝑛𝐼, ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))), 0) ≤ (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))))
104 breq1 5113 . . . . 5 (0 = if(𝑛𝐼, ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))), 0) → (0 ≤ (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ↔ if(𝑛𝐼, ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))), 0) ≤ (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))))
10513rpregt0d 13008 . . . . . . . . . 10 (𝜑 → ((𝑈𝐸) ∈ ℝ ∧ 0 < (𝑈𝐸)))
106105adantr 480 . . . . . . . . 9 ((𝜑𝑛𝐼) → ((𝑈𝐸) ∈ ℝ ∧ 0 < (𝑈𝐸)))
107106simpld 494 . . . . . . . 8 ((𝜑𝑛𝐼) → (𝑈𝐸) ∈ ℝ)
108 1rp 12962 . . . . . . . . . . . . . . . . 17 1 ∈ ℝ+
109 rpaddcl 12982 . . . . . . . . . . . . . . . . 17 ((1 ∈ ℝ+ ∧ (𝐿 · 𝐸) ∈ ℝ+) → (1 + (𝐿 · 𝐸)) ∈ ℝ+)
110108, 17, 109sylancr 587 . . . . . . . . . . . . . . . 16 (𝜑 → (1 + (𝐿 · 𝐸)) ∈ ℝ+)
111110, 44rpmulcld 13018 . . . . . . . . . . . . . . 15 (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑉) ∈ ℝ+)
11229, 111rpdivcld 13019 . . . . . . . . . . . . . 14 (𝜑 → (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ∈ ℝ+)
113112rprege0d 13009 . . . . . . . . . . . . 13 (𝜑 → ((𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ∈ ℝ ∧ 0 ≤ (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))))
114 flge0nn0 13789 . . . . . . . . . . . . 13 (((𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ∈ ℝ ∧ 0 ≤ (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) → (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) ∈ ℕ0)
115 nn0p1nn 12488 . . . . . . . . . . . . 13 ((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) ∈ ℕ0 → ((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1) ∈ ℕ)
116113, 114, 1153syl 18 . . . . . . . . . . . 12 (𝜑 → ((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1) ∈ ℕ)
117 elfzuz 13488 . . . . . . . . . . . . 13 (𝑛 ∈ (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)...(⌊‘(𝑍 / 𝑉))) → 𝑛 ∈ (ℤ‘((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)))
118117, 37eleq2s 2847 . . . . . . . . . . . 12 (𝑛𝐼𝑛 ∈ (ℤ‘((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)))
119 eluznn 12884 . . . . . . . . . . . 12 ((((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1) ∈ ℕ ∧ 𝑛 ∈ (ℤ‘((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1))) → 𝑛 ∈ ℕ)
120116, 118, 119syl2an 596 . . . . . . . . . . 11 ((𝜑𝑛𝐼) → 𝑛 ∈ ℕ)
121120nnrpd 13000 . . . . . . . . . 10 ((𝜑𝑛𝐼) → 𝑛 ∈ ℝ+)
122121relogcld 26539 . . . . . . . . 9 ((𝜑𝑛𝐼) → (log‘𝑛) ∈ ℝ)
123122, 120nndivred 12247 . . . . . . . 8 ((𝜑𝑛𝐼) → ((log‘𝑛) / 𝑛) ∈ ℝ)
124107, 123remulcld 11211 . . . . . . 7 ((𝜑𝑛𝐼) → ((𝑈𝐸) · ((log‘𝑛) / 𝑛)) ∈ ℝ)
12593sselda 3949 . . . . . . . 8 ((𝜑𝑛𝐼) → 𝑛𝑂)
126125, 82syldan 591 . . . . . . 7 ((𝜑𝑛𝐼) → (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∈ ℝ)
127 simpr 484 . . . . . . . . . . . 12 ((𝜑𝑛𝐼) → 𝑛𝐼)
128127, 37eleqtrdi 2839 . . . . . . . . . . 11 ((𝜑𝑛𝐼) → 𝑛 ∈ (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)...(⌊‘(𝑍 / 𝑉))))
129 elfzle2 13496 . . . . . . . . . . 11 (𝑛 ∈ (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)...(⌊‘(𝑍 / 𝑉))) → 𝑛 ≤ (⌊‘(𝑍 / 𝑉)))
130128, 129syl 17 . . . . . . . . . 10 ((𝜑𝑛𝐼) → 𝑛 ≤ (⌊‘(𝑍 / 𝑉)))
13145rpred 13002 . . . . . . . . . . . 12 (𝜑 → (𝑍 / 𝑉) ∈ ℝ)
132131adantr 480 . . . . . . . . . . 11 ((𝜑𝑛𝐼) → (𝑍 / 𝑉) ∈ ℝ)
133128elfzelzd 13493 . . . . . . . . . . 11 ((𝜑𝑛𝐼) → 𝑛 ∈ ℤ)
134 flge 13774 . . . . . . . . . . 11 (((𝑍 / 𝑉) ∈ ℝ ∧ 𝑛 ∈ ℤ) → (𝑛 ≤ (𝑍 / 𝑉) ↔ 𝑛 ≤ (⌊‘(𝑍 / 𝑉))))
135132, 133, 134syl2anc 584 . . . . . . . . . 10 ((𝜑𝑛𝐼) → (𝑛 ≤ (𝑍 / 𝑉) ↔ 𝑛 ≤ (⌊‘(𝑍 / 𝑉))))
136130, 135mpbird 257 . . . . . . . . 9 ((𝜑𝑛𝐼) → 𝑛 ≤ (𝑍 / 𝑉))
137120nnred 12208 . . . . . . . . . 10 ((𝜑𝑛𝐼) → 𝑛 ∈ ℝ)
138 ere 16062 . . . . . . . . . . . 12 e ∈ ℝ
139138a1i 11 . . . . . . . . . . 11 ((𝜑𝑛𝐼) → e ∈ ℝ)
140112rpred 13002 . . . . . . . . . . . 12 (𝜑 → (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ∈ ℝ)
141140adantr 480 . . . . . . . . . . 11 ((𝜑𝑛𝐼) → (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ∈ ℝ)
142138a1i 11 . . . . . . . . . . . . 13 (𝜑 → e ∈ ℝ)
14329rpsqrtcld 15385 . . . . . . . . . . . . . 14 (𝜑 → (√‘𝑍) ∈ ℝ+)
144143rpred 13002 . . . . . . . . . . . . 13 (𝜑 → (√‘𝑍) ∈ ℝ)
14531simp2d 1143 . . . . . . . . . . . . 13 (𝜑 → e ≤ (√‘𝑍))
146111rpred 13002 . . . . . . . . . . . . . . . . 17 (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑉) ∈ ℝ)
14760rpred 13002 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐾↑(𝐽 + 1)) ∈ ℝ)
14888simpld 494 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝐾𝐽) < 𝑉 ∧ ((1 + (𝐿 · 𝐸)) · 𝑉) < (𝐾 · (𝐾𝐽))))
149148simprd 495 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑉) < (𝐾 · (𝐾𝐽)))
15055rpcnd 13004 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐾 ∈ ℂ)
15155, 58rpexpcld 14219 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝐾𝐽) ∈ ℝ+)
152151rpcnd 13004 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐾𝐽) ∈ ℂ)
153150, 152mulcomd 11202 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐾 · (𝐾𝐽)) = ((𝐾𝐽) · 𝐾))
1541, 2, 3, 4, 5, 6, 7, 8, 9, 10, 23, 24, 25, 26, 27, 84, 85pntlemg 27516 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ𝑀) ∧ (((log‘𝑍) / (log‘𝐾)) / 4) ≤ (𝑁𝑀)))
155154simp1d 1142 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑀 ∈ ℕ)
156 elfzouz 13631 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐽 ∈ (𝑀..^𝑁) → 𝐽 ∈ (ℤ𝑀))
15756, 156syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐽 ∈ (ℤ𝑀))
158 eluznn 12884 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑀 ∈ ℕ ∧ 𝐽 ∈ (ℤ𝑀)) → 𝐽 ∈ ℕ)
159155, 157, 158syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐽 ∈ ℕ)
160159nnnn0d 12510 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐽 ∈ ℕ0)
161150, 160expp1d 14119 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐾↑(𝐽 + 1)) = ((𝐾𝐽) · 𝐾))
162153, 161eqtr4d 2768 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐾 · (𝐾𝐽)) = (𝐾↑(𝐽 + 1)))
163149, 162breqtrd 5136 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑉) < (𝐾↑(𝐽 + 1)))
164146, 147, 163ltled 11329 . . . . . . . . . . . . . . . . 17 (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑉) ≤ (𝐾↑(𝐽 + 1)))
165 fzofzp1 13732 . . . . . . . . . . . . . . . . . . . 20 (𝐽 ∈ (𝑀..^𝑁) → (𝐽 + 1) ∈ (𝑀...𝑁))
16656, 165syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐽 + 1) ∈ (𝑀...𝑁))
1671, 2, 3, 4, 5, 6, 7, 8, 9, 10, 23, 24, 25, 26, 27, 84, 85pntlemh 27517 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝐽 + 1) ∈ (𝑀...𝑁)) → (𝑋 < (𝐾↑(𝐽 + 1)) ∧ (𝐾↑(𝐽 + 1)) ≤ (√‘𝑍)))
168166, 167mpdan 687 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑋 < (𝐾↑(𝐽 + 1)) ∧ (𝐾↑(𝐽 + 1)) ≤ (√‘𝑍)))
169168simprd 495 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐾↑(𝐽 + 1)) ≤ (√‘𝑍))
170146, 147, 144, 164, 169letrd 11338 . . . . . . . . . . . . . . . 16 (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑉) ≤ (√‘𝑍))
171146, 144, 143lemul2d 13046 . . . . . . . . . . . . . . . 16 (𝜑 → (((1 + (𝐿 · 𝐸)) · 𝑉) ≤ (√‘𝑍) ↔ ((√‘𝑍) · ((1 + (𝐿 · 𝐸)) · 𝑉)) ≤ ((√‘𝑍) · (√‘𝑍))))
172170, 171mpbid 232 . . . . . . . . . . . . . . 15 (𝜑 → ((√‘𝑍) · ((1 + (𝐿 · 𝐸)) · 𝑉)) ≤ ((√‘𝑍) · (√‘𝑍)))
17329rprege0d 13009 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑍 ∈ ℝ ∧ 0 ≤ 𝑍))
174 remsqsqrt 15229 . . . . . . . . . . . . . . . 16 ((𝑍 ∈ ℝ ∧ 0 ≤ 𝑍) → ((√‘𝑍) · (√‘𝑍)) = 𝑍)
175173, 174syl 17 . . . . . . . . . . . . . . 15 (𝜑 → ((√‘𝑍) · (√‘𝑍)) = 𝑍)
176172, 175breqtrd 5136 . . . . . . . . . . . . . 14 (𝜑 → ((√‘𝑍) · ((1 + (𝐿 · 𝐸)) · 𝑉)) ≤ 𝑍)
177144, 30, 111lemuldivd 13051 . . . . . . . . . . . . . 14 (𝜑 → (((√‘𝑍) · ((1 + (𝐿 · 𝐸)) · 𝑉)) ≤ 𝑍 ↔ (√‘𝑍) ≤ (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))))
178176, 177mpbid 232 . . . . . . . . . . . . 13 (𝜑 → (√‘𝑍) ≤ (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))
179142, 144, 140, 145, 178letrd 11338 . . . . . . . . . . . 12 (𝜑 → e ≤ (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))
180179adantr 480 . . . . . . . . . . 11 ((𝜑𝑛𝐼) → e ≤ (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))
181 reflcl 13765 . . . . . . . . . . . . . 14 ((𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ∈ ℝ → (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) ∈ ℝ)
182 peano2re 11354 . . . . . . . . . . . . . 14 ((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) ∈ ℝ → ((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1) ∈ ℝ)
183140, 181, 1823syl 18 . . . . . . . . . . . . 13 (𝜑 → ((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1) ∈ ℝ)
184183adantr 480 . . . . . . . . . . . 12 ((𝜑𝑛𝐼) → ((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1) ∈ ℝ)
185 fllep1 13770 . . . . . . . . . . . . 13 ((𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ∈ ℝ → (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ≤ ((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1))
186141, 185syl 17 . . . . . . . . . . . 12 ((𝜑𝑛𝐼) → (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ≤ ((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1))
187 elfzle1 13495 . . . . . . . . . . . . 13 (𝑛 ∈ (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)...(⌊‘(𝑍 / 𝑉))) → ((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1) ≤ 𝑛)
188128, 187syl 17 . . . . . . . . . . . 12 ((𝜑𝑛𝐼) → ((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1) ≤ 𝑛)
189141, 184, 137, 186, 188letrd 11338 . . . . . . . . . . 11 ((𝜑𝑛𝐼) → (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ≤ 𝑛)
190139, 141, 137, 180, 189letrd 11338 . . . . . . . . . 10 ((𝜑𝑛𝐼) → e ≤ 𝑛)
191139, 137, 132, 190, 136letrd 11338 . . . . . . . . . 10 ((𝜑𝑛𝐼) → e ≤ (𝑍 / 𝑉))
192 logdivle 26538 . . . . . . . . . 10 (((𝑛 ∈ ℝ ∧ e ≤ 𝑛) ∧ ((𝑍 / 𝑉) ∈ ℝ ∧ e ≤ (𝑍 / 𝑉))) → (𝑛 ≤ (𝑍 / 𝑉) ↔ ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)) ≤ ((log‘𝑛) / 𝑛)))
193137, 190, 132, 191, 192syl22anc 838 . . . . . . . . 9 ((𝜑𝑛𝐼) → (𝑛 ≤ (𝑍 / 𝑉) ↔ ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)) ≤ ((log‘𝑛) / 𝑛)))
194136, 193mpbid 232 . . . . . . . 8 ((𝜑𝑛𝐼) → ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)) ≤ ((log‘𝑛) / 𝑛))
19547adantr 480 . . . . . . . . 9 ((𝜑𝑛𝐼) → ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)) ∈ ℝ)
196 lemul2 12042 . . . . . . . . 9 ((((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)) ∈ ℝ ∧ ((log‘𝑛) / 𝑛) ∈ ℝ ∧ ((𝑈𝐸) ∈ ℝ ∧ 0 < (𝑈𝐸))) → (((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)) ≤ ((log‘𝑛) / 𝑛) ↔ ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) ≤ ((𝑈𝐸) · ((log‘𝑛) / 𝑛))))
197195, 123, 106, 196syl3anc 1373 . . . . . . . 8 ((𝜑𝑛𝐼) → (((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)) ≤ ((log‘𝑛) / 𝑛) ↔ ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) ≤ ((𝑈𝐸) · ((log‘𝑛) / 𝑛))))
198194, 197mpbid 232 . . . . . . 7 ((𝜑𝑛𝐼) → ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) ≤ ((𝑈𝐸) · ((log‘𝑛) / 𝑛)))
19913rpcnd 13004 . . . . . . . . . . 11 (𝜑 → (𝑈𝐸) ∈ ℂ)
200199adantr 480 . . . . . . . . . 10 ((𝜑𝑛𝐼) → (𝑈𝐸) ∈ ℂ)
201122recnd 11209 . . . . . . . . . 10 ((𝜑𝑛𝐼) → (log‘𝑛) ∈ ℂ)
202121rpcnne0d 13011 . . . . . . . . . 10 ((𝜑𝑛𝐼) → (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0))
203 div23 11863 . . . . . . . . . 10 (((𝑈𝐸) ∈ ℂ ∧ (log‘𝑛) ∈ ℂ ∧ (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0)) → (((𝑈𝐸) · (log‘𝑛)) / 𝑛) = (((𝑈𝐸) / 𝑛) · (log‘𝑛)))
204200, 201, 202, 203syl3anc 1373 . . . . . . . . 9 ((𝜑𝑛𝐼) → (((𝑈𝐸) · (log‘𝑛)) / 𝑛) = (((𝑈𝐸) / 𝑛) · (log‘𝑛)))
205 divass 11862 . . . . . . . . . 10 (((𝑈𝐸) ∈ ℂ ∧ (log‘𝑛) ∈ ℂ ∧ (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0)) → (((𝑈𝐸) · (log‘𝑛)) / 𝑛) = ((𝑈𝐸) · ((log‘𝑛) / 𝑛)))
206200, 201, 202, 205syl3anc 1373 . . . . . . . . 9 ((𝜑𝑛𝐼) → (((𝑈𝐸) · (log‘𝑛)) / 𝑛) = ((𝑈𝐸) · ((log‘𝑛) / 𝑛)))
207204, 206eqtr3d 2767 . . . . . . . 8 ((𝜑𝑛𝐼) → (((𝑈𝐸) / 𝑛) · (log‘𝑛)) = ((𝑈𝐸) · ((log‘𝑛) / 𝑛)))
20843adantr 480 . . . . . . . . . 10 ((𝜑𝑛𝐼) → (𝑈𝐸) ∈ ℝ)
209208, 120nndivred 12247 . . . . . . . . 9 ((𝜑𝑛𝐼) → ((𝑈𝐸) / 𝑛) ∈ ℝ)
210125, 80syldan 591 . . . . . . . . 9 ((𝜑𝑛𝐼) → ((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) ∈ ℝ)
211 log1 26501 . . . . . . . . . 10 (log‘1) = 0
212120nnge1d 12241 . . . . . . . . . . 11 ((𝜑𝑛𝐼) → 1 ≤ 𝑛)
213 logleb 26519 . . . . . . . . . . . 12 ((1 ∈ ℝ+𝑛 ∈ ℝ+) → (1 ≤ 𝑛 ↔ (log‘1) ≤ (log‘𝑛)))
214108, 121, 213sylancr 587 . . . . . . . . . . 11 ((𝜑𝑛𝐼) → (1 ≤ 𝑛 ↔ (log‘1) ≤ (log‘𝑛)))
215212, 214mpbid 232 . . . . . . . . . 10 ((𝜑𝑛𝐼) → (log‘1) ≤ (log‘𝑛))
216211, 215eqbrtrrid 5146 . . . . . . . . 9 ((𝜑𝑛𝐼) → 0 ≤ (log‘𝑛))
2177rpcnd 13004 . . . . . . . . . . . 12 (𝜑𝑈 ∈ ℂ)
218217adantr 480 . . . . . . . . . . 11 ((𝜑𝑛𝐼) → 𝑈 ∈ ℂ)
21916rpred 13002 . . . . . . . . . . . . 13 (𝜑𝐸 ∈ ℝ)
220219adantr 480 . . . . . . . . . . . 12 ((𝜑𝑛𝐼) → 𝐸 ∈ ℝ)
221220recnd 11209 . . . . . . . . . . 11 ((𝜑𝑛𝐼) → 𝐸 ∈ ℂ)
222 divsubdir 11883 . . . . . . . . . . 11 ((𝑈 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0)) → ((𝑈𝐸) / 𝑛) = ((𝑈 / 𝑛) − (𝐸 / 𝑛)))
223218, 221, 202, 222syl3anc 1373 . . . . . . . . . 10 ((𝜑𝑛𝐼) → ((𝑈𝐸) / 𝑛) = ((𝑈 / 𝑛) − (𝐸 / 𝑛)))
224125, 79syldan 591 . . . . . . . . . . 11 ((𝜑𝑛𝐼) → (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) ∈ ℝ)
225220, 120nndivred 12247 . . . . . . . . . . 11 ((𝜑𝑛𝐼) → (𝐸 / 𝑛) ∈ ℝ)
226125, 70syldan 591 . . . . . . . . . . 11 ((𝜑𝑛𝐼) → (𝑈 / 𝑛) ∈ ℝ)
227125, 76syldan 591 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛𝐼) → (𝑅‘(𝑍 / 𝑛)) ∈ ℝ)
228227recnd 11209 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛𝐼) → (𝑅‘(𝑍 / 𝑛)) ∈ ℂ)
22929adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛𝐼) → 𝑍 ∈ ℝ+)
230229rpcnne0d 13011 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛𝐼) → (𝑍 ∈ ℂ ∧ 𝑍 ≠ 0))
231 divdiv2 11901 . . . . . . . . . . . . . . . . 17 (((𝑅‘(𝑍 / 𝑛)) ∈ ℂ ∧ (𝑍 ∈ ℂ ∧ 𝑍 ≠ 0) ∧ (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0)) → ((𝑅‘(𝑍 / 𝑛)) / (𝑍 / 𝑛)) = (((𝑅‘(𝑍 / 𝑛)) · 𝑛) / 𝑍))
232228, 230, 202, 231syl3anc 1373 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝐼) → ((𝑅‘(𝑍 / 𝑛)) / (𝑍 / 𝑛)) = (((𝑅‘(𝑍 / 𝑛)) · 𝑛) / 𝑍))
233121rpcnd 13004 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛𝐼) → 𝑛 ∈ ℂ)
234 div23 11863 . . . . . . . . . . . . . . . . 17 (((𝑅‘(𝑍 / 𝑛)) ∈ ℂ ∧ 𝑛 ∈ ℂ ∧ (𝑍 ∈ ℂ ∧ 𝑍 ≠ 0)) → (((𝑅‘(𝑍 / 𝑛)) · 𝑛) / 𝑍) = (((𝑅‘(𝑍 / 𝑛)) / 𝑍) · 𝑛))
235228, 233, 230, 234syl3anc 1373 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝐼) → (((𝑅‘(𝑍 / 𝑛)) · 𝑛) / 𝑍) = (((𝑅‘(𝑍 / 𝑛)) / 𝑍) · 𝑛))
236232, 235eqtrd 2765 . . . . . . . . . . . . . . 15 ((𝜑𝑛𝐼) → ((𝑅‘(𝑍 / 𝑛)) / (𝑍 / 𝑛)) = (((𝑅‘(𝑍 / 𝑛)) / 𝑍) · 𝑛))
237236fveq2d 6865 . . . . . . . . . . . . . 14 ((𝜑𝑛𝐼) → (abs‘((𝑅‘(𝑍 / 𝑛)) / (𝑍 / 𝑛))) = (abs‘(((𝑅‘(𝑍 / 𝑛)) / 𝑍) · 𝑛)))
238125, 78syldan 591 . . . . . . . . . . . . . . 15 ((𝜑𝑛𝐼) → ((𝑅‘(𝑍 / 𝑛)) / 𝑍) ∈ ℂ)
239238, 233absmuld 15430 . . . . . . . . . . . . . 14 ((𝜑𝑛𝐼) → (abs‘(((𝑅‘(𝑍 / 𝑛)) / 𝑍) · 𝑛)) = ((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (abs‘𝑛)))
240121rprege0d 13009 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝐼) → (𝑛 ∈ ℝ ∧ 0 ≤ 𝑛))
241 absid 15269 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℝ ∧ 0 ≤ 𝑛) → (abs‘𝑛) = 𝑛)
242240, 241syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑛𝐼) → (abs‘𝑛) = 𝑛)
243242oveq2d 7406 . . . . . . . . . . . . . 14 ((𝜑𝑛𝐼) → ((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (abs‘𝑛)) = ((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · 𝑛))
244237, 239, 2433eqtrd 2769 . . . . . . . . . . . . 13 ((𝜑𝑛𝐼) → (abs‘((𝑅‘(𝑍 / 𝑛)) / (𝑍 / 𝑛))) = ((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · 𝑛))
245 fveq2 6861 . . . . . . . . . . . . . . . . 17 (𝑢 = (𝑍 / 𝑛) → (𝑅𝑢) = (𝑅‘(𝑍 / 𝑛)))
246 id 22 . . . . . . . . . . . . . . . . 17 (𝑢 = (𝑍 / 𝑛) → 𝑢 = (𝑍 / 𝑛))
247245, 246oveq12d 7408 . . . . . . . . . . . . . . . 16 (𝑢 = (𝑍 / 𝑛) → ((𝑅𝑢) / 𝑢) = ((𝑅‘(𝑍 / 𝑛)) / (𝑍 / 𝑛)))
248247fveq2d 6865 . . . . . . . . . . . . . . 15 (𝑢 = (𝑍 / 𝑛) → (abs‘((𝑅𝑢) / 𝑢)) = (abs‘((𝑅‘(𝑍 / 𝑛)) / (𝑍 / 𝑛))))
249248breq1d 5120 . . . . . . . . . . . . . 14 (𝑢 = (𝑍 / 𝑛) → ((abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸 ↔ (abs‘((𝑅‘(𝑍 / 𝑛)) / (𝑍 / 𝑛))) ≤ 𝐸))
25088simprd 495 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑢 ∈ (𝑉[,]((1 + (𝐿 · 𝐸)) · 𝑉))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)
251250adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑛𝐼) → ∀𝑢 ∈ (𝑉[,]((1 + (𝐿 · 𝐸)) · 𝑉))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)
25230adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝐼) → 𝑍 ∈ ℝ)
253252, 120nndivred 12247 . . . . . . . . . . . . . . 15 ((𝜑𝑛𝐼) → (𝑍 / 𝑛) ∈ ℝ)
25444rpregt0d 13008 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑉 ∈ ℝ ∧ 0 < 𝑉))
255254adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛𝐼) → (𝑉 ∈ ℝ ∧ 0 < 𝑉))
256 lemuldiv2 12071 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℝ ∧ 𝑍 ∈ ℝ ∧ (𝑉 ∈ ℝ ∧ 0 < 𝑉)) → ((𝑉 · 𝑛) ≤ 𝑍𝑛 ≤ (𝑍 / 𝑉)))
257137, 252, 255, 256syl3anc 1373 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛𝐼) → ((𝑉 · 𝑛) ≤ 𝑍𝑛 ≤ (𝑍 / 𝑉)))
258136, 257mpbird 257 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝐼) → (𝑉 · 𝑛) ≤ 𝑍)
259255simpld 494 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛𝐼) → 𝑉 ∈ ℝ)
260259, 252, 121lemuldivd 13051 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝐼) → ((𝑉 · 𝑛) ≤ 𝑍𝑉 ≤ (𝑍 / 𝑛)))
261258, 260mpbid 232 . . . . . . . . . . . . . . 15 ((𝜑𝑛𝐼) → 𝑉 ≤ (𝑍 / 𝑛))
262111rpregt0d 13008 . . . . . . . . . . . . . . . . . 18 (𝜑 → (((1 + (𝐿 · 𝐸)) · 𝑉) ∈ ℝ ∧ 0 < ((1 + (𝐿 · 𝐸)) · 𝑉)))
263262adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛𝐼) → (((1 + (𝐿 · 𝐸)) · 𝑉) ∈ ℝ ∧ 0 < ((1 + (𝐿 · 𝐸)) · 𝑉)))
264121rpregt0d 13008 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛𝐼) → (𝑛 ∈ ℝ ∧ 0 < 𝑛))
265 lediv23 12082 . . . . . . . . . . . . . . . . 17 ((𝑍 ∈ ℝ ∧ (((1 + (𝐿 · 𝐸)) · 𝑉) ∈ ℝ ∧ 0 < ((1 + (𝐿 · 𝐸)) · 𝑉)) ∧ (𝑛 ∈ ℝ ∧ 0 < 𝑛)) → ((𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ≤ 𝑛 ↔ (𝑍 / 𝑛) ≤ ((1 + (𝐿 · 𝐸)) · 𝑉)))
266252, 263, 264, 265syl3anc 1373 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝐼) → ((𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ≤ 𝑛 ↔ (𝑍 / 𝑛) ≤ ((1 + (𝐿 · 𝐸)) · 𝑉)))
267189, 266mpbid 232 . . . . . . . . . . . . . . 15 ((𝜑𝑛𝐼) → (𝑍 / 𝑛) ≤ ((1 + (𝐿 · 𝐸)) · 𝑉))
26844rpred 13002 . . . . . . . . . . . . . . . . 17 (𝜑𝑉 ∈ ℝ)
269268adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝐼) → 𝑉 ∈ ℝ)
270146adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝐼) → ((1 + (𝐿 · 𝐸)) · 𝑉) ∈ ℝ)
271 elicc2 13379 . . . . . . . . . . . . . . . 16 ((𝑉 ∈ ℝ ∧ ((1 + (𝐿 · 𝐸)) · 𝑉) ∈ ℝ) → ((𝑍 / 𝑛) ∈ (𝑉[,]((1 + (𝐿 · 𝐸)) · 𝑉)) ↔ ((𝑍 / 𝑛) ∈ ℝ ∧ 𝑉 ≤ (𝑍 / 𝑛) ∧ (𝑍 / 𝑛) ≤ ((1 + (𝐿 · 𝐸)) · 𝑉))))
272269, 270, 271syl2anc 584 . . . . . . . . . . . . . . 15 ((𝜑𝑛𝐼) → ((𝑍 / 𝑛) ∈ (𝑉[,]((1 + (𝐿 · 𝐸)) · 𝑉)) ↔ ((𝑍 / 𝑛) ∈ ℝ ∧ 𝑉 ≤ (𝑍 / 𝑛) ∧ (𝑍 / 𝑛) ≤ ((1 + (𝐿 · 𝐸)) · 𝑉))))
273253, 261, 267, 272mpbir3and 1343 . . . . . . . . . . . . . 14 ((𝜑𝑛𝐼) → (𝑍 / 𝑛) ∈ (𝑉[,]((1 + (𝐿 · 𝐸)) · 𝑉)))
274249, 251, 273rspcdva 3592 . . . . . . . . . . . . 13 ((𝜑𝑛𝐼) → (abs‘((𝑅‘(𝑍 / 𝑛)) / (𝑍 / 𝑛))) ≤ 𝐸)
275244, 274eqbrtrrd 5134 . . . . . . . . . . . 12 ((𝜑𝑛𝐼) → ((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · 𝑛) ≤ 𝐸)
276224, 220, 121lemuldivd 13051 . . . . . . . . . . . 12 ((𝜑𝑛𝐼) → (((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · 𝑛) ≤ 𝐸 ↔ (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) ≤ (𝐸 / 𝑛)))
277275, 276mpbid 232 . . . . . . . . . . 11 ((𝜑𝑛𝐼) → (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) ≤ (𝐸 / 𝑛))
278224, 225, 226, 277lesub2dd 11802 . . . . . . . . . 10 ((𝜑𝑛𝐼) → ((𝑈 / 𝑛) − (𝐸 / 𝑛)) ≤ ((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))))
279223, 278eqbrtrd 5132 . . . . . . . . 9 ((𝜑𝑛𝐼) → ((𝑈𝐸) / 𝑛) ≤ ((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))))
280209, 210, 122, 216, 279lemul1ad 12129 . . . . . . . 8 ((𝜑𝑛𝐼) → (((𝑈𝐸) / 𝑛) · (log‘𝑛)) ≤ (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
281207, 280eqbrtrrd 5134 . . . . . . 7 ((𝜑𝑛𝐼) → ((𝑈𝐸) · ((log‘𝑛) / 𝑛)) ≤ (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
28299, 124, 126, 198, 281letrd 11338 . . . . . 6 ((𝜑𝑛𝐼) → ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) ≤ (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
283282adantlr 715 . . . . 5 (((𝜑𝑛𝑂) ∧ 𝑛𝐼) → ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) ≤ (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
28469nnred 12208 . . . . . . . . 9 ((𝜑𝑛𝑂) → 𝑛 ∈ ℝ)
28529, 151rpdivcld 13019 . . . . . . . . . . 11 (𝜑 → (𝑍 / (𝐾𝐽)) ∈ ℝ+)
286285rpred 13002 . . . . . . . . . 10 (𝜑 → (𝑍 / (𝐾𝐽)) ∈ ℝ)
287286adantr 480 . . . . . . . . 9 ((𝜑𝑛𝑂) → (𝑍 / (𝐾𝐽)) ∈ ℝ)
28823simpld 494 . . . . . . . . . . . 12 (𝜑𝑌 ∈ ℝ+)
28929, 288rpdivcld 13019 . . . . . . . . . . 11 (𝜑 → (𝑍 / 𝑌) ∈ ℝ+)
290289rpred 13002 . . . . . . . . . 10 (𝜑 → (𝑍 / 𝑌) ∈ ℝ)
291290adantr 480 . . . . . . . . 9 ((𝜑𝑛𝑂) → (𝑍 / 𝑌) ∈ ℝ)
292 simpr 484 . . . . . . . . . . . 12 ((𝜑𝑛𝑂) → 𝑛𝑂)
293292, 50eleqtrdi 2839 . . . . . . . . . . 11 ((𝜑𝑛𝑂) → 𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝐽)))))
294 elfzle2 13496 . . . . . . . . . . 11 (𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝐽)))) → 𝑛 ≤ (⌊‘(𝑍 / (𝐾𝐽))))
295293, 294syl 17 . . . . . . . . . 10 ((𝜑𝑛𝑂) → 𝑛 ≤ (⌊‘(𝑍 / (𝐾𝐽))))
29669nnzd 12563 . . . . . . . . . . 11 ((𝜑𝑛𝑂) → 𝑛 ∈ ℤ)
297 flge 13774 . . . . . . . . . . 11 (((𝑍 / (𝐾𝐽)) ∈ ℝ ∧ 𝑛 ∈ ℤ) → (𝑛 ≤ (𝑍 / (𝐾𝐽)) ↔ 𝑛 ≤ (⌊‘(𝑍 / (𝐾𝐽)))))
298287, 296, 297syl2anc 584 . . . . . . . . . 10 ((𝜑𝑛𝑂) → (𝑛 ≤ (𝑍 / (𝐾𝐽)) ↔ 𝑛 ≤ (⌊‘(𝑍 / (𝐾𝐽)))))
299295, 298mpbird 257 . . . . . . . . 9 ((𝜑𝑛𝑂) → 𝑛 ≤ (𝑍 / (𝐾𝐽)))
300288rpred 13002 . . . . . . . . . . . 12 (𝜑𝑌 ∈ ℝ)
30124simpld 494 . . . . . . . . . . . . 13 (𝜑𝑋 ∈ ℝ+)
302301rpred 13002 . . . . . . . . . . . 12 (𝜑𝑋 ∈ ℝ)
303151rpred 13002 . . . . . . . . . . . 12 (𝜑 → (𝐾𝐽) ∈ ℝ)
30424simprd 495 . . . . . . . . . . . . 13 (𝜑𝑌 < 𝑋)
305300, 302, 304ltled 11329 . . . . . . . . . . . 12 (𝜑𝑌𝑋)
306 elfzofz 13643 . . . . . . . . . . . . . . . 16 (𝐽 ∈ (𝑀..^𝑁) → 𝐽 ∈ (𝑀...𝑁))
30756, 306syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐽 ∈ (𝑀...𝑁))
3081, 2, 3, 4, 5, 6, 7, 8, 9, 10, 23, 24, 25, 26, 27, 84, 85pntlemh 27517 . . . . . . . . . . . . . . 15 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (𝑋 < (𝐾𝐽) ∧ (𝐾𝐽) ≤ (√‘𝑍)))
309307, 308mpdan 687 . . . . . . . . . . . . . 14 (𝜑 → (𝑋 < (𝐾𝐽) ∧ (𝐾𝐽) ≤ (√‘𝑍)))
310309simpld 494 . . . . . . . . . . . . 13 (𝜑𝑋 < (𝐾𝐽))
311302, 303, 310ltled 11329 . . . . . . . . . . . 12 (𝜑𝑋 ≤ (𝐾𝐽))
312300, 302, 303, 305, 311letrd 11338 . . . . . . . . . . 11 (𝜑𝑌 ≤ (𝐾𝐽))
313288, 151, 29lediv2d 13026 . . . . . . . . . . 11 (𝜑 → (𝑌 ≤ (𝐾𝐽) ↔ (𝑍 / (𝐾𝐽)) ≤ (𝑍 / 𝑌)))
314312, 313mpbid 232 . . . . . . . . . 10 (𝜑 → (𝑍 / (𝐾𝐽)) ≤ (𝑍 / 𝑌))
315314adantr 480 . . . . . . . . 9 ((𝜑𝑛𝑂) → (𝑍 / (𝐾𝐽)) ≤ (𝑍 / 𝑌))
316284, 287, 291, 299, 315letrd 11338 . . . . . . . 8 ((𝜑𝑛𝑂) → 𝑛 ≤ (𝑍 / 𝑌))
31769, 316jca 511 . . . . . . 7 ((𝜑𝑛𝑂) → (𝑛 ∈ ℕ ∧ 𝑛 ≤ (𝑍 / 𝑌)))
3181, 2, 3, 4, 5, 6, 7, 8, 9, 10, 23, 24, 25, 26, 27, 84, 85, 86pntlemn 27518 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛 ≤ (𝑍 / 𝑌))) → 0 ≤ (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
319317, 318syldan 591 . . . . . 6 ((𝜑𝑛𝑂) → 0 ≤ (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
320319adantr 480 . . . . 5 (((𝜑𝑛𝑂) ∧ ¬ 𝑛𝐼) → 0 ≤ (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
321103, 104, 283, 320ifbothda 4530 . . . 4 ((𝜑𝑛𝑂) → if(𝑛𝐼, ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))), 0) ≤ (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
32252, 102, 82, 321fsumle 15772 . . 3 (𝜑 → Σ𝑛𝑂 if(𝑛𝐼, ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))), 0) ≤ Σ𝑛𝑂 (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
32398, 322eqbrtrd 5132 . 2 (𝜑 → ((♯‘𝐼) · ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)))) ≤ Σ𝑛𝑂 (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
32436, 49, 83, 89, 323letrd 11338 1 (𝜑 → ((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ≤ Σ𝑛𝑂 (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  wss 3917  ifcif 4491   class class class wbr 5110  cmpt 5191  cfv 6514  (class class class)co 7390  Fincfn 8921  cc 11073  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080  +∞cpnf 11212   < clt 11215  cle 11216  cmin 11412   / cdiv 11842  cn 12193  2c2 12248  3c3 12249  4c4 12250  8c8 12254  0cn0 12449  cz 12536  cdc 12656  cuz 12800  +crp 12958  (,)cioo 13313  [,)cico 13315  [,]cicc 13316  ...cfz 13475  ..^cfzo 13622  cfl 13759  cexp 14033  chash 14302  csqrt 15206  abscabs 15207  Σcsu 15659  expce 16034  eceu 16035  logclog 26470  ψcchp 27010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-fac 14246  df-bc 14275  df-hash 14303  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660  df-ef 16040  df-e 16041  df-sin 16042  df-cos 16043  df-pi 16045  df-dvds 16230  df-gcd 16472  df-prm 16649  df-pc 16815  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lp 23030  df-perf 23031  df-cn 23121  df-cnp 23122  df-haus 23209  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-xms 24215  df-ms 24216  df-tms 24217  df-cncf 24778  df-limc 25774  df-dv 25775  df-log 26472  df-vma 27015  df-chp 27016
This theorem is referenced by:  pntlemi  27522
  Copyright terms: Public domain W3C validator